Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Climate
2.3. Soil
2.4. Biomass Sampling
2.5. Laboratory Analysis
2.6. Carbon Balance
- C agbm—carbon content in the aboveground biomass (t/ha),
- C bgbm—carbon content in the belowground biomass (t/ha),
- C soilTC16—total soil carbon content in 2016 (t/ha),
- C soilTC22—total soil carbon content in 2022 (t/ha),
- C soilTOC16—total soil organic carbon content in 2016 (t/ha),
- C soilTOC22—total soil organic carbon content in 2022 (t/ha),
- C soilTIC16—total soil inorganic carbon content in 2016 (t/ha),
- C soilTIC22—total soil inorganic carbon content in 2022 (t/ha),
2.7. Statistical Analysis
3. Results
3.1. Dry Matter Yield and Carbon Content in Miscanthus Biomass
3.2. Carbon Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydinalp, C.; Cresser, M.S. The Effects of Global Climate Change on Agriculture. J. Agric. Environ. Sci. 2008, 3, 672–676. [Google Scholar]
- Gayathri, R.; Mahboob, S.; Govindarajan, M.; Al-Ghanim, K.A.; Ahmed, Z.; Al-Mulhm, N.; Vodovnik, M.; Vijayalakshmi, S. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. J. King Saud Univ.-Sci. 2021, 33, 101282. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Tokgoz, N. Numerical Analysis of Worldwide CO2 Emissions and Effects on Atmospheric Warming in Turkey. Energy Sources Part A Recovery Util. Environ. Eff. 2010, 32, 769–783. [Google Scholar] [CrossRef]
- United States Geological Survey-Volcano Hazards Program. Volcanic Gases and Their Effects. Available online: https://www.usgs.gov/natural-hazards/volcano-hazards/volcanic-gases (accessed on 6 December 2021).
- Farrelly, D.J.; Everard, C.D.; Fagan, C.; McDonnell, K. Carbon sequestration and the role of biological carbon mitigation: A review. Renew. Sustain. Energy Rev. 2013, 21, 712–727. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andres, R.J.; Boden, T.; Conway, T.; Houghton, R.A.; House, J.I.; Marland, G.; Peters, G.P.; van der Werf, G.; Ahlström, A.; et al. The Global Carbon Budget 1959–2011. Earth Syst. Sci. Data 2012, 5, 1107–1157. [Google Scholar] [CrossRef] [Green Version]
- Mistry, A.N.; Ganta, U.; Chakrabarty, J.; Dutta, S. A review on biological systems for CO2 sequestration: Organisms and their pathways. Environ. Prog. Sustain. Energy 2018, 38, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.D.; Whitaker, J.; Morrison, R.; Davies, C.A.; Smith, P.; McNamara, N.P. A Miscanthus plantation can be carbon neutral without increasing soil carbon stocks. GCB Bioenergy 2017, 9, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.; Kumar, A.K. Biological Carbon Sequestration Through Fruit Crops (Perennial crops–natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Arch. 2017, 17, 1041–1046. [Google Scholar]
- Rajan, R.; Sinha, S.; Aman, A. Carbon Sequestration by Fruit Trees–A Strategy for Climate Change Mitigation. Biomol. Rep. 2019. Available online: https://www.researchgate.net/publication/331396769_Carbon_Sequestration_by_Fruit_Trees-A_Strategy_for_Climate_Change_Mitigation (accessed on 27 April 2022).
- Fawzy, S.; Osman, A.I.; Doran, W.J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Breuer, J.; Jones, M.B. Carbon mitigation by the energy crop, Miscanthus. Glob. Chang. Biol. 2007, 13, 2296–2307. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Monti, A.; Zatta, A. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Leto, J.; Bilandžija, N.; Voća, N.; Grgić, Z.; Jurišić, V. Uzgoj I Korištenje Miskantusa (Miscanthus sp.), 1st ed.; Sveučilište U Zagrebu Agronomski Fakultet: Zagreb, Croatia, 2017. [Google Scholar]
- Caslin, B.; Finnan, J.; Johnston, C. Miscanthus Best Practices Guidelines; Teagasc: Carlow, Ireland; Agri-Food and Bioscience Institute: Hillsborough, Ireland, 2010. [Google Scholar]
- Winkler, B.; Mangold, A.; von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Felten, D.; Emmerling, C. Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions. J. Plant Nutr. Soil Sci. 2012, 175, 661–670. [Google Scholar] [CrossRef]
- Dondini, M.; Hastings, A.; Saiz, G.; Jones, M.B.; Smith, P. The potential of Miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 2009, 1, 413–425. [Google Scholar] [CrossRef]
- Hansen, E.; Christensen, B.; Jensen, L.S.; Kristensen, K. Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 2004, 26, 97–105. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Soil carbon changes under Miscanthus driven by C4 accumulation and C3 decompostion–Toward a default sequestration function. GCB Bioenergy 2014, 6, 327–338. [Google Scholar] [CrossRef]
- Zimmermann, J.; Dauber, J.; Jones, M.B. Soil carbon sequestration during the establishment phase of Miscanthus × giganteus: A regional-scale study on commercial farms using 13C natural abundance. GCB Bioenergy 2011, 4, 453–461. [Google Scholar] [CrossRef]
- Bilandžija, D. Spatio-temporal climate and agroclimate diversities over the Zagreb city area. Geogr. Pannonica 2019, 23, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Bilandzija, N.; Voca, N.; Jelcic, B.; Jurisic, V.; Matin, A.; Grubor, M.; Kricka, T. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar] [CrossRef]
- Kahle, P.; Beuch, S.; Boelcke, B.; Leinweber, P.; Schulten, H.-R. Cropping of Miscanthus in Central Europe: Biomass production and influence on nutrients and soil organic matter. Eur, J. Agron. 2001, 15, 171–184. [Google Scholar] [CrossRef]
- Himken, M.; Lammel, J.; Neukirchen, D.; Czypionka-Krause, U.; Olfs, H.-W. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 1997, 189, 117–126. [Google Scholar] [CrossRef]
- Gauder, M.; Graeff-Hönninger, S.; Lewandowski, I.; Claupein, W. Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann. Appl. Biol. 2012, 160, 126–136. [Google Scholar] [CrossRef]
- Zub, H.; Arnoult, S.; Brancourt-Hulmel, M. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 2011, 35, 637–651. [Google Scholar] [CrossRef]
- Amougou, N.; Bertrand, I.; Machet, J.-M.; Recous, S. Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus × giganteus, as affected by harvest date and N fertilization. Plant Soil 2010, 338, 83–97. [Google Scholar] [CrossRef]
- Dohleman, F.G.; Heaton, E.A.; Arundale, R.A.; Long, S.P. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 2012, 4, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Chang. Biol. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Khodier, A.; Hussain, T.; Simms, N.; Oakey, J.; Kilgallon, P. Deposit formation and emissions from co-firing miscanthus with Daw Mill coal: Pilot plant experiments. Fuel 2012, 101, 53–61. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Bilandžija, D.; Bilandžija, N.; Zgorelec, Ž. Sequestration Potential of Energy Crop Miscanthus × giganteus Cultivated in Continental part of Croatia. J. Cent. Eur. Agric. 2021, 22, 188–200. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Hudiburg, T.; Franco, H.C.J.; DeLucia, E.H. Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy 2017, 9, 1333–1343. [Google Scholar] [CrossRef]
- Neukirchen, D.; Himken, M.; Lammel, J.; Czypionka-Krause, U.; Olfs, H.-W. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur. J. Agron. 1999, 11, 301–309. [Google Scholar] [CrossRef]
- Richter, G.M.; Agostini, F.; Redmile-Gordon, M.; White, R.; Goulding, K.W. Sequestration of C in soils under Miscanthus can be marginal and is affected by genotype-specific root distribution. Agric. Ecosyst. Environ. 2015, 200, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Beuch, S. Verluste und Ruckstande an Biomasse beim Anbau von Miscanthus × giganteus (Greef et. Deu.). Mitt. Ges. PJanzenbauwissenschaft 1995, 8, 311–314. [Google Scholar]
- Christensen, B.T.; Lærke, P.E.; Jørgensen, U.; Kandel, T.P.; Thomsen, I.K. Storage of Miscanthus-derived carbon in rhizomes, roots, and soil. Can. J. Soil Sci. 2016, 96, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Beuch, S.; Boelcke, B.; Belau, L. Effect of the Organic Residues of Miscanthus × giganteus on the Soil Organic Matter Level of Arable Soils. J. Agron. Crop Sci. 2000, 184, 111–120. [Google Scholar] [CrossRef]
- Mann, J.J.; Barney, J.N.; Kyser, G.B.; DiTomaso, J.M. Root System Dynamics of Miscanthus × giganteus and Panicum virgatum in Response to Rainfed and Irrigated Conditions in California. BioEnergy Res. 2012, 6, 678–687. [Google Scholar] [CrossRef]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Mishra, U.; Torn, M.S.; Fingerman, K. Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. GCB Bioenergy 2012, 5, 391–399. [Google Scholar] [CrossRef]
- Lewandowski, I. Propagation method as an important factor in the growth and development of Miscanthus × giganteus. Ind. Crop. Prod. 1998, 8, 229–245. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kicherer, A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
Planting Material | DM Yield (t/ha) | C Content (%) | C Content (t/ha) |
---|---|---|---|
Aboveground biomass | |||
MxgR | 25.86 (±5.45) | 44.49 (±1.64) | 11.51 (±7.10) A |
MxgS | 22.04 (±4.75) | 44.79 (±0.54) | 9.87 (±5.27) A |
Belowground biomass | |||
MxgR | 29.44 (±10.62) | 44.78 (±0.81) | 13.18 (±10.35) A |
MxgS | 33.43 (±10.49) | 44.63 (±1.53) | 14.90 (±9.14) A |
Total biomass | |||
MxgR | 55.30 (±7.52) | 44.63 (±1.03) | 24.69 (±8.07) A |
MxgS | 55.47 (±7.45) | 44.71 (±0.68) | 24.78 (±6.67) A |
Planting Material | C Sink (t/ha) | C Source (t/ha) | C Balance (t/ha) |
---|---|---|---|
MxgR | 13.18 | 11.51 | 1.67 A |
MxgS | 14.90 | 9.87 | 5.03 B |
TC (t/ha) | |||
Planting Material | C soilTC16 | C soilTC22 | C soilTC balance |
MxgR | 91.2 | 99.9 | 8.7 A |
MxgS | 91.2 | 106.0 | 14.8 B |
TOC (t/ha) | |||
Planting Material | C soilTOC16 | C soilTOC22 | C soilTOC balance |
MxgR | 49.7 | 64.6 | 14.9 A |
MxgS | 49.7 | 69.9 | 20.2 A |
TIC (t/ha) | |||
Planting Material | C soilTIC16 | C soilTIC22 | C soilTIC balance |
MxgR | 41.5 | 35.3 | −6.2 A |
MxgS | 41.5 | 36.1 | −5.4 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilandžija, D.; Stuparić, R.; Galić, M.; Zgorelec, Ž.; Leto, J.; Bilandžija, N. Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings. Agronomy 2022, 12, 1426. https://doi.org/10.3390/agronomy12061426
Bilandžija D, Stuparić R, Galić M, Zgorelec Ž, Leto J, Bilandžija N. Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings. Agronomy. 2022; 12(6):1426. https://doi.org/10.3390/agronomy12061426
Chicago/Turabian StyleBilandžija, Darija, Renato Stuparić, Marija Galić, Željka Zgorelec, Josip Leto, and Nikola Bilandžija. 2022. "Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings" Agronomy 12, no. 6: 1426. https://doi.org/10.3390/agronomy12061426
APA StyleBilandžija, D., Stuparić, R., Galić, M., Zgorelec, Ž., Leto, J., & Bilandžija, N. (2022). Carbon Balance of Miscanthus Biomass from Rhizomes and Seedlings. Agronomy, 12(6), 1426. https://doi.org/10.3390/agronomy12061426