Sustainable Production of Barley in a Water-Scarce Mediterranean Agroecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of Monitored Barley Plots
2.3. Irrigation System
2.4. Irrigation Scheduling
2.5. Plot Monitoring
2.6. Key Performance Indicators (KPIs)
- Gross margin (GM) (EUR ha−1), using the information provided by farmers:
- Irrigation water productivity (WPI) (kg m−3):
- Crop water productivity (WPc) (kg m−3):
- Net economic irrigation water productivity (NEWP) (EUR m−3):
- Gross economic irrigation water productivity (GEWPI) (EUR m−3):
- Agronomic productivity of nitrogen (APN) (kg NU−1) calculated as:
- Water footprint (WF)
3. Results and Discussion
3.1. Evaluation of the Irrigation System
3.2. Soil Analysis and Fertilization Requirements
3.3. Crop Development
3.4. Irrigation Scheduling
3.5. Soil Water Monitoring
3.6. Analysis of the Key Performance Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean Water Resources in a Global Change Scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Correia, F.N.; Iwra, M.; Técnico, I.S. Water Resources in the Mediterranean Region. Int. Water Resour. Assoc. 2009, 24, 22–30. [Google Scholar] [CrossRef]
- De Juan, J.A.; Tarjuelo, J.M.; Valiente, M.; García, P. Model for Optimal Cropping Patterns within the Farm Based on Crop Water Production Functions and Irrigation Uniformity. I: Development of a Decision Model. Agric. Water Manag. 1996, 31, 115–143. [Google Scholar] [CrossRef]
- Nascimento, A.K.; Schwartz, R.C.; Lima, F.A.; López-Mata, E.; Domínguez, A.; Izquiel, A.; Tarjuelo, J.M.; Martínez-Romero, A. Effects of Irrigation Uniformity on Yield Response and Production Economics of Maize in a Semiarid Zone. Agric. Water Manag. 2019, 211, 178–189. [Google Scholar] [CrossRef]
- López-Mata, E.; Tarjuelo, J.M.; de Juan, J.A.; Ballesteros, R.; Domínguez, A. Effect of Irrigation Uniformity on the Profitability of Crops. Agric. Water Manag. 2010, 98, 190–198. [Google Scholar] [CrossRef]
- Daccache, A.; Ciurana, J.S.; Rodríguez Díaz, J.A.; Knox, J.W. Water and Energy Footprint of Irrigated agriculture in the Mediterranean Region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient Water and Energy Use in Irrigation Modernization: Lessons from Spanish Case Studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Sachalkoff, R.J. Artificial Neural Networks; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Hill, T.R.; Marquez, L.; O’Connor, M.; Remus, W. Artificial Neural Network Models for Forecasting and Decision Making. Int. J. Forecast. 1994, 10, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, J.; Ueno, M. Advanced Methodologies for Bayesian Networks. In Proceedings of the Second International Workshop, AMBN 2015, Yokohama, Japan, 16–18 November 2015; Volume 9505, ISBN 978-3-319-28378-4. [Google Scholar]
- Hernández, L.; Baladrón, C.; Aguiar, J.M.; Calavia, L.; Carro, B.B.; Sánchez-Esguevillas, A.; Pérez, F.; Fernández, Á.; Lloret, J. Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies 2014, 7, 1576–1598. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Tang, D.; Zhou, J.; Wang, H.; Shaviv, A. Prediction of Nitrate Release from Polymer-Coated Fertilizers Using an Artificial Neural Network Model. Biosyst. Eng. 2008, 99, 478–486. [Google Scholar] [CrossRef]
- Vlontzos, G.; Pardalos, P.M. Assess and Prognosticate Green House Gas Emissions from Agricultural Production of EU Countries, by Implementing, DEA Window Analysis and Artificial Neural Networks. Renew. Sustain. Energy Rev. 2017, 76, 155–162. [Google Scholar] [CrossRef]
- Pereira, L.S.; Teodoro, P.R.; Rodrigues, P.N.; Teixeira, J.L. Irrigation Scheduling Simulation: The Model ISAREG. In Tools for Drought Mitigation in Mediterranean Regions; Springer: Dordrecht, The Netherlands, 2003; pp. 161–180. [Google Scholar]
- Stockle, C.; Donatelli, M.; Nelson, R. CropSyst, a Cropping Systems Simulation Model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Huygen, J.; Wesseling, J.G.; Feddes, R.A.; Kabat, P.; Van, P.E.V.; Groenendijk, W.P.; Van, C.A.; Report, D. Theory of SWAP Version 2.0: Simulation of Water Flow, Solute Transport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment; DLO Winand Staring Centre: Wageningen, The Netherlands, 1997. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P. AquaCrop: FAO’s Crop Water Productivity and Yield Response Model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Ortega Álvarez, J.F.; de Juan Valero, J.A.; Tarjuelo Martín-Benito, J.M.; López Mata, E. MOPECO: An Economic Optimization Model for Irrigation Water Management. Irrig. Sci. 2004, 23, 61–75. [Google Scholar] [CrossRef]
- Domínguez, A.; de Juan, J.A.; Tarjuelo, J.M.; Martínez, R.S.; Martínez-Romero, A. Determination of Optimal Regulated Deficit Irrigation Strategies for Maize in a Semi-Arid Environment. Agric. Water Manag. 2012, 110, 67–77. [Google Scholar] [CrossRef]
- Domínguez, A.; Tarjuelo, J.M.; de Juan, J.A.; López-Mata, E.; Breidy, J.; Karam, F. Deficit Irrigation under Water Stress and Salinity Conditions: The MOPECO-Salt Model. Agric. Water Manag. 2011, 98, 1451–1461. [Google Scholar] [CrossRef]
- Domínguez, A.; Martínez, R.S.; de Juan, J.A.; Martínez-Romero, A.; Tarjuelo, J.M. Simulation of Maize Crop Behavior under Deficit Irrigation Using MOPECO Model in a Semi-Arid Environment. Agric. Water Manag. 2012, 107, 42–53. [Google Scholar] [CrossRef]
- Domínguez, A.; Schwartz, R.C.; Pardo, J.J.; Guerrero, B.; Bell, J.M.; Colaizzi, P.D.; Louis Baumhardt, R. Center Pivot Irrigation Capacity Effects on Maize Yield and Profitability in the Texas High Plains. Agric. Water Manag. 2022, 261, 107335. [Google Scholar] [CrossRef]
- Domínguez, A.; Jiménez, M.; Tarjuelo, J.M.; de Juan, J.A.; Martínez-Romero, A.; Leite, K.N. Simulation of Onion Crop Behavior under Optimized Regulated Deficit Irrigation Using MOPECO Model in a Semi-Arid Environment. Agric. Water Manag. 2012, 113, 64–75. [Google Scholar] [CrossRef]
- Domínguez, A.; Martínez-Romero, A.; Leite, K.N.; Tarjuelo, J.M.; de Juan, J.A.; López-Urrea, R. Combination of Typical Meteorological Year with Regulated Deficit Irrigation to Improve the Profitability of Garlic Growing in Central Spain. Agric. Water Manag. 2013, 130, 154–167. [Google Scholar] [CrossRef]
- Leite, K.N.; Cabello, M.J.; Valnir, M., Jr.; Tarjuelo, J.M.; Domínguez, A. Modelling Sustainable Salt Water Management under Deficit Irrigation Conditions for Melon in Spain and Brazil. J. Sci. Food Agric. 2015, 95, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.F.; Domínguez, A.; Neto, D.H.O.; Tarjuelo, J.M.; Martínez-Romero, A. Combination of Sowing Date with Deficit Irrigation for Improving the Profitability of Carrot in a Tropical Environment (Brazil). Sci. Hortic. 2014, 179, 112–121. [Google Scholar] [CrossRef]
- Léllis, B.C.; Carvalho, D.F.; Martínez-Romero, A.; Tarjuelo, J.M.; Domínguez, A. Effective Management of Irrigation Water for Carrot under Constant and Optimized Regulated Deficit Irrigation in Brazil. Agric. Water Manag. 2017, 192, 294–305. [Google Scholar] [CrossRef]
- Martínez-Romero, A.; Domínguez, A.; Landeras, G. Regulated Deficit Irrigation Strategies for Different Potato Cultivars under Continental Mediterranean-Atlantic Conditions. Agric. Water Manag. 2019, 216, 164–176. [Google Scholar] [CrossRef]
- Carrión, F.; Sanchez-Vizcaino, J.; Corcoles, J.I.; Tarjuelo, J.M.; Moreno, M.A. Optimization of Groundwater Abstraction System and Distribution Pipe in Pressurized Irrigation Systems for Minimum Cost. Irrig. Sci. 2016, 34, 145–159. [Google Scholar] [CrossRef]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide for Management; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- ASAE. ASAE.S 330.1. Procedure for Sprinkler Distribution Testing for Research Purposes. In ASAE Standards; ASAE, Ed.; ASAE: St. Joseph, MI, USA, 1985. [Google Scholar]
- ISO 1145:2009; Agricultural Irrigation Equipment-Centre-Pivot and Moving Lateral Irrigation Machines with Sprayer or Sprinkler Nozzles-Determination of Uniformity of Water Distribution. 3rd edition. ISO: Geneva, Switzerland, 2009.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Rodriguez-Diaz, J.A.; Camacho-Poyato, E.; Carrillo-Cobo, M.T. The Role of Energy Audits in Irrigated Areas. The Case of ‘Fuente Palmera’ Irrigation District (Spain). Span. J. Agric. Res. 2010, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Romero, A.; Martínez-Navarro, A.; Pardo, J.J.; Montoya, F.; Domínguez, A. Real Farm Management Depending on the Available Volume of Irrigation Water (Part II): Analysis of Crop Parameters and Harvest Quality. Agric. Water Manag. 2017, 192, 58–70. [Google Scholar] [CrossRef]
- Pardo, J.J.; Martínez-Romero, A.; Léllis, B.C.; Tarjuelo, J.M.; Domínguez, A. Effect of the Optimized Regulated Deficit Irrigation Methodology on Water Use in Barley under Semiarid Conditions. Agric. Water Manag. 2020, 228, 105925. [Google Scholar] [CrossRef]
- Léllis, B.C.; Martínez-Romero, A.; Schwartz, R.C.; Pardo, J.J.; Tarjuelo, J.M.; Domínguez, A. Effect of the Optimized Regulated Deficit Irrigation Methodology on Water Use in Garlic. Agric. Water Manag. 2022, 260, 107280. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: https://www.fao.org/faostat/en/#data (accessed on 7 February 2022).
- MAPA. Avance de Datos de Cereales Año. 2020. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 7 February 2022).
- Papadakis, J. Climates of the World and Their Agricultural Potentialities; Hemisferio Sur: Buenos Aires, Argentina, 1966. [Google Scholar]
- United States Department of Agriculture; Natural Resources Conservation Services. Keys to Soil Taxonomy, 10th ed.; United States Department of Agriculture: Washington, DC, USA, 2006.
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard Single and Basal Crop Coefficients for Field Crops. Updates and Advances to the FAO56 Crop Water Requirements Method. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
- Bleiholder, H.; Weber, E.; Lancashire, P.D.; Feller, C.; Buhr, L.; Hess, M.; Wicke, H.; Hack, H.; Meier, U.; Klose, R.; et al. Growth Stages of Mono- and Dicotyledonous Plants BBCH Monograph, 2nd ed.; Meier, U., Ed.; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany, 2001. [Google Scholar]
- Danuso, F.; Gani, M.; Giovanardi, R. Field Water Balance: BidriCo 2. In Crop-Water Simulation Model in Practice. ICI-CIID, SC-DLO; Pereira, L.S., van der Broeck, B.J., Kabat, P., Allen, R.G., Eds.; Wageningen Press: Wageningen, The Netherlands, 1995. [Google Scholar]
- Agencia Estatal de Meteorología. Gobierno de España. Available online: http://www.aemet.es/es/portada (accessed on 3 May 2022).
- Trigo, I.F.; de Bruin, H.; Beyrich, F.; Bosveld, F.C.; Gavilán, P.; Groh, J.; López-Urrea, R. Validation of Reference Evapotranspiration from Meteosat Second Generation (MSG) Observations. Agric. For. Meteorol. 2018, 259, 271–285. [Google Scholar] [CrossRef]
- López-Urrea, R.; Pardo, J.J.; Simón, L.; Martínez-Romero, Á.; Montoya, F.; Tarjuelo, J.M.; Domínguez, A. Assessing a Removable Mini-Lysimeter for Monitoring Crop Evapotranspiration Using a Well-Established Large Weighing Lysimeter: A Case Study for Barley and Potato. Agronomy 2021, 11, 2067. [Google Scholar] [CrossRef]
- United States Department of Agriculture. SCS Section 4: Hidrology. In National Engineering Handbook; Soil Conservation Service, Ed.; United States Department of Agriculture: Washington, DC, USA, 1972. [Google Scholar]
- United States Department of Agriculture. NRCS Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook; Natural Resources Conservation Service, Ed.; United States Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Westfall, P.H.; Young, S.S. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment; John Wiley & Sons: Hoboken, NJ, USA, 1993; Volume 279, p. 340. [Google Scholar]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water Use Indicators and Economic Analysis for On-Farm Irrigation Decision: A Case Study of a Super High Density Olive Tree Orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009; 127p. [Google Scholar]
- European Union. CEE, 1991. Directive 91/676/CEE; European Union: Brussels, Belgium, 1991. [Google Scholar]
- Franke, N.; Hoekstra, A.Y.; Boyacioglu, H. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value of Water Research Report Series, 65; UNESCO-IHE: Delf, The Netherlands, 2013; pp. 343–354. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentacion. Informe Semanal de Coyuntura. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/informe-semanal-coyuntura/2020.aspx (accessed on 23 June 2020).
- Ministerio de Agricultura, Pesca y Alimentacion. Informe Semanal de Coyuntura. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/informesemanaldecoyunturas-31_tcm30-573276.pdf (accessed on 3 August 2021).
- CHJ. Confederacion Hidrográfica del Jucar Estado Químico Anual. Informes del Programa de Control de Vigilancia de Aguas Subterráneas. 2017. Available online: https://www.chj.es/es-es/medioambiente/redescontrol/InformesAguasSubterraneas/Estado%20Qu%C3%ADmico%20anual%202017.pdf (accessed on 10 February 2022).
- Domínguez Vivancos, A. Tratado de Fertilizacion; Mundi-Prensa: Madrid, Spain, 1989. [Google Scholar]
- Boyeldiu, J. Les Cultures Céréaliéres; Hachette: Paris, France, 1980. [Google Scholar]
- Sevacherian, V.; Stern, V.M.; Mueller, A.J. Heat Accumulation for Timing Lygus Control Measures in a Safflower-Cotton Complex 2. J. Econ. Entomol. 1977, 70, 399–402. [Google Scholar] [CrossRef]
- Abrha, B.; Delbecque, N.; Raes, D.; Tsegay, A.; Todorovic, M.; Heng, L.E.E.; Vanutrecht, E.; Geerts, S.A.M.; Garcia-Vila, M.; Deckers, S. Sowing Strategies for Barley (Hordeum vulgare L.) Based on Modelled Yield Response to Water with Aquacrop. Exp. Agric. 2012, 48, 252–271. [Google Scholar] [CrossRef] [Green Version]
- Al Azzawi, W.; Gill, M.B.; Fatehi, F.; Zhou, M.; Acuña, T.; Shabala, L.; Yu, M.; Shabala, S. Effects of Potassium Availability on Growth and Development of Barley Cultivars. Agronomy 2021, 11, 2269. [Google Scholar] [CrossRef]
- Cossani, C.M.; Slafer, G.A.; Savin, R. Yield and Biomass in Wheat and Barley under a Range of Conditions in a Mediterranean Site. Field Crops Res. 2009, 112, 205–213. [Google Scholar] [CrossRef]
- Arisnabarreta, S.; Miralles, D.J. Critical Period for Grain Number Establishment of near Isogenic Lines of Two- and Six-Rowed Barley. Field Crops Res. 2008, 107, 196–202. [Google Scholar] [CrossRef]
- Cossani, C.M.; Slafer, G.A.; Savin, R. Nitrogen and Water Use Efficiencies of Wheat and Barley under a Mediterranean Environment in Catalonia. Field Crops Res. 2012, 128, 109–118. [Google Scholar] [CrossRef]
- Domínguez, A.; Martínez-Navarro, A.; López-Mata, E.; Tarjuelo, J.M.; Martínez-Romero, A. Real Farm Management Depending on the Available Volume of Irrigation Water (Part I): Financial Analysis. Agric. Water Manag. 2017, 192, 71–84. [Google Scholar] [CrossRef]
- López-Urrea, R.; Domínguez, A.; Pardo, J.J.; Montoya, F.; García-Vila, M.; Martínez-Romero, A. Parameterization and Comparison of the AquaCrop and MOPECO Models for a High-Yielding Barley Cultivar under Different Irrigation Levels. Agric. Water Manag. 2020, 230, 105931. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crops Products; Value of Water Research Report Series No. 47; UNESCO-IHE: Delf, The Netherlands, 2010. [Google Scholar]
- Dalezios, N.R.; Faraslis, I.N. Remote Sensing in Agricultural Production Assessment. Modeling for Sustainable Management in Agriculture, Food and the Environment; CRC Press: Boca Raton, FL, USA, 2021; pp. 172–198. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical 15 Note NCAR/TN—475 + STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
Year | Crop Management | Surface (ha) | Sowing Date | Harvest Date |
---|---|---|---|---|
2020 | SUP | 2.93 | 18 December 2019 | 19 June 2020 |
LEA | 7.85 | 18 December 2019 | 19 June 2020 | |
AVE 1 | 4.80 | 4 December 2019 | 10 June 2020 | |
AVE 2 | 15.95 | 15 January 2019 | 19 June 2020 | |
AVE 3 | 42.67 | 30 January 2019 | 29 June 2020 | |
2021 | LEASUP | 4.65 | 23 December 2020 | 16 June 2021 |
Year | Crop Management | Sprinkler Spacing (m × m) | Pressure (kPa) | Sprinkler Discharge (L h−1) | Application Rate (mm h−1) | DU (%) | CU (%) |
---|---|---|---|---|---|---|---|
2020 | SUP | 17.3 × 17.3 | 402.5 | 2052.6 | 6.9 | 75.7 | 85.9 |
LEA | 17.3 × 17.3 | 358.8 | 1966.7 | 6.6 | 77.8 | 87.4 | |
AVE 1 | 17.3 × 16.8 | 366.4 | 2108.9 | 7.0 | 76.5 * | 86.7 * | |
AVE 2 | 17.3 × 17.3 | 354.4 | 1962.6 | 6.6 | 76.5 * | 86.7 * | |
AVE 3 | 17.5 × 17.5 | 403.0 | 2085.1 | 6.8 | 43.8 | 68.5 | |
2021 | LEASUP | 17.3 × 17.3 | 403.8 | 2002.9 | 6.7 | 79.4 | 85.9 |
Stage | Kc | Phenological Stage | GDD (°C) | Others Parameters | Value |
---|---|---|---|---|---|
I | 0.3 | 00–21 | 290.3 | ET group | 3 |
II | 0.30–1.15 | 21–39 | 744.5 | TL (°C) | 2 |
III | 1.15 | 39–83 | 1087.2 | TU (°C) | 28 |
IV | 1.15–0.45 | 83–89 | 1449.5 |
Calculated | Applied | |||
---|---|---|---|---|
N/P2O5/K2O (kg ha−1) | Cost (EUR ha−1) | N/P2O5/K2O (kg ha−1) | Cost (EUR ha−1) | |
SUP | 125/55/213 | 301 | 125/219/266 | 336 |
LEA | 125/55/213 | 301 | 125/219/123 | 264 |
AVE 1 | 204/147/252 | 435 | 123/45/45 | 210 |
AVE 2 | 116/0/147 | 175 | 244/110/96 | 181 |
AVE 3 | 110/0/147 | 169 | 244/179/95 | 298 |
LEASUP | 209/138/233 | 342 | 109/103/48 | 156 |
Year | Sowing Date | Harvest Date | GDD | |
---|---|---|---|---|
2020 | SUP | 18-December | 19-June | 1566 |
LEA | 18-December | 19-June | 1566 | |
AVE 1 | 04-December | 10-June | 1673 | |
AVE 2 | 15-January | 19-June | 1514 | |
AVE 3 | 30-January | 29-June | 1542 | |
2021 | LEASUP | 23-December | 16-June | 1572 |
Ig (mm) | In (mm) | PI (mm) | Re (mm) | Pr (mm) | In + Re (mm) | ETa (mm) | ETm (mm) | ETa/ETm | |
---|---|---|---|---|---|---|---|---|---|
SUP | 199.6 | 159.7 | 0.0 | 234.0 | 90.5 | 393.6 | 347.0 | 355.2 | 0.98 |
LEA | 292.1 | 233.7 | 19.4 | 234.0 | 125.2 | 467.6 | 355.2 | 355.2 | 1.00 |
AVE 1 | 222.7 | 189.3 | 5.0 | 236.9 | 104.3 | 426.2 | 331.4 | 334.6 | 0.99 |
AVE 2 | 186.9 | 158.8 | 0.0 | 231.3 | 106.0 | 390.1 | 338.0 | 349.0 | 0.97 |
AVE 3 | 240.9 | 192.7 | 0.0 | 194.7 | 106.0 | 387.4 | 313.5 | 346.5 | 0.92 |
LEASUP | 287.4 | 229.9 | 19.3 | 191.8 | 60.1 | 421.7 | 350.0 | 353.0 | 1.00 |
Year | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
Crop Management | SUP | LEA | AVE 1 | AVE 2 | AVE 3 | LEASUP |
Yield (kg ha−1) | 9467 a | 9295 a | 8776 ab | 9564 a | 7350 a | 9828 |
SD (kg) | 1446 | 1849 | 1036 | 745 | 1102 | 929 |
Cv (%) | 15.3 | 19.9 | 11.8 | 7.8 | 15.0 | 9.5 |
APN (kg UFN−1) | 75.74 | 74.36 | 71.35 | 39.20 | 30.12 | 90.17 |
WPc (kg m−3) | 2.73 | 2.62 | 2.65 | 2.83 | 2.34 | 2.81 |
WPI (kg m−3) | 4.74 | 3.18 | 3.94 | 5.12 | 3.05 | 3.42 |
Ct (EUR ha−1) | 1156.48 | 1195.50 | 976.74 | 865.20 | 1077.01 | 958.81 |
Vp (EUR ha−1) | 1745.49 | 1718.87 | 1689.79 | 1760.51 | 1368.24 | 2383.19 |
GM (EUR ha−1) | 589.01 | 523.37 | 713.05 | 895.31 | 291.23 | 1424.38 |
GEWPI (EUR m−3) | 0.30 | 0.18 | 0.32 | 0.48 | 0.12 | 0.50 |
NEWP (EUR m−3) | 0.15 | 0.11 | 0.17 | 0.23 | 0.08 | 0.34 |
WFGreen (m3 kg −1) | 0.18 | 0.13 | 0.17 | 0.14 | 0.13 | 0.15 |
WFBlue (m3 kg −1) | 0.17 | 0.23 | 0.21 | 0.17 | 0.25 | 0.21 |
WFgrey (m3 kg −1) | 0.08 | 0.08 | 0.09 | 0.16 | 0.21 | 0.07 |
WFTotal (m3 kg −1) | 0.43 | 0.45 | 0.47 | 0.47 | 0.59 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-López, J.A.; López-Urrea, R.; Martínez-Romero, Á.; Pardo, J.J.; Montero, J.; Domínguez, A. Sustainable Production of Barley in a Water-Scarce Mediterranean Agroecosystem. Agronomy 2022, 12, 1358. https://doi.org/10.3390/agronomy12061358
Martínez-López JA, López-Urrea R, Martínez-Romero Á, Pardo JJ, Montero J, Domínguez A. Sustainable Production of Barley in a Water-Scarce Mediterranean Agroecosystem. Agronomy. 2022; 12(6):1358. https://doi.org/10.3390/agronomy12061358
Chicago/Turabian StyleMartínez-López, José Antonio, Ramón López-Urrea, Ángel Martínez-Romero, José Jesús Pardo, Jesús Montero, and Alfonso Domínguez. 2022. "Sustainable Production of Barley in a Water-Scarce Mediterranean Agroecosystem" Agronomy 12, no. 6: 1358. https://doi.org/10.3390/agronomy12061358
APA StyleMartínez-López, J. A., López-Urrea, R., Martínez-Romero, Á., Pardo, J. J., Montero, J., & Domínguez, A. (2022). Sustainable Production of Barley in a Water-Scarce Mediterranean Agroecosystem. Agronomy, 12(6), 1358. https://doi.org/10.3390/agronomy12061358