Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Practical Field
2.2. Stabilized Sewage Sludge and Soil Characteristics
2.3. Yield Components and Energy Biomass Characterization
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shekdar, A.V. Sustainable solid waste management: An integrated approach for Asian countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hu, Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour. Technol. 2010, 101, 3816–3824. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199–210. [Google Scholar] [CrossRef]
- Usman, K.; Khan, S.; Ghulam, S.; Khan, M.; Khan, N.; Khalil, S. Sewage Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental Implications. Am. J. Plant Sci. 2012, 12, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- Szostek, M.; Kaniuczak, J.; Hajduk, E.; Stanek-Tarkowska, J.; Jasiński, T.; Niemiec, W.; Smusz, R. Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Arch. Environ. Prot. 2017, 44, 42–50. [Google Scholar] [CrossRef]
- Otero, M.; Calvo, L.F.; Gil, M.V.; García, A.I.; Morán, A. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 2008, 99, 6311–6631. [Google Scholar] [CrossRef]
- Przydatek, G.; Wota, A.K. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directive 1999/31/EC on the Landfill of Waste. 1999, pp. 1–19. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:31999L0031&from=PL (accessed on 5 April 2022).
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-solid anaerobic digestion of sewage sludge: Challenges and opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Monlau, F.; Abdelouahdi, K.; Qukarroum, A.; Barakat, A. Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends. Renew. Sustain. Energy Rev. 2019, 114, 109287. [Google Scholar] [CrossRef]
- Ren, X.; Awasthi, M.K.; Wang, Q.; Zhao, J.; Li, R.; Tu, Z.; Chen, H.; Awasthi, S.K.; Zhang, Z. New insight of tertiary-amine modified bentonite amendment on the nitrogen transformation and volatile fatty acids during the chicken manure composting. Bioresour. Technol. 2018, 266, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Nabi, M.; Zhang, G.; Li, F.; Zhang, P.; Wu, Y.; Tao, X.; Bao, S.; Wang, S.; Chen, N.; Ye, J.; et al. Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: A review. Desalin. Water Treat 2020, 175, 341–351. [Google Scholar] [CrossRef]
- Aylin Alagöz, B.; Yenigün, O.; Erdinçler, A. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrason. Sonochem. 2018, 40, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A Review of Sludge-to-Energy Recovery Methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Wiechmann, B.; Dienemann, C.; Kabbe, C.; Brandt, S.; Vogel, I.; Roskosch, A. Sewage Sludge Managamen in Germany; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2013. [Google Scholar]
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, P.L.; Arseni, M.; Rosu, A.; Timofti, M.; Carp, G.; Cioca, L. Optimal Solutions for the Use of Sewage Sludge on Agricultural Lands. Water 2021, 13, 585. [Google Scholar] [CrossRef]
- Burgman, L.E. What sewage sludge is and conflicts in Swedish circular economy policymaking. Environ. Sociol. 2022, 8, 292–301. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. The Possibility of Organo-Mineral Fertilizer Production from Sewage Sludge. Waste Biomass Valorization 2017, 8, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Antonkiewicz, J.; Kołodziej, B.; Bielinska, E.J. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 9505–9517. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Pachura, P. The Use of Sewage Sludge and Compost for Fertilization of Energy Crops on the Example of Miscanthus and Virginia Mallow. Rocz. Ochr. Sr. 2013, 1, 2267–2278. [Google Scholar]
- Mtshali, J.S.; Tiruneh, A.T.; Fadiran, A.O. Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resour. Environ. 2014, 4, 190–199. [Google Scholar] [CrossRef]
- Esperschuetz, J.; Bulman, S.; Anderson, C.; Lense, O.; Horswell, J.; Dickinson, N.; Robinson, B.H. Production of biomass crops using biowastes on low-fertility soil: 2. Effect of biowastes on nitrogen transformation processes. J. Environ. Qual. 2016, 45, 1970–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolarski, M.J.; Szczukowski, S.; Krzyżaniak, M.; Tworkowski, J. Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies 2020, 13, 2144. [Google Scholar] [CrossRef]
- Knapek, J.; Kralik, T.; Vavrova, K.; Valentova, M.; Horak, M.; Outrata, D. Policy implications of competition between conventional and energy crops. Renew. Sustain. Energy Rev. 2021, 151, 111618. [Google Scholar] [CrossRef]
- Simon, R.O.; Hulsbergen, K.J. Energy Balance and Energy Use Efficiency of Annual Bioenergy Crops in Field Experiments in Southern Germany. Agronomy 2021, 11, 1835. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Two extremely dierent crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 2012, 36, 234–240. [Google Scholar] [CrossRef]
- Remlein-Starosta, D.; Krzyminska, J.; Kowalska, J.; Bocianowski, J. Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Can. J. Plant. Sci. 2016, 96, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Pszczółkowska, A.; Romanowska-Duda, Z.; Pszczółkowski, W.; Grzesik, M.; Wysokińska, Z. Biomass production of selected energy plants: Economic analysis and logistic strategies. Comp. Econ. Res. Cent. East. Eur. 2012, 15, 77–103. [Google Scholar] [CrossRef] [Green Version]
- Ruf, T.; Makselon, J.; Udelhoven, T.; Emmerling, C. Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany. GCB Bioenergy 2018, 10, 444–459. [Google Scholar] [CrossRef]
- Nabel, M.; Temperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, D.B.P.; Nabel, M.; Jablonowski, N.D. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea Mays L. and Medicago Sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Kurucz, E.; Antal, G.; Gábor, F.M.; Popp, J. Cost-effective mass propagation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) from seeds. Environ. Eng. Manag. J. 2014, 13, 2845–2852. [Google Scholar] [CrossRef]
- Jasinskas, A.; Sarauskis, E.; Sakalauskas, A.; Vaiciukevicius, E.; Siaudinis, G.; Cekanauskas, S. Assessment of unconventional tall grasses cultivation and preparation for solid biofuel. In Proceedings of the 13th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 19–30 May 2014; Volume 43, pp. 253–258. [Google Scholar]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavicius, D.; Karcauskiene, D.; Liaudanskiene, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Official Gazette. The Ordinance of Management of Sewage Sludge When Used in Agriculture (No. 38/2008). 2008, pp. 1–8. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2008_04_38_1307.html (accessed on 3 May 2022).
- Škorić, A. Priručnik za Pedološka Istraživanja; Fakultet Poljoprivrednih Znanosti: Zagreb, Croatia, 1982. [Google Scholar]
- ISO 10390:2005; Kakvoća Tla—Određivanje pH-Vrijednost. Hrvatski Zavod za Normizaciju: Zagreb, Croatia, 2005.
- ISO 10693:1995; Soil Quality—Determination of Carbonate Content—Volumetric Method. ISO: Geneva, Switzerland, 1995.
- ISO 18134-2:2017; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. ISO: Geneva, Switzerland, 2017.
- CEN/TS 14774-2:2009; Solid Biofuels—Determination of Moisture Content. CEN: Brussels, Belgium, 2009.
- CEN/TS 15148:2009; Solid Biofuels—Determination of the Content of Volatile Matter. CEN: Brussels, Belgium, 2009.
- EN ISO 18122:2015; Solid Biofuels. Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- EN 15104:2011; Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods. SIS: Stockholm, Sweden, 2011.
- EN 15289:2011; Solid Biofuels. Determination of Total Content of Sulfur and Chlorine. ISO: Geneva, Switzerland, 2011.
- ISO 16967:2015; Solid Biofuels—Determination of MAJOR Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. ISO: Geneva, Switzerland, 2015.
- ISO 16968:2015; Solid Biofuels—Determination of Minor Elements. ISO: Geneva, Switzerland, 2015.
- CEN/TS 14918:2005; Solid Biofuels—Method for the Determination of Calorific Value. CEN: Brussels, Belgium, 2005.
- Antonkiewicz, J.; Kołodziej, B.; Bielinska, E.J.; Popławska, A. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Sci. Annu. 2019, 70, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Franzaring, J.; Holz, I.; Kauf, Z.; Fangmeier, A. Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at di erent temperatures and water supply. Biomass Bioenergy 2015, 81, 574–583. [Google Scholar] [CrossRef]
- Borkowska, H.; Wardzinska, K. Some Effects of Sida hermaphrodita R. Cultivation on Sewage Sludge. Pol. J. Environ. Stud. 2003, 12, 119–122. [Google Scholar]
- Siwek, H.; Włodarczyk, M.; Możdżer, E.; Bury, M.; Kitczak, T. Chemical Composition and Biogas Formation potential of Sida hermaphrodita and Silphium perfoliatum. Appl. Sci. 2019, 9, 4016. [Google Scholar] [CrossRef] [Green Version]
- Bilandzija, N.; Jurisic, V.; Voca, N.; Leto, J.; Matin, A.; Sito, S.; Kricka, T. Combustion properties of Miscanthus×giganteus biomass-Optimization of harvest time. J. Energy Inst. 2017, 90, 528–533. [Google Scholar] [CrossRef]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Study of Miscanthus ×giganteus ash composition-Variation with agronomy and assessment method. Fuel 2012, 95, 50–62. [Google Scholar] [CrossRef]
- Borkowska, H.; Styk, B. Virginia Fanpetals (Sida hermaphrodita L. Rusby): Cultivation and Utilization Monograph; University of Life Sciences: Lublin, Poland, 2006; Volume 69, pp. 393–404. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Von Gehren, P.; Gansberger, M.; Pichler, W.; Weigl, M.; Feldmeier, S.; Wopienka, E.; Bochmann, G. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass Bioenergy 2018, 122, 99–108. [Google Scholar] [CrossRef]
- Zachar, M.; Lieskovský, M.; Majlingová, A.; Mitterová, I. Comparison of thermal properties of the fast-growing tree species and energy crop species to be used as a renewable and energy- cient resource. J. Therm. Anal. Calorim. 2018, 134, 543–548. [Google Scholar] [CrossRef]
- Sliz, M.; Wilk, M. A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Kreil, K.; Broekema, S.; Energy, G.R.; Benson, S.; Laumb, M. Chemical and Heat Value Characterization of Perennial Herbaceous Biomass Mixtures; Analysis Report; Microbeam Technology: Grand Forks, ND, USA, 2010. [Google Scholar]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Krička, T.; Matin, A.; Bilandžija, N.; Jurišić, V.; Antonović, A.; Voća, N.; Grubor, M. Biomass valorisation of Arundo donax L., Miscanthus x giganteus and Sida hermaphrodita for biofuel production. Int. Agrophysics 2017, 31, 575–581. [Google Scholar] [CrossRef]
- Rusanowska, P.; Zielinski, M.; Dudek, M.; Debowski, M. Mechanical pretreatment of lignocellulosic biomass for methane fermentation in innovative reactor with cage mixing system. J. Ecol. Eng. 2018, 19, 219–224. [Google Scholar] [CrossRef]
- Michalska, K.; Miazek, K.; Krzystek, L.; Ledakowicz, S. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour. Technol. 2012, 119, 72–78. [Google Scholar] [CrossRef]
- Pokój, T.; Bułkowska, K.; Gusiatin, Z.M.; Klimiuk, E.; Jankowski, K.J. Semi-continuous anaerobic digestion of dierent silage crops: VFAS formation, methane yield from fiber and non-fiber components and digestate composition. Bioresour. Technol. 2015, 190, 201–210. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Dudek, M.; Rusanowska, P.; Zielinski, M.; Debowski, M. Influence of ultrasonic disintegration on eciency of methane fermentation of Sida hermaphrodita silage. J. Ecol. Eng. 2018, 19, 128–134. [Google Scholar] [CrossRef]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. Renew. Energy Energy Effic. 2012, 2012, 66–72. [Google Scholar]
- Hodgson, E.M.; Fahmi, R.; Yates, N.; Barraclough, T.; Shield, I.; Allison, G.; Bridgwater, A.V.; Donnison, I.S. Miscanthus as a feedstock for fast-pyrolysis: Does agronomic treatment affect quality? Bioresour. Technol. 2010, 101, 6185–6191. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzywy-Gawronska, E. The Efect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 1. Macroelements content and their uptake dynamics. Pol. J. Chem. Technol. 2012, 14, 9–15. [Google Scholar] [CrossRef] [Green Version]
Unit | mS/cm | % | ||||||
---|---|---|---|---|---|---|---|---|
Items | pH | E.C. | C Organic | N Total | P2O5 Total | K2O Total | Ca Total | Mg Total |
Sewage sludge | 12.44 | 7.51 | 25.91 | 3.72 | 2.53 | 0.46 | 13.47 | 0.76 |
Soil | 6.83 | 0.035 | - | 0.13 | - | - | - | - |
Permitted Total Heavy Metals Content [32] | |||||
---|---|---|---|---|---|
Items | Unit | Sewage Sludge | Soil | Sewage Sludge | Soil (pH mKCl > 6.5) |
Cd | mg/kg | 0.14 | <1.0 | 5 | 1.5 |
Cu | mg/kg | 258 | 28.60 | 600 | 100 |
Ni | mg/kg | 22.8 | 31 | 80 | 70 |
Pb | mg/kg | 42.7 | 25.4 | 500 | 100 |
Zn | mg/kg | 543 | 76.23 | 2000 | 200 |
Cr | mg/kg | 51.8 | 85.8 | 500 | 100 |
Unit | pH | % | mg/100 g | mg/100 g | ||||
---|---|---|---|---|---|---|---|---|
Sludge Treatment | H2O | mKCl | hum | N | NO3− | NH4+ | P2O5 | K2O |
T1 | 7.74 a | 6.68 a | 1.72 a | 0.14 | 0.59 a | 0.87 a | 25.83 a | 13.50 a |
T2 | 7.82 a | 6.69 a | 1.71 a | 0.14 | 0.62 a | 0.83 a | 24.80 a | 12.73 a |
T3 | 7.68 a | 6.55 a | 1.74 a | 0.14 | 0.63 a | 1.04 a | 23.20 a | 12.70 a |
T4 | 7.59 a | 6.47 a | 1.69 a | 0.14 | 0.75 a | 0.95 a | 24.03 a | 12.23 a |
Average | 7.71 | 6.60 | 1.72 | 0.14 | 0.65 | 0.92 | 24.47 | 12.79 |
St.dv. | 0.10 | 0.11 | 0.02 | - | 0.07 | 0.09 | 1.12 | 0.53 |
Significance | ns | ns | ns | - | ns | ns | ns | ns |
Unit | m | t/ha | % |
---|---|---|---|
Sludge treatment | Plant height | Dry matter yield | Dry matter |
T1 | 3.12 a | 6.53 a | 76.87 a |
T2 | 2.99 a | 5.72 a | 80.54 a |
T3 | 3.01 a | 8.93 a | 80.61 a |
T4 | 3.28 a | 8.85 a | 80.35 a |
Average | 3.1 | 7.51 | 79.59 |
St.dv. | 0.13 | 1.63 | 1.82 |
Significance | ns | ns | ns |
Unit | % | MJ/kg | ||||
---|---|---|---|---|---|---|
Sludge Treatment | Ash | Coke | Fixed Carbon | Volatile Matters | HHV | LHV |
T1 | 2.65 a | 10.33 a | 7.89 a | 81.92 ab | 17.29 a | 15.95 a |
T2 | 3.00 a | 10.74 a | 7.93 a | 82.87 b | 17.12 a | 15.76 a |
T3 | 2.98 a | 10.83 a | 8.04 a | 82.38 ab | 17.36 a | 16.02 a |
T4 | 2.76 a | 11.19 a | 8.65 a | 81.23 a | 17.26 a | 15.91 a |
Average | 2.85 | 10.77 | 8.13 | 82.10 | 17.26 | 15.91 |
St.dv. | 0.39 | 0.64 | 0.71 | 1.26 | 0.28 | 0.27 |
Significance | ns | ns | ns | *** | ns | ns |
Unit | % | ||||
---|---|---|---|---|---|
Sludge Treatment | C | H | N | S | O |
T1 | 51.72 a | 6.16 ab | 0.18 a | 0.06 a | 41.88 a |
T2 | 51.57 a | 6.15 b | 0.18 a | 0.05 a | 41.96 a |
T3 | 51.28 a | 6.18 a | 0.17 a | 0.08 a | 42.32 a |
T4 | 51.44 a | 6.23 ab | 0.21 a | 0.06 a | 42.11 a |
Average | 51.50 | 6.18 | 0.19 | 0.06 | 42.07 |
St.dv | 0.35 | 0.22 | 0.04 | 0.02 | 0.37 |
Significance | ns | *** | ns | ns | ns |
Unit | % | ||
---|---|---|---|
Sludge Treatment | Cellulose | Hemicellulose | Lignin |
T1 | 56.12 a | 19.70 ab | 17.97 b |
T2 | 54.45 a | 21.17 b | 16.51 a |
T3 | 56.46 a | 19.33 a | 15.91 a |
T4 | 54.84 a | 20.20 ab | 16.77 a |
Average | 55.47 | 20.10 | 16.79 |
St.dv. | 1.49 | 1.28 | 0.88 |
Significance | ns | *** | *** |
Unit | mg/kg | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sludge Treatment | K | Ca | Mg | Na | Zn | Mn | Cr | Pb | Cu | Mo | Ni |
T1 | 1626.72 a | 3075.94 a | 650.69 a | 23.66 a | 6.77 a | 23.66 a | 0.53 a | 0.74 a | 5.55 d | 0.62 a | 0.16 a |
T2 | 1969.64 b | 3996.78 c | 787.86 b | 30.74 b | 8.93 b | 30.74 b | 0.69 b | 0.86 b | 1.80 b | 0.65 a | 0.16 a |
T3 | 1654.33 a | 3362.67 b | 661.73 a | 25.87 a | 6.17 a | 25.87 a | 0.51 a | 0.70 a | 1.37 a | 0.60 a | 0.15 a |
T4 | 2239.19 c | 4656.69 d | 895.68 c | 35.82 c | 10.74 c | 35.82 c | 0.83 c | 0.81 b | 2.34 c | 0.62 a | 0.16 a |
Average | 1872.47 | 3773.02 | 748.99 | 29.02 | 8.15 | 29.02 | 0.64 | 0.78 | 2.77 | 0.63 | 0.16 |
St.dv. | 378.83 | 563.63 | 151.53 | 4.34 | 1.58 | 4.34 | 0.14 | 0.07 | 1.81 | 0.08 | 0.02 |
Significance | *** | *** | *** | *** | *** | *** | *** | *** | *** | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šurić, J.; Brandić, I.; Peter, A.; Bilandžija, N.; Leto, J.; Karažija, T.; Kutnjak, H.; Poljak, M.; Voća, N. Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow. Agronomy 2022, 12, 1578. https://doi.org/10.3390/agronomy12071578
Šurić J, Brandić I, Peter A, Bilandžija N, Leto J, Karažija T, Kutnjak H, Poljak M, Voća N. Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow. Agronomy. 2022; 12(7):1578. https://doi.org/10.3390/agronomy12071578
Chicago/Turabian StyleŠurić, Jona, Ivan Brandić, Anamarija Peter, Nikola Bilandžija, Josip Leto, Tomislav Karažija, Hrvoje Kutnjak, Milan Poljak, and Neven Voća. 2022. "Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow" Agronomy 12, no. 7: 1578. https://doi.org/10.3390/agronomy12071578
APA StyleŠurić, J., Brandić, I., Peter, A., Bilandžija, N., Leto, J., Karažija, T., Kutnjak, H., Poljak, M., & Voća, N. (2022). Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow. Agronomy, 12(7), 1578. https://doi.org/10.3390/agronomy12071578