Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup in the Vineyard
2.3. Soil Samples and Analytical Methods
2.4. Statistical Analysis
3. Results
3.1. Soil Organic Matter, Humic Substances, and Soil Structure
3.2. Dynamics of SOM, Humic Substances, and Soil Structure for 2008–2021
3.3. Correlations between SOM, Humic Substances, and Soil Structure in Fertilization Treatments during 2008–2021
4. Discussion
4.1. Soil Organic Matter and Humic Substances
4.2. Soil Structure
4.3. Relationships between SOM, Humic Substances, and Soil Structure from the Effect of Fertilizing in Vine Inter-rows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, J.; Vanek, G. Pestujeme Vinič [We Grow Vines]; Form Servis: Bratislava, Slovakia, 2003; p. 216. (In Slovak) [Google Scholar]
- Súľovský, M.; Hriník, D. Možnosti Uplatnenia Fyzicko-Geografických Prístupov ako Príspevku ku Kvalitatívne Orientovanej Vinohradníckej Produkcii (Possibilities of Applying Physico-Geographical Approaches as a Contribution to Qualitatively Oriented Viticultural Production). Geogr. Cassoviensis 2016, 2, 175–192. Available online: https://uge-share.science.upjs.sk/webshared/GCass_web_files/articles/GC-2016-10-2/Sulovsky_Hrinik.pdf (accessed on 13 September 2021).
- Šimanský, V.; Bajčan, D. The stability of soil aggregates and their ability of carbon sequestration. Soil Water Res. 2014, 3, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Balashov, E.; Horák, J. Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia. Arch. Agron. Soil Sci. 2016, 2, 177–197. [Google Scholar] [CrossRef]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and managing for healthy vineyard soils, intersections with the concept of Terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Blume, H.P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Soil Science; Springer: Berlin/Heidelberg, Germany, 2016; p. 618. [Google Scholar]
- Foth, H.D. Fundamentals of Soil Science; JohnWiley & Sons: New York, NY, USA, 1990; p. 360. [Google Scholar]
- Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Tsubo, M.; Levy, G.J. Structure stability of acidic Luvisols: Effects of tillage type and exogenous additives. Soil Till. Res. 2021, 206, 104832. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Lu, Q.; Li, J.; Chen, J. Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations. J. For. Res. 2021, 1, 355–362. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, T.X.; Zheng, Z.C. Tea plantation age efects on soil aggregate-associated carbon and nitrogen in the hilly region of western Sichuan, China. Soil Till. Res. 2018, 180, 91–98. [Google Scholar] [CrossRef]
- Dai, H.C.; Chen, Y.Q.; Liu, K.C.; Li, Z.X.; Qian, X.; Zang, H.D.; Yang, X.L.; Zhao, Y.X.; Shen, Y.W.; Li, Z.J.; et al. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. J. Cleaner Prod. 2019, 212, 393–400. [Google Scholar] [CrossRef]
- Šimanský, V. Soil organic matter in water-stable aggregates under different soil management practices in a productive vineyard. Arch. Agron. Soil Sci. 2013, 9, 1207–1214. [Google Scholar] [CrossRef]
- Polláková, N.; Šimanský, V.; Kravka, M. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. J. Soils Sediments 2018, 18, 2790–2800. [Google Scholar] [CrossRef]
- Šimanský, V.; Bajčan, D.; Ducsay, L. The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena 2013, 101, 108–113. [Google Scholar] [CrossRef]
- Jonczak, J. Soil organic matter properties in Stagnic Luvisols under different land use types. Acta Agrophysica 2013, 4, 565–576. Available online: https://bibliotekanauki.pl/articles/35937c (accessed on 26 September 2021).
- Váchalová, R.; Kolář, L.; Muchová, Z. Primární Organická Půdní Hmota a Humus, Dvě Složky Půdní Organické Hmoty (Primary Soil Organic Matter and Humus, Two Components of Soil Organic Matter); SUA: Nitra, Slovakia, 2016; p. 122. (In Czech) [Google Scholar]
- Baumert, V.L.; Vasilyeva, N.A.; Vladimirov, A.A.; Meier, I.C.; Kögel-Knabner, I.; Mueller, C.W. Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Front. Environ. Sci. 2018, 6, 140. [Google Scholar] [CrossRef]
- Burak, E.; Quinton, J.N.; Dodd, I.C. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). Ann. Bot. 2021, 128, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Firdovsi, A.G. Influence of introduction of mineral fertilizers under Chestnut soils on accumulation of common nitrogen, phosphorus and potassium on annual age of grape culture. Agric. Res. Tech. 2019, 1, 556113. [Google Scholar] [CrossRef]
- Kováčik, P.; Ryant, P. Agrochémia, Princípy a Prax (Agrochemistry, Principles and Practice); SPU: Nitra, Slovakia, 2019; p. 358. (In Slovak) [Google Scholar]
- Hreško, J.; Pucherová, Z.; Baláž, I.; Ambróz, M.; Bezák, P. Krajina Nitry a jej Okolia (The Landscape of Nitra and its Surroundings); UKF: Nitra, Slovakia, 2006; p. 254. (In Slovak) [Google Scholar]
- Jankowski, M.; Šimanský, V.; Markiewicz, M.; Pilichowska, A.; Michalak, J. Differently used soils of the Tribeč mountain range and Nitra valley slope. In Soil Sequences Atlas IV; Świtoniak, M., Charzyński, P., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2018; pp. 139–158. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Šimanský, V. Changes in soil structure and soil organic matter due to different severities of fire. Ecology 2015, 34, 226–234. [Google Scholar] [CrossRef] [Green Version]
- World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 June 2021).
- Fecenko, J.; Ložek, O. Výživa a Hnojenie Poľných Plodín (Nutrition and Fertilization of Field Crops); SAU: Nitra, Slovakia, 2000; p. 442. (In Slovak) [Google Scholar]
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Badań Materii Organicznej Gleb (Methodological Guidebook for The Organic Matter Researches); PTG: Warszawa, Poland, 1999; pp. 31–34. (In Polish) [Google Scholar]
- Loginow, W.; Wisniewski, W.; Gonet, S.S.; Ciescinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Stevenson, F.J. Humus Chemistry—Genesis, Composition, Reactions; Wiley & Sons: New York, NY, USA, 1982; p. 512. [Google Scholar]
- Vadjunina, A.F.; Korchagina, Z.A. Methods of Study of Soil Physical Properties; Agropromizdat: Moscow, Russia, 1986; p. 415. (In Russian) [Google Scholar]
- Valla, M.; Kozák, J.; Ondráček, V. Vulnerability of aggregates separated from selected anthorsols developed on reclaimed dumpsites. Rostl. Výroba 2000, 46, 563–568. [Google Scholar]
- Khorramdel, S.; Koocheki, A.; Mahallati, M.N.; Khorasani, R.; Ghorbani, R. Evaluation of carbon sequestration potential in corn fields with different management systems. Soil Till. Res. 2013, 133, 25–31. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, H.; Zhu, Q.H.; Wang, X.F.; Zhang, Y.Z.; Yu, X.C.; Peng, X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Till. Res. 2013, 130, 42–51. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of cover crops to reduce loss of soil organic matter in a rainfed vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Yang, P.; Hu, Z.; Shu, Q. Factors affecting soil organic carbon content between natural and reclaimed sites in Rudong coast, Jiangsu province, China. J. Mar. Sci. Eng. 2021, 9, 1453. [Google Scholar] [CrossRef]
- Luo, P.; Han, X.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015, 65, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Weber, J. Humic Substances and Their Role in the Environment. EC Agric. 2020, 1, 3–8. Available online: https://www.ecronicon.com/eco20/pdf/ECAG-03-ECO-0002.pdf (accessed on 26 November 2021).
- Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant. Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Sevilla-Perea, A.; Kerré, B.; Mingorance, M. Stability of Organic Matter in Anthropic Soils: A Spectroscopic Approach. In Soil Processes and Current Trends in Quality Assessment; Hernandez-Soriano, M.C., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/chapters/43222 (accessed on 8 October 2021). [CrossRef] [Green Version]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. Available online: https://www.science.org/doi/10.1126/science.1097396 (accessed on 14 February 2022). [CrossRef] [Green Version]
- Conant, R.T.; Cerri, C.E.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Singer, M.J.; Southard, R.J.; Warrington, D.J.; Janitzky, P. Stability of synthetic sand clay aggregates after wetting and drying cycles. Soil Sci. Soc. Am. J. 1992, 56, 1843–1848. [Google Scholar] [CrossRef]
- Daquan, S.; Lin, Q.; Angst, G.; Huang, L.; Anikó, C.; Emsens, W.J.; van Diggelen, R.; Vicena, J.; Cajthaml, T.; Frouz, J. Microbial communities in soil macro-aggregates with less connected networks respire less across successional and geographic gradients. Eur. J. Soil Biol. 2022, 108, 103378. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Eviner, V.T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant. Soil 2002, 238, 325–333. [Google Scholar] [CrossRef]
- Czarnes, S.; Hallett, P.D.; Bengough, A.G.; Young, I.M. Root- and microbial-derived mucilages affect soil structure and water transport. Eur. J. Soil Sci. 2000, 51, 435–443. [Google Scholar] [CrossRef]
- Santos, D.; Murphy, S.L.S.; Taubner, H.; Smucker, A.J.M.; Horn, R. Uniform separation of concentric surface layers from soil aggregates. Soil Sci. Soc. Am. J. 1997, 61, 720–724. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Świtoniak, M.; Kabala, C.; Karlins, A.; Charzyński, P. Guidelines for Soil Description and Classification; Polish Society of Soil Science: Torun, Poland, 2018; p. 286. [Google Scholar]
- Nayak, S.; Mishra, C.S.K. Nutrient enrichment of mine spoil with suitable organic and bio-fertilizer amendments as a sustainable technology for eco restoration. In Soil Amendments for Sustainability; Rakshit, A., Sarkar, B., Abhilash, P.C., Eds.; CRC Press: New York, NY, USA, 2019; pp. 349–361. [Google Scholar]
- Iwai, C.H.B.; Oo, A.N.; Kruapukdee, A.; Chuasavatee, T. Vermicompost as soil amendment for sustainable land and environment in Thailand. In Soil Amendments for Sustainability; Rakshit, A., Sarkar, B., Abhilash, P.C., Eds.; CRC Press: New York, NY, USA, 2019; pp. 321–349. [Google Scholar]
- Zhao, J.; Chen, S.; Hu, R.; Li, Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Till. Res. 2017, 167, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Guanglei, S.; Zhansheng, Z.; Feineng, J. Effects of humic acid-containing solid waste fertilizer on spinach yield and benefits. Zhejiang Agric. Sci. 2016, 11, 1876–1878. [Google Scholar]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Castejón, J.M.P. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Fang, S.; Chen, H.Y.H.; Zhu, R.; Peng, S.; Ruan, H. Soil aggregation and organic carbon dynamics in poplar plantations. Forests 2018, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, F.; Hernandez, T.; Garcia, C.; Roldan, A. Improvement of rhizosphere aggregate stability of afforested semiarid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 2002, 108, 133–144. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
Control | Sown grass (mowed four times per year) in the inter-rows of vine, no fertilization. |
1st level of NPK fertilization for a productive vineyard (NPK1) | Corresponding to: 80 N kg ha−1, 35 P kg ha−1 and 135 K kg ha−1 [26]. Used fertilizer was Duslofert Extra 14-10-20-7 and real rates of nutrients applied in treatment were: 100 kg ha−1 N, 30 kg ha−1 P, 120 kg ha−1 K. The dose of nutrients was divided: 1/2 applied into the soil in spring (bud burst—in March) and 1/2 in flowering (in May). Grass sward cover in the inter-rows of vine. Grasses were mowed four times per year on average across all treatments. |
3rd level of NPK fertilization for a productive vineyard (NPK3) | Corresponding to: 120 N kg ha−1, 55 P kg ha−1 and 195 K kg ha−1 [26]. Used fertilizer was Duslofert Extra 14-10-20-7 and real rates of nutrients applied in treatment were: 125 kg ha−1 N, 50 kg ha−1 P, 185 kg ha−1 K. The dose of nutrients was divided: 2/3 applied into the soil in spring (bud burst—in March) and 1/3 in flowering (in May). Grass sward cover in the inter-rows of vine. Grasses were mowed four times per year on average across all treatments. |
Soil Organic and Humic Substance Parameters | Year p-Value | NPK p-Value | Soil Structure Parameters | Year p-Value | NPK p-Value |
---|---|---|---|---|---|
SOC | <0.001 | 0.295 | K | <0.001 | 0.557 |
CL | 0.004 | 0.548 | Kv | 0.001 | 0.333 |
%HS in SOC | <0.001 | 0.086 | ΣMWDd | <0.001 | 0.993 |
%HA in SOC | <0.001 | 0.024 | St | <0.001 | 0.294 |
%FA in SOC | <0.001 | 0.530 | Sw | <0.001 | 0.118 |
HS | <0.001 | 0.303 | ΣMWDw | <0.001 | 0.280 |
HA | <0.001 | 0.315 | Ic | <0.001 | 0.655 |
FA | <0.001 | 0.330 | WSAma > 5 | <0.001 | 0.237 |
HA:FA ratio | <0.001 | 0.257 | WSAma 3–0.5 | 0.006 | 0.559 |
Q4/6HS | <0.001 | 0.004 | WSAma 0.5–0.25 | 0.022 | 0.901 |
Q4/6HA | <0.001 | 0.052 | WSAmi | <0.001 | 0.075 |
Parameter | Linear Model | Trend | Probability | Parameter | Linear Model | Trend | Probability |
---|---|---|---|---|---|---|---|
Control | |||||||
SOC | y = 0.071x − 141 | increase | 0.749 ** | K | y = −0.468x + 949 | decrease | 0.564 * |
CL | y = 102x − 202,782 | n.d. | n.s. | Kv | y = −0.061x + 124 | decrease | 0.601 * |
HS | y = 0.040x − 81 | increase | 0.649 * | ΣMWDd | y = 0.018x − 34 | n.d. | n.s. |
HA | y = 0.018x − 367 | increase | 0.670 * | St | y = 0.283x − 561 | increase | 0.748 ** |
FA | y = 0.022x − 44 | increase | 0.610 * | Sw | y = 0.035x − 68 | n.d. | n.s. |
%HS | y = 0.807x − 1595 | n.d. | n.s. | ΣMWDw | y = 0.094x − 186 | increase | 0.584 * |
%HA | y = 0.308x − 605 | n.d. | n.s. | Ic | y = −0.030x + 62 | decrease | 0.812 *** |
%FA | y = 0.498x − 988 | n.d. | n.s. | WSAma > 5 | y = 1.889x − 3773 | n.d. | n.s. |
HA:FA ratio | y = 0.005x − 8 | n.d. | n.s. | WSAma 3–0.5 | y = −0.204x + 454 | n.d. | n.s. |
Q4/6HS | y = 0.050x − 96 | n.d. | n.s. | WSAma 0.5–0.25 | y = −0.193x + 396 | n.d. | n.s. |
Q4/6HA | y = 0.023x − 41 | n.d. | n.s. | WSAmi | y = −1.492x + 3022 | decrease | 0.553 * |
NPK1 | |||||||
SOC | y = 0.068x − 135 | increase | 0.754 ** | K | y = −0.414x + 839 | n.d. | n.s. |
CL | y = 89.474x − 177,592 | n.d. | n.s. | Kv | y = −0.083x + 1678 | decrease | 0.569 * |
HS | y = 0.040x − 79 | increase | 0.754 ** | ΣMWDd | y = 0.006x − 10 | n.d. | n.s. |
HA | y = 0.018x − 35 | increase | 0.715 ** | St | y = 0.272x − 540 | increase | 0.754 ** |
FA | y = 0.022x − 44 | increase | 0.730 ** | Sw | y = 0.037x − 73 | n.d. | n.s. |
%HS | y = 0.938x − 1860 | n.d. | n.s. | ΣMWDw | y = 0.056x − 111 | n.d. | n.s. |
%HA | y = 0.337x − 664 | n.d. | n.s. | Ic | y = −0.034x + 69 | decrease | 0.564 * |
%FA | y = 0.610x − 1215 | n.d. | n.s. | WSAma > 5 | y = 0.959x − 1903 | n.d. | n.s. |
HA:FA ratio | y = 0.007x − 13 | n.d. | n.s. | WSAma 3–0.5 | y = 0.519x − 999 | n.d. | n.s. |
Q4/6HS | y = 0.046x − 86 | n.d. | n.s. | WSAma 0.5–0.25 | y = 0.085x − 164 | n.d. | n.s. |
Q4/6HA | y = −0.011x + 26 | n.d. | n.s. | WSAmi | y = −1.494x + 3030 | n.d. | n.s. |
NPK3 | |||||||
SOC | y = 0.053x − 106 | increase | 0.697 ** | K | y = −0.418x + 847 | n.d. | n.s. |
CL | y = 72.943x − 144,151 | n.d. | n.s. | Kv | y = −0.094x + 191 | decrease | 0.711 ** |
HS | y = 0.040x − 80 | increase | 0.736 ** | ΣMWDd | y = −0.005x + 13 | n.d. | n.s. |
HA | y = 0.017x − 34 | increase | 0.710 ** | St | y = 0.213x − 421 | increase | 0.696 ** |
FA | y = 0.023x − 46 | increase | 0.721 ** | Sw | y = 0.036x − 71 | increase | 0.643 * |
%HS | y = 1.238x − 2463 | n.d. | n.s. | ΣMWDw | y = 0.076x − 152 | n.d. | n.s. |
%HA | y = 0.441x − 871 | n.d. | n.s. | Ic | y = −0.024x + 48 | decrease | 0.740 ** |
%FA | y = 0.797x − 1592 | increase | 0.582 * | WSAma > 5 | y = 1.632x − 3254 | n.d. | n.s. |
HA:FA ratio | y = -0.017x + 36 | n.d. | n.s. | WSAma 3–0.5 | y = 0.162x − 282 | n.d. | n.s. |
Q4/6HS | y = 0.044x − 82 | n.d. | n.s. | WSAma 0.5–0.25 | y = −0.269x + 548 | n.d. | n.s. |
Q4/6HA | y = 0.001x + 3 | n.d. | n.s. | WSAmi | y = −1.548x + 3134 | decrease | 0.642 * |
NPK | Year | SOC | HS | HA | FA | |||
---|---|---|---|---|---|---|---|---|
Ic | b | 52.39 | −0.02 | −0.02 | −0.17 | −1.40 | 0.43 | 2.12 |
p-value | 0.311 | 0.024 | 0.039 | 0.732 | 0.914 | 0.611 | ||
K | Kv | ΣMWDd | Sw | ΣMWDw | WSAmi | |||
Ic | b | −0.01 | 0.09 | −0.12 | −0.96 | 0.15 | −0.02 | |
p-value | 0.386 | 0.573 | 0.189 | 0.411 | 0.095 | 0.406 |
K | Kv | MWDd | St | Sw | MWDw | Ic | WSAma | WSAmi | |||
---|---|---|---|---|---|---|---|---|---|---|---|
>5 | 3–0.5 | 0.5–0.25 | |||||||||
Control | |||||||||||
SOC | −0.39 | −0.50 | 0.07 | 1.00 | 0.45 | 0.53 | −0.69 | 0.48 | −0.16 | −0.24 | −0.45 |
CL | −0.42 | −0.52 | 0.30 | 0.86 | 0.53 | 0.70 | −0.49 | 0.67 | −0.32 | −0.44 | −0.53 |
HS | −0.34 | −0.53 | 0.14 | 0.64 | 0.42 | 0.66 | −0.49 | 0.68 | −0.50 | −0.47 | −0.42 |
HA | −0.28 | −0.44 | 0.20 | 0.65 | 0.33 | 0.61 | −0.58 | 0.64 | −0.54 | −0.49 | −0.33 |
FA | −0.38 | −0.59 | 0.08 | 0.62 | 0.47 | 0.67 | −0.40 | 0.68 | −0.44 | −0.44 | −0.48 |
%HS in SOC | −0.24 | −0.38 | 0.14 | 0.16 | 0.28 | 0.49 | −0.16 | 0.55 | −0.46 | −0.44 | −0.29 |
%HA in SOC | −0.10 | −0.20 | 0.20 | 0.06 | 0.09 | 0.36 | −0.22 | 0.44 | −0.52 | −0.47 | −0.09 |
%FA in SOC | −0.33 | −0.50 | 0.08 | 0.22 | 0.41 | 0.55 | −0.10 | 0.59 | −0.38 | −0.39 | −0.41 |
HA:FA ratio | −0.03 | 0.38 | 0.30 | −0.04 | −0.33 | −0.19 | −0.38 | −0.18 | −0.13 | −0.01 | 0.33 |
Q4/6HS | 0.08 | −0.19 | 0.09 | 0.48 | 0.08 | 0.27 | −0.42 | 0.27 | −0.11 | −0.57 | −0.08 |
Q4/6HA | −0.09 | −0.15 | 0.24 | 0.44 | 0.10 | 0.24 | −0.27 | 0.22 | −0.03 | −0.48 | −0.10 |
NPK1 | |||||||||||
SOC | −0.49 | −0.29 | 0.46 | 1.00 | 0.39 | 0.33 | −0.71 | 0.28 | 0.14 | 0.29 | −0.39 |
CL | −0.14 | −0.11 | 0.31 | 0.75 | 0.15 | 0.17 | −0.44 | 0.15 | 0.00 | 0.28 | −0.16 |
HS | −0.41 | −0.49 | 0.20 | 0.60 | 0.49 | 0.49 | −0.40 | 0.47 | 0.17 | −0.36 | −0.50 |
HA | −0.30 | −0.35 | 0.29 | 0.68 | 0.38 | 0.41 | −0.49 | 0.41 | 0.05 | −0.25 | −0.39 |
FA | −0.46 | −0.56 | 0.13 | 0.50 | 0.56 | 0.52 | −0.30 | 0.49 | 0.25 | −0.43 | −0.55 |
%HS in SOC | −0.26 | −0.52 | −0.03 | 0.14 | 0.44 | 0.47 | −0.05 | 0.47 | 0.17 | −0.60 | −0.44 |
%HA in SOC | −0.04 | −0.29 | 0.05 | 0.18 | 0.23 | 0.34 | −0.14 | 0.37 | −0.04 | −0.51 | −0.25 |
%FA in SOC | −0.39 | −0.61 | −0.08 | 0.11 | 0.53 | 0.51 | 0.01 | 0.49 | 0.29 | −0.59 | −0.53 |
HA:FA ratio | −0.29 | −0.05 | 0.39 | 0.37 | 0.13 | 0.08 | −0.38 | 0.03 | 0.08 | 0.41 | −0.15 |
Q4/6HS | 0.28 | 0.17 | 0.00 | 0.42 | −0.32 | −0.18 | −0.35 | −0.15 | −0.36 | 0.32 | 0.32 |
Q4/6HA | 0.13 | −0.05 | −0.03 | 0.05 | −0.05 | −0.05 | −0.07 | −0.05 | −0.01 | 0.09 | 0.03 |
NPK3 | |||||||||||
SOC | −0.09 | −0.45 | −0.36 | 1.00 | 0.18 | 0.02 | −0.63 | 0.02 | 0.28 | −0.17 | −0.18 |
CL | 0.10 | −0.33 | −0.42 | 0.78 | −0.04 | 0.00 | −0.35 | −0.01 | 0.06 | −0.25 | 0.04 |
HS | −0.30 | −0.42 | 0.10 | 0.56 | 0.35 | 0.37 | −0.48 | 0.37 | −0.05 | −0.51 | −0.35 |
HA | −0.27 | −0.39 | 0.15 | 0.48 | 0.33 | 0.41 | −0.54 | 0.44 | −0.23 | −0.48 | −0.33 |
FA | −0.30 | −0.41 | 0.06 | 0.60 | 0.35 | 0.32 | −0.42 | 0.30 | 0.09 | −0.50 | −0.35 |
%HS in SOC | −0.31 | −0.29 | 0.26 | 0.13 | 0.32 | 0.44 | −0.24 | 0.44 | −0.23 | −0.51 | −0.32 |
%HA in SOC | −0.27 | −0.20 | 0.34 | −0.10 | 0.27 | 0.47 | −0.19 | 0.49 | −0.44 | −0.44 | −0.27 |
%FA in SOC | −0.31 | −0.34 | 0.17 | 0.31 | 0.33 | 0.38 | −0.26 | 0.35 | −0.03 | −0.52 | −0.33 |
HA:FA ratio | −0.27 | 0.09 | 0.26 | −0.49 | 0.19 | 0.13 | 0.02 | 0.15 | −0.19 | 0.36 | −0.19 |
Q4/6HS | 0.38 | −0.13 | −0.32 | 0.51 | −0.17 | −0.14 | −0.26 | −0.19 | 0.17 | −0.12 | 0.17 |
Q4/6HA | 0.36 | 0.00 | −0.39 | 0.17 | −0.31 | −0.32 | −0.10 | −0.38 | 0.25 | 0.20 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. https://doi.org/10.3390/agronomy12061460
Šimanský V, Wójcik-Gront E, Horváthová J, Pikuła D, Lošák T, Parzych A, Lukac M, Aydın E. Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia. Agronomy. 2022; 12(6):1460. https://doi.org/10.3390/agronomy12061460
Chicago/Turabian StyleŠimanský, Vladimír, Elżbieta Wójcik-Gront, Jarmila Horváthová, Dorota Pikuła, Tomáš Lošák, Agnieszka Parzych, Martin Lukac, and Elena Aydın. 2022. "Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia" Agronomy 12, no. 6: 1460. https://doi.org/10.3390/agronomy12061460
APA StyleŠimanský, V., Wójcik-Gront, E., Horváthová, J., Pikuła, D., Lošák, T., Parzych, A., Lukac, M., & Aydın, E. (2022). Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia. Agronomy, 12(6), 1460. https://doi.org/10.3390/agronomy12061460