Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ca-Humic Complex
2.2. Soil Sample
2.3. Pot Experiment
2.4. Bio-Accessibility Evaluation of Cd and As in Soil
3. Results
3.1. Properties of Calcined Oyster Shell and Ca-Humic Complex
3.2. Ca-Humic Complex Reduced Vegetable Uptake of Cd and As
3.3. Ca-Humic Complex Reduced Bio-Accessibility of Soil Cd and As
4. Discussion
4.1. Ca-Humic Complex as a Soil Amendment Reduced the Phytoavailability and Bio-Accessibility of Cd and As in Soil
4.2. Agronomic Benefits and Environmental Significance of Using Shell Waste as a Soil Amendment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulletin of the National Soil Contamination Survey. Available online: https://www.gov.cn/foot/2014-04/17/content_2661768.htm (accessed on 14 May 2022).
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.D.; Yuan, G.D.; Wei, J.; Bi, D.X.; Wang, H.L. Leonardite-derived humic substances are great adsorbents for cadmium. Environ. Sci. Pollut. Res. 2017, 24, 23006–23014. [Google Scholar] [CrossRef] [PubMed]
- Mignardi, S.; Archilletti, L.; Medeghini, L.; De Vito, C. Valorization of eggshell biowaste for sustainable environmental remediation. Sci. Rep. 2020, 10, 2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.H.; Mesquita-Guimarães, J.; Henriques, B.; Silva, S.F.; Fredel, C.M. The potential use of oyster shell waste in new value-added by-product. Resources 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Lin, F.; Fang, J.; Fang, J.; Li, J.; Du, M. Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 51–72. [Google Scholar]
- Bi, D.X.; Yuan, G.D.; Wei, J.; Xiao, L.; Feng, L.R. Conversion of oyster shell waste to amendment for immobilising cadmium and arsenic in agricultural soil. Bull. Environ. Contam. Toxicol. 2020, 105, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.X.; Yuan, G.D.; Wei, J.; Xiao, L.; Feng, L.R.; Meng, F.D.; Wang, J. A soluble humic substance for the simultaneous removal of cadmium and arsenic from contaminated soils. Int. J. Environ. Res. Public Health 2019, 16, 4999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acidic Functional Groups of IHSS Samples. Available online: http://humic-substances.org/acidic-functional-groups-of-ihss-samples/ (accessed on 14 May 2022).
- Havlin, J.L.; Soltanpour, P.N. A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1980, 11, 969–980. [Google Scholar] [CrossRef]
- Inter-Laboratory Trial of a Unified Bioaccessibility Testing Procedure. Available online: http://nora.nerc.ac.uk/7491/1/OR07027.pdf (accessed on 14 May 2022).
- Carbonaro, R.F.; Atalay, Y.B.; Di Toro, D.M. Linear free energy relationships for metal–ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms. Geochim. Cosmochim. Acta 2011, 75, 2499–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakour, H.; Lin, T.F. Experimental determination and modeling of arsenic complexation with humic and fulvic acids. J. Hazard. Mater. 2014, 279, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, X.Y.; Wang, N.; Li, C.X.; Wang, W.; Zhang, J.J. Characteristics of soil humic substances as determined by conventional and synchrotron Fourier transform infrared spectroscopy. J. Appl. Spectrosc. 2014, 81, 843–849. [Google Scholar] [CrossRef]
- Deshmukh, A.P.; Pacheco, C.; Hay, M.B.; Myneni, S.C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3533–3544. [Google Scholar] [CrossRef]
- Wei, J.; Tu, C.; Yuan, G.D.; Liu, Y.; Bi, D.X.; Xiao, L.; Lu, J.; Theng, B.K.G.; Wang, H.L.; Zhang, L.J.; et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environ. Pollut. 2019, 251, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Peel, H.R.; Martin, D.P.; Bednar, A.J. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil. Chemosphere 2017, 176, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Lo, S.L.; Kuan, W.H. High concentration of arsenate removal by electrocoagulation with calcium. Sep. Purif. Technol. 2014, 126, 7–14. [Google Scholar] [CrossRef]
- Zhu, Y.N.; Zhang, X.H.; Xie, Q.L.; Wang, D.Q.; Cheng, G.W. Solubility and stability of calcium arsenates at 25 °C. Water Air Soil Pollut. 2006, 169, 221–238. [Google Scholar] [CrossRef]
- Roussel, H.; Waterlot, C.; Pelfrêne, A.; Pruvot, C.; Mazzuca, M.; Douay, F. Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch. Environ. Contam. Toxicol. 2009, 58, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.L.; Weber, J.; Naidu, R.; Gancarz, D.; Rofe, A.; Todor, D.; Smith, E. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environ. Sci. Technol. 2010, 44, 5240–5247. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.D.; Wei, J.; Theng, B.K.G. Montmorillonite-hydrochar nanocomposites as examples of clay-organic interactions delivering ecosystem services. Clays Clay Miner. 2021, 69, 406–415. [Google Scholar] [CrossRef]
- Frings, P.; Buss, H. The central role of weathering in the geosciences. Elements 2019, 15, 229–234. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Handling and Processing Oysters. Ministry of Agriculture, Fisheries and Food, Torry Research Station. Available online: http://www.fao.org/3/x5954e/x5954e00.htm. (accessed on 14 May 2022).
- Tipper, E.T.; Gaillardet, J.; Galy, A.; Louvat, P.; Bickle, M.J.; Capmas, F. Calcium isotope ratios in the world’s largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes. Glob. Biogeochem. Cycles 2010, 24, 1–13. [Google Scholar] [CrossRef]
C | H | O | N | S | Ash | pH | Phenolic-OH | −COOH | Total Cd | Total As |
---|---|---|---|---|---|---|---|---|---|---|
% | - | mol/kg | mg/kg | |||||||
30.20 ± 0.21 | 3.44 ± 0.10 | 34.16 ± 1.21 | 0.56 ± 0.05 | 0.84 ± 0.08 | 30.80 ± 1.23 | 11.08 | 0.82 ± 0.15 | 2.34 ± 0.29 | 0.035 ± 0.008 | 1.26 ± 0.084 |
Dose | CK (0%) | 0.5% | 1.0% | 2.0% | 5.0% | |
---|---|---|---|---|---|---|
Soil pH | At sowing | 6.03 | 6.78 | 6.99 | 7.86 | 8.56 |
At harvest | 6.01 | 6.03 | 7.58 | 7.31 | 7.89 | |
Above-ground biomass (g/pot) | 0.46 ± 0.12 a | 0.45 ± 0.06 a | 0.47 ± 0.02 a | 0.46 ± 0.02 a | 0.32 ± 0.01 b | |
Cd (mg/kg) | 2.80 ± 0.73 a | 0.89 ± 0.18 b | 0.10 ± 0.01 c | 0.05 ± 0.00 c | 0.05 ± 0.00 c | |
As (mg/kg) | 1.73 ± 0.04 a | 1.08 ± 0.22 b | 0.31 ± 0.09 c | 0.51 ± 0.05 c | 0.49 ± 0.13 c |
Dose | BioG-Cd (%) | BioGI-Cd (%) | BioG-As (%) | BioGI-As (%) |
---|---|---|---|---|
0.0% (CK) | 80.66 ± 2.13 | 52.06 ± 2.37 | 46.52 ± 3.80 | 54.32 ± 1.55 |
0.5% | 75.78 ± 0.46 | 44.99 ± 2.50 | 45.85 ± 3.24 | 43.05 ± 4.90 |
1.0% | 69.61 ± 0.87 | 35.39 ± 1.84 | 37.63 ± 1.13 | 36.51 ± 1.71 |
2.0% | 68.16 ± 2.91 | 31.64 ± 2.67 | 33.11 ± 0.20 | 29.88 ± 1.47 |
5.0% | 64.31 ± 1.32 | 22.92 ± 0.19 | 27.89 ± 0.30 | 22.10 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, G.; Bi, D.; Wei, J.; Xiao, L. Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil. Agronomy 2022, 12, 1413. https://doi.org/10.3390/agronomy12061413
Yuan G, Bi D, Wei J, Xiao L. Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil. Agronomy. 2022; 12(6):1413. https://doi.org/10.3390/agronomy12061413
Chicago/Turabian StyleYuan, Guodong, Dongxue Bi, Jing Wei, and Liang Xiao. 2022. "Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil" Agronomy 12, no. 6: 1413. https://doi.org/10.3390/agronomy12061413
APA StyleYuan, G., Bi, D., Wei, J., & Xiao, L. (2022). Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil. Agronomy, 12(6), 1413. https://doi.org/10.3390/agronomy12061413