Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Water Stress during Post-Veraison
2.3. Yield Parameters and Irrigation Water Use Eficciency
2.4. Berry Skin Color and Firmness
2.5. Water Stress Intensity and Productive Variables’ Effects on Berry Quality
2.6. Predictive Model Algorithm
3. Results
3.1. Yield Parameters and Irrigation Water Use Eficciency
3.2. Water Stress Intensity and Productive Variables’ Effects on Berry Quality
3.3. Predictive Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura Pesca y Alimentación del Gobierno de EspañaAnuario de Estadística; Ministerio de Agricultura Pesca y Alimentación (Ed.) Centro de Publicaciones de la Administración General del Estado: Madrid, Spain, 2020; NIPO 003-19-200-0. [Google Scholar]
- Crisosto, C.H.; Crisosto, G.M. Understanding American and Chinese Consumer Acceptance of “Redglobe” Table Grapes. Postharvest Biol. Technol. 2002, 24, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Ramming, D.W.; Tarailo, R.; Badr, S.A. ‘Crimson Seedless’: A New Late-maturing, Red Seedless Grape. HortScience 1995, 30, 1473–1474. [Google Scholar] [CrossRef] [Green Version]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Dokoozlian, N.K.; Peacock, W.L. Gibberellic Acid Applied at Bloom Reduces Fruit Set and Improves Size of “Crimson Seedless” Table Grapes. HortScience 2001, 36, 706–709. [Google Scholar] [CrossRef] [Green Version]
- Pickering, G.J.; Wheeler, S.J. Optimizing Grape Quality through Soil Management Practices. Agric. Environ. 2003, 1, 190–197. [Google Scholar]
- Dokoozlian, N.; Peacock, B.; Luvisi, D. Crimson Seedless Production Practices; University of Californa: Oakland, CA, USA, 1989. [Google Scholar]
- Peacock, W.; Dokoozlian, N.; Peacock, H.; Allen, B. Irrigation and Canopy Management Strategies for Crimson Seedless; University of California: Oakland, CA, USA, 1997. [Google Scholar]
- Dokoozlian, N.; Peacock, B.; Luvisi, D.; Vasquez, S. Cultural Practices for Crimson Seedless Table Grapes; University of California: Oakland, CA, USA, 2000. [Google Scholar]
- Dokoozlian, N.; Luvisi, D.; Moriyama, M.; Schrader, P. Cultural Practices Improve Color, Size of ‘Crimson Seedless’. Calif. Agric. 1995, 49, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Crisosto, G.; Bowerman, E. Understanding consumer acceptance of peach, nectarine and plum cultivars. Acta Hortic. 2003, 604, 115–119. [Google Scholar] [CrossRef]
- Pinillos, V.; Chiamolera, F.M.; Ortiz, J.F.; Hueso, J.J.; Cuevas, J. Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color. Agric. Water Manag. 2016, 165, 181–189. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic Acid Application Timing and Concentration Affect Firmness, Pigmentation, and Color of `Flame Seedless’ Grapes. HortScience 2006, 41, 1440–1445. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.M.; Fidelibus, M.W.; Crisosto, C.H. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol. Technol. 2007, 46, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.S.; Pacucci, C.; Pacifico, A.; Gambacorta, G.; Faccia, M.; Trani, A.; Gallo, V.; Cafagna, I.; et al. Application of Abscisic Acid (S-ABA) to “Crimson Seedless” Grape Berries in a Mediterranean Climate: Effects on Color, Chemical Characteristics, Metabolic Profile, and S-ABA Concentration. J. Plant Growth Regul. 2013, 32, 491–505. [Google Scholar] [CrossRef]
- Lurie, S.; Ovadia, R.; Nissim-Levi, A.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Weksler, H.; Lichter, A. Abscisic acid improves colour development in ‘Crimson Seedless’ grapes in the vineyard and on detached berries. J. Hortic. Sci. Biotechnol. 2015, 84, 639–644. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N.K. Timing and Concentration of Abscisic Acid Applications Affect the Quality of ‘Crimson Seedless’ Grapes. Int. J. Fruit Sci. 2008, 7, 71–83. [Google Scholar] [CrossRef]
- Ovadia, R.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Lichter, A.; Lurie, S. Effects of plant growth regulators and high temperature on colour development in ‘Crimson Seedless’ grapes. J. Hortic. Sci. Biotechnol. 2015, 88, 387–392. [Google Scholar] [CrossRef]
- Conesa, M.R.; Falagán, N.; de la Rosa, J.M.; Aguayo, E.; Domingo, R.; Pérez-Pastor, A. Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in Crimson Seedless table grapes. Agric. Water Manag. 2016, 163, 9–18. [Google Scholar] [CrossRef]
- Blanco, O.; Faci, J.M.; Negueroles, J. Response of table grape cultivar ‘Autumn Royal’ to regulated deficit irrigation applied in post-veraison period. Span. J. Agric. Res. 2010, 8, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Conesa, M.R.; de la Rosa, J.M.; Artés-Hernández, F.; Dodd, I.; Domingo, R.; Pérez-Pastor, A. Long-term impact of deficit irrigation on the physical quality of berries in ‘Crimson Seedless’ table grapes. J. Sci. Food Agric. 2015, 95, 2510–2520. [Google Scholar] [CrossRef]
- García, I.F.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, E.; Galleguillos, M.; Barría, P.; Callejas, R. Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context. Agric. Water Manag. 2022, 263, 107467. [Google Scholar] [CrossRef]
- Chalmers, D.J. Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. [Trickle irrigation]. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar]
- Dry, P.R.; Loveys, B.R.; During, H.; Botting, B.G. Effects of partial root-zone drying on grapevine vigour, yield, composition of fruit and use of water. In Proceedings of the 9th Australian Wine Industry Technical Conference, Adelaida, Australia, 16–19 July 1995; Winetittles: Adelaida, Australia, 1996; pp. 128–131. [Google Scholar]
- Chalmers, Y.M.; Downey, M.O.; Krstic, M.P.; Loveys, B.R.; Dry, P.R. Influence of sustained deficit irrigation on colour parameters of Cabernet Sauvignon and Shiraz microscale wine fermentations. Aust. J. Grape Wine Res. 2010, 16, 301–313. [Google Scholar] [CrossRef]
- Shellie, K.C. Water Productivity, Yield, and Berry Composition in Sustained versus Regulated Deficit Irrigation of Merlot Grapevines. Am. J. Enol. Vitic. 2014, 65, 197–205. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Pagán, E.; Robles, J.M.; Temnani, A.; Berríos, P.; Botía, P.; Pérez-Pastor, A. Effects of water deficit and salinity stress on late mandarin trees. Sci. Total Environ. 2022, 803, 150109. [Google Scholar] [CrossRef]
- Zúñiga-Espinoza, C.; Aspillaga, C.; Ferreyra, R.; Selles, G. Response of Table Grape to Irrigation Water in the Aconcagua Valley, Chile. Agronomy 2015, 5, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [Green Version]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant Water Status as an Index of Irrigation Need in Deciduous Fruit Trees. Horttechnology 1997, 7, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Ortuño, M.F.; Brito, J.J.; García-Orellana, Y.; Conejero, W.; Torrecillas, A. Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling of lemon trees. Irrig. Sci. 2009, 27, 121–127. [Google Scholar] [CrossRef]
- Marsal, J.; Gelly, M.; Mata, M.; Arbonés, A.; Rufat, J.; Girona, J. Phenology and drought affects the relationship between daily trunk shrinkage and midday stem water potential of peach trees. J. Hortic. Sci. Biotechnol. 2002, 77, 411–417. [Google Scholar] [CrossRef]
- Moriana, A.; Pérez-López, D.; Prieto, M.H.; Ramírez-Santa-Pau, M.; Pérez-Rodriguez, J.M. Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agric. Water Manag. 2012, 112, 43–54. [Google Scholar] [CrossRef]
- Naor, A. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hortic. 2000, 537, 447–454. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Conejero, W.; Valdés-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Comput. Electron. Agric. 2015, 114, 7–13. [Google Scholar] [CrossRef]
- Myers, B.J. Water stress integral—A link between short-term stress and long-term growth. Tree Physiol. 1988, 4, 315–323. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning. In Adaptive Computation and Machine Learning; Dietterich, T., Ed.; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006; ISBN 026218253X. [Google Scholar]
- Temnani, A.; Conesa, M.R.; Ruiz, M.; López, J.A.; Berríos, P.; Pérez-Pastor, A. Irrigation Protocols in Different Water Availability Scenarios for ‘Crimson Seedless’ Table Grapes under Mediterranean Semi-Arid Conditions. Water 2021, 13, 22. [Google Scholar] [CrossRef]
- SIAM Descripción de La Red Agrometeorológica. Available online: http://siam.imida.es/apex/f?p=101:41:2935605704144648 (accessed on 31 August 2021).
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [Green Version]
- Dodd, I.C.; Theobald, J.C.; Bacon, M.A.; Davies, W.J. Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct. Plant Biol. 2006, 33, 1081–1089. [Google Scholar] [CrossRef]
- Dry, P.R.; Loveys, B.R.; Düring, H. Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange. Vitis—J. Grapevine Res. 2000, 39, 3–7. [Google Scholar] [CrossRef]
- Conesa, M.R.; de la Rosa, J.M.; Pérez-Pastor, A.; Domingo, R.; Corbalán, M.; Pagán, E. Effects of different deficit irrigation strategies on the yield and berry quality of table grape, orchard Crimson. In Proceedings of the 4th EMUNI Research Souk: The Euro-Mediterranean Student Research Multi-Conference, Murcia, Spain, 17–18 April 2012; Laris, G., Čurčić, D., Eds.; EMUNI University: Portoroz, Slovenia, 2012; pp. 211–219. [Google Scholar]
- AEMET—Agencia Estatal de Meteorología del Gobierno de España Servicios Climáticos: Valores Climatológicos Normales. Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos (accessed on 11 October 2021).
- SIAM Informe Agrometeorológico Personalizado. Available online: http://siam.imida.es/apex/f?p=101:46:1013612728957675 (accessed on 20 November 2019).
- Hsiao, T.C. Measurements of plant water status. Agronomy 1990, 30, 243–279. [Google Scholar]
- Carreño, J.; Martinez, A.; Almela, L.; Fernandez-Lopez, J.A. Measuring the Color of Table Grapes. Color Res. Appl. 1996, 21, 50–54. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Di Renzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. Infostat—Software Estadístico. Available online: https://www.infostat.com.ar (accessed on 15 April 2022).
- Suphawan, K.; Chaisee, K.; Suphawan, K.; Chaisee, K. Gaussian process regression for predicting water quality index: A case study on Ping River basin, Thailand. AIMS Environ. Sci. 2021, 8, 268–282. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Sun, A.Y.; Wang, D.; Xu, X. Monthly streamflow forecasting using Gaussian Process Regression. J. Hydrol. 2014, 511, 72–81. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio: Boston, MA, USA, 2021. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 25765. [Google Scholar] [CrossRef] [Green Version]
- Calderon-Orellana, A.; Bambach, N.; Aburto, F.; Calderón, M. Water Deficits Synchronizes Color Development among Berries in Crimson Seedless Table Grapes. Am. J. Enol. Vitic. 2018, 70, 60–67. [Google Scholar] [CrossRef]
- Conesa, M.R.; Berríos, P.; Temnani, A.; Pérez-Pastor, A. Assessment of the Type of Deficit Irrigation Applied during Berry Development in “Crimson Seedless” Table Grapes. Water 2022, 14, 1311. [Google Scholar] [CrossRef]
- Puértolas, J.; Conesa, M.R.; Ballester, C.; Dodd, I.C. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: Implications for ABA signalling under heterogeneous soil drying. J. Exp. Bot. 2015, 66, 2325–2334. [Google Scholar] [CrossRef] [Green Version]
- Conesa, M.R.; Dodd, I.C.; Temnani, A.; de la Rosa, J.M.; Pérez-Pastor, A. Physiological response of post-veraison deficit irrigation strategies and growth patterns of table grapes cv. Crimson Seedless. Agric. Water Manag. 2018, 208, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Shibayama, K. Effects of Trunk Girdling and Crop Load Levels on Fruit Quality and Root Elongation in “Aki Queen” Grapevines. Soc. Hort. Sci. 2006, 75, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Basile, T.; Alba, V.; Gentilesco, G.; Savino, M.; Tarricone, L. Anthocyanins pattern variation in relation to thinning and girdling in commercial Sugrathirteen® table grape. Sci. Hortic. 2018, 227, 202–206. [Google Scholar] [CrossRef]
- Guidoni, S.; Allara, P.; Schubert, A. Effect of Cluster Thinning on Berry Skin Anthocyanin Composition of Vitis vinifera cv. Nebbiolo. Am. J. Enol. Vitic. 2002, 53, 224–226. [Google Scholar]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry Phenolics of Grapevine under Challenging Environments. Int. J. Mol. Sci 2013, 14, 18712. [Google Scholar] [CrossRef] [Green Version]
- Crupi, P.; Alba, V.; Masi, G.; Caputo, A.R.; Tarricone, L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Res. Int. 2019, 126, 108667. [Google Scholar] [CrossRef]
- İşçi, B.; Kacar, E.; Altındişli, A. The Effects of Some Exogenous Applications on Quality in ‘Crimson Seedless’ Grape. Erwerbs-Obstbau 2020, 62, 87–100. [Google Scholar] [CrossRef]
- Denora, M.; Fiorentini, M.; Zenobi, S.; Deligios, P.A.; Orsini, R.; Ledda, L.; Perniola, M. Validation of Rapid and Low-Cost Approach for the Delineation of Zone Management Based on Machine Learning Algorithms. Agronomy 2022, 12, 183. [Google Scholar] [CrossRef]
- Obulesu, O.; Mahendra, M.; Thrilokreddy, M. Machine Learning Techniques and Tools: A Survey. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 605–611. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms-A Review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Quiñonero, J.; Rasmussen, C. A Unifying View of Sparse Approximate Gaussian Process Regression. J. Mach. Learn. Res. 2005, 6, 1939–1959. [Google Scholar]
Experimental Site 1 (ES1) | Experimental Site 2 (ES2) | |
---|---|---|
Location | Cieza, Murcia, Spain | Molina de Segura, Murcia, Spain |
38°15′0.09″ N, 1°32′60.00″ W | 38°6′52.14″ N, 1°10′29.36″ W | |
Rootstock | 1103-Paulsen | 1103-Paulsen |
Planting frame | 4.0 × 4.0 m; 625 vines ha−1 | 3.0 × 3.5 m; 952 vines ha−1 |
Planting year | 2001 | 2003 |
Irrigation system | 4 drippers of 4 L h−1 per vine One drip line per vine row | 3 drippers of 4 L h−1 per vine One drip line (CTL, RDI, SDI, and NI) and two drip lines (PRD) per vine row |
Soil characteristics | Soil texture class: clay–silt–loam Bulk density: 1.25 g cm−3 Organic matter: 2.1% Soil pH: 8.6 FC: 0.34 m3 m−3 WP: 0.18 m3 m−3 | Soil texture class: clay–silt–loam Bulk density: 1.25 g cm−3 Organic matter: 1.7% Soil pH: 8.0 FC: 0.32 m3 m−3 WP: 0.17 m3 m−3 |
Irrigation water characteristics | Tagus-Segura transfer system ECw: 1.3 dS m−1 | Tagus-Segura transfer system ECw: ~1.0 to 1.5 dS m−1 |
Cultivation system | The vineyards were trained to an overhead trellis system at a height of ~3.0 m above ground and covered with a high-density polyethylene mesh just above the canopy. Additionally, to prevent damage from low temperatures, rain, or hail, the vines were also covered with transparent high-density polyethylene at the end of August before harvestable picks. | |
Standard cultural practices | Pruning, girdling, weed control, and phytosanitary treatments, among others, were the same for both experimental sites, and were carried out by the technical department based on the usual criteria for the area. | |
Climate conditions | The climate of the study area is Mediterranean type and belongs to the Köppen “Bsh” classification, characterized by mild winters and dry and very hot summers, with an average annual temperature close to 22.5 °C, low rainfall of less than 300 mm, and a reference evapotranspiration between 1100 and 1400 mm per year [50,51]. |
PC1 | PC2 | PC3 | |
---|---|---|---|
Eigenvalue | 2.37 | 1.71 | 1.67 |
Variance (%) | 29.6 | 21.4 | 20.9 |
Cumulative variance (%) | 51.0 | 72.0 | |
SΨs | −0.11 | 0.61 | 0.08 |
Total yield | 0.12 | 0.54 | 0.21 |
Clusters per vine | −0.35 | −0.07 | 0.55 |
Berries per cluster | 0.63 | 0.02 | 0.01 |
Cluster weight | 0.62 | 0.10 | −0.01 |
Berry weight | −0.11 | 0.39 | 0.03 |
Berry firmness | 0.15 | 0.12 | 0.62 |
CIRG | −0.17 | 0.40 | −0.52 |
Variable | SΨs | Total Yield | Clusters per Vine | Berries per Cluster | Cluster Weight | Berry Weight | Berry Firmness | CIRG | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SΨs (MPa day) | 1.00 | ||||||||||||||
Total yield (kg vine−1) | 0.35 | ns | 1.00 | ns | |||||||||||
Clusters per vine | 0.20 | ns | −0.04 | ns | 1.00 | ||||||||||
Berries per cluster | −0.05 | ns | 0.12 | ns | −0.43 | * | 1.00 | ||||||||
Cluster weight (g) | −0.03 | ns | 0.18 | ns | −0.46 | * | 0.96 | *** | 1.00 | ||||||
Berry weight (g) | 0.19 | ns | 0.25 | ns | −0.02 | ns | −0.24 | ns | 0.00 | ns | 1.00 | ||||
Berry firmness (N) | 0.14 | ns | 0.26 | ns | 0.31 | ns | 0.20 | ns | 0.17 | ns | 0.00 | ns | 1.00 | ||
CIRG | 0.43 | * | 0.07 | ns | −0.32 | ns | −0.21 | ns | −0.18 | ns | 0.07 | ns | −0.36 | ns | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temnani, A.; Berríos, P.; Conesa, M.R.; Pérez-Pastor, A. Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes. Agronomy 2022, 12, 1416. https://doi.org/10.3390/agronomy12061416
Temnani A, Berríos P, Conesa MR, Pérez-Pastor A. Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes. Agronomy. 2022; 12(6):1416. https://doi.org/10.3390/agronomy12061416
Chicago/Turabian StyleTemnani, Abdelmalek, Pablo Berríos, María R. Conesa, and Alejandro Pérez-Pastor. 2022. "Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes" Agronomy 12, no. 6: 1416. https://doi.org/10.3390/agronomy12061416
APA StyleTemnani, A., Berríos, P., Conesa, M. R., & Pérez-Pastor, A. (2022). Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes. Agronomy, 12(6), 1416. https://doi.org/10.3390/agronomy12061416