Xiaomila Green Pepper Target Detection Method under Complex Environment Based on Improved YOLOv5s
Abstract
:1. Introduction
2. Materials and Methods
2.1. Xiaomila Green Pepper Image Collection
2.1.1. Methods and Image Collection
2.1.2. Image Preprocessing
2.2. Improvements to the YOLOv5s Network Model
2.2.1. YOLOv5 Model
2.2.2. Improved Methods
3. Results
3.1. Training Platform
3.2. Training Results
3.3. Detecting Results
4. Discussion
Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, Z.; Shang, Z.X.; Li, M.Q.; Ren, H.B.; Qu, Y.H.; Hu, X.S.; Yi, J.J. Comparison and comprehensive analysis of quality characteristics of fermented Xiaomila in different cultivars. Food Ferment. Ind. 2021, 47, 87–95. [Google Scholar]
- Elkhedir, A.E.; Iqbal, A.; Zogona, D.; Mohammed, H.H.; Murtaza, A.; Xu, X.Y. Apigenin glycosides from green pepper enhance longevity and stress resistance in Caenorhabditis elegans. Nutr. Res. 2022, 102, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Oka, K.; Ikutomo, K.; Kimura, Y.; Taniguchi, Y. A Distinction Method for Fruit of Sweet Pepper Using Reflection of LED Light. In Proceedings of the Annual Conference of the SICE, Chofu, Japan, 20–22 August 2008; pp. 460–463. [Google Scholar]
- Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electron. Agric. 2013, 96, 148–162. [Google Scholar] [CrossRef]
- Ji, W.; Chen, G.Y.; Xu, B.; Meng, X.L.; Zhao, D. Recognition Method of Green Pepper in Greenhouse Based on Least-Squares Support Vector Machine Optimized by the Improved Particle Swarm Optimization. IEEE Access 2019, 7, 119742–119754. [Google Scholar] [CrossRef]
- McCool, C.; Sa, I.; Dayoub, F.; Lehnert, C.; Perez, T.; Uperoft, B. Visual Detection of Occluded Crop: For automated harvesting. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 2506–2512. [Google Scholar]
- Ji, W.; Gao, X.X.; Chen, G.Y.; Zhao, D. Target recognition method of green pepper harvesting robot based on manifold ranking. Comput. Electron. Agric. 2020, 177, 105663. [Google Scholar] [CrossRef]
- Li, X.; Pan, J.D.; Xie, F.P.; Zeng, J.P.; Li, Q.; Huang, X.J.; Liu, D.W.; Wang, X.S. Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model. Comput. Electron. Agric. 2021, 191, 106503. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Zou, X.; Luo, L.; Chen, X. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD) Color Cameras. Sensors 2017, 17, 2564. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Tola, E.; Al-Mallahi, A.; Li, R.; Cui, Y. A novel image processing algorithm to separate linearly clustered kiwifruits. Biosyst. Eng. 2019, 183, 184–195. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zhang, F.J.; Li, L.X.; Lin, Y.H.; Zhang, Z.X.; Shi, L.; Tao, H.; Qin, T. Research on Classification Model of Panax notoginseng Taproots Based on Machine Vision Feature Fusion. Sensors 2021, 21, 7945. [Google Scholar] [CrossRef]
- Cubero, S.; Diago, M.P.; Blasco, J.; Tardáguila, J.; Millán, B.; Aleixos, N. A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosyst. Eng. 2014, 117, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lee, W.S.; Zou, X.; Choi, D.; Gan, H.; Diamond, J. Detection and counting of immature green citrus fruit based on the Local Binary Patterns (LBP) feature using illumination-normalized images. Precis. Agric. 2018, 19, 1062–1083. [Google Scholar] [CrossRef]
- Nuske, S.; Wilshusen, K.; Achar, S.; Yoder, L.; Narasimhan, S.; Singh, S. Automated Visual Yield Estimation in Vineyards. J. Field Robot. 2014, 31, 837–860. [Google Scholar] [CrossRef]
- Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods. Sensors 2014, 14, 12191–12206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Zhou, J. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Comput. Electron. Agric. 2017, 142, 388–396. [Google Scholar] [CrossRef]
- Fu, L.; Duan, J.; Zou, X.; Lin, G.; Song, S.; Ji, B.; Yang, Z. Banana detection based on color and texture features in the natural environment. Comput. Electron. Agric. 2019, 167, 105057. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Sa, I.; Ge, Z.Y.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.N.; Yang, G.D.; Wang, Z.; Wang, H.; Li, E.; Liang, Z.Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Wang, D.D.; He, D.J. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 2021, 210, 271–281. [Google Scholar] [CrossRef]
- Parvathi, S.; Selvi, S.T. Detection of maturity stages of coconuts in complex background using Faster R-CNN model. Biosyst. Eng. 2021, 202, 119–132. [Google Scholar] [CrossRef]
- Magalhaes, S.A.; Castro, L.; Moreira, G.; dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef]
- He, Z.L.; Xiong, J.T.; Lin, R.; Zou, X.J.; Tang, L.Y.; Yang, Z.G.; Liu, Z.; Song, G. A method of green litchi recognition in natural environment based on improved LDA classifier. Comput. Electron. Agric. 2017, 140, 159–167. [Google Scholar] [CrossRef]
- Li, Y.T.; Sun, J.; Wu, X.H.; Lu, B.; Wu, M.M.; Dai, C.X. Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. J. Food Sci. 2019, 84, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.H.; Yang, Z.; Wu, F.Y.; Zou, X.J.; Lin, J.Q.; Cao, Y.J.; Duan, J.L. YOLO-Banana: A Lightweight Neural Network for Rapid Detection of Banana Bunches and Stalks in the Natural Environment. Agronomy 2022, 12, 391. [Google Scholar] [CrossRef]
- Gan, H.; Lee, W.S.; Alchanatis, V.; Ehsani, R.; Schueller, J.K. Immature green citrus fruit detection using color and thermal images. Comput. Electron. Agric. 2018, 152, 117–125. [Google Scholar] [CrossRef]
- Jia, W.K.; Tian, Y.Y.; Luo, R.; Zhang, Z.H.; Lian, J.; Zheng, Y.J. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380. [Google Scholar] [CrossRef]
- Xu, Z.B.; Huang, X.P.; Huang, Y.; Sun, H.B.; Wan, F.X. A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking Robot under a Complex Background, Based on an Improved YOLOv5s Architecture. Sensors 2022, 22, 682. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.H.; Tian, Q.; Guo, J.Y.; Xu, C.J.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1577–1586. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. arXiv 2017, arXiv:1709.01507. [Google Scholar]
- Hou, Q.B.; Zhou, D.Q.; Feng, J.S. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 19–15 June 2021; pp. 13708–13717. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [Google Scholar]
Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Gflops | Model Size (MB) |
---|---|---|---|---|---|---|
YOLOv3-tiny | 81.9 | 67.5 | 74.1 | 76.2 | 12.9 | 39.4 |
YOLOv4-tiny | 82.5 | 71.6 | 76.6 | 78.3 | 16.4 | 21.8 |
YOLOv5s | 82.9 | 74.1 | 78.3 | 84.0 | 15.8 | 14.4 |
YOLOv5s-CFL | 83.7 | 74.6 | 78.9 | 85.1 | 13.9 | 13.8 |
Conditions | Model | Count | Correctly Detected | Falsely Detected | Missed |
---|---|---|---|---|---|
Morning | YOLOv3-tiny | 604 | 417 | 92 | 187 |
YOLOv4-tiny | 604 | 433 | 92 | 171 | |
YOLOv5s | 604 | 450 | 93 | 154 | |
YOLOv5s-CFL | 604 | 452 | 88 | 152 | |
Afternoon | YOLOv3-tiny | 438 | 286 | 63 | 152 |
YOLOv4-tiny | 438 | 313 | 66 | 125 | |
YOLOv5s | 438 | 322 | 67 | 116 | |
YOLOv5s-CFL | 438 | 325 | 63 | 113 |
Conditions | Model | Count | Correctly Detected | Falsely Detected | Missed |
---|---|---|---|---|---|
Morning | YOLOv5s-CFL | 604 | 452 | 88 | 152 |
CART [4] | 604 | 298 | 96 | 306 | |
PSO-LSSVM [5] | 604 | 375 | 109 | 229 | |
CRF [6] | 604 | 364 | 112 | 240 | |
Afternoon | YOLOv5s-CFL | 438 | 325 | 63 | 113 |
CART [4] | 438 | 241 | 98 | 197 | |
PSO-LSSVM [5] | 438 | 305 | 83 | 133 | |
CRF [6] | 438 | 298 | 84 | 140 |
Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Model Size (MB) |
---|---|---|---|---|---|
Improved YOLOv4-tiny [8] | 96.91 | 93.85 | 0.95 | 95.11 | 30.9 |
YOLOv5s-CFL | 97.52 | 93.73 | 0.96 | 95.46 | 13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Sun, Z.; Chen, Y.; Zheng, H.; Jiang, J. Xiaomila Green Pepper Target Detection Method under Complex Environment Based on Improved YOLOv5s. Agronomy 2022, 12, 1477. https://doi.org/10.3390/agronomy12061477
Wang F, Sun Z, Chen Y, Zheng H, Jiang J. Xiaomila Green Pepper Target Detection Method under Complex Environment Based on Improved YOLOv5s. Agronomy. 2022; 12(6):1477. https://doi.org/10.3390/agronomy12061477
Chicago/Turabian StyleWang, Fenghua, Zhexing Sun, Yu Chen, Hao Zheng, and Jin Jiang. 2022. "Xiaomila Green Pepper Target Detection Method under Complex Environment Based on Improved YOLOv5s" Agronomy 12, no. 6: 1477. https://doi.org/10.3390/agronomy12061477
APA StyleWang, F., Sun, Z., Chen, Y., Zheng, H., & Jiang, J. (2022). Xiaomila Green Pepper Target Detection Method under Complex Environment Based on Improved YOLOv5s. Agronomy, 12(6), 1477. https://doi.org/10.3390/agronomy12061477