Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetation Sampling
2.2. Laboratory Procedure
2.3. Statistical Analysis
3. Results
3.1. Classification Based on Ward’s Cluster Analysis (Tree Vegetation Data)
3.1.1. Group I Pinus wallichiana Dominant Group
3.1.2. Group I (a) Pure Pinus wallichiana
3.1.3. Group I (b) Pinus wallichiana and Abies pindrow Association
3.1.4. Group I (c) Pinus wallichiana Mix Group
3.1.5. Group II Abies pindrow and Picea smithiana Association
3.1.6. Group III Mixed Group of Conifer Dominating Species
3.1.7. Group IV Pure Pinus roxberghii Association
3.2. Univariate Analysis of Variance (ANOVA)
3.3. Ordination
Principal Component Analysis (PCA) Ordination of Tree Vegetation Data
3.4. Relationship (Correlation Coefficients) of Three Ordination Axes with Environmental Variables
3.5. Understory Vegetation Data
Ward’s Cluster Analysis of Stands
3.6. Univariate Analysis of Variance (ANOVA)
3.7. Stand Ordination of the Understory Vegetation Data
4. Discussion
4.1. Classification
4.2. Ordination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenkel, N.C. The personal computer as a tool for data analysis in population and community ecology. Abstr. Bot. 1986, 10, 79–86. [Google Scholar]
- Austin, M.P.; Belbin, L.; Meyers, J.A.; Doherty, M.D.; Luoto, M. Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecol. Model. 2006, 199, 197–216. [Google Scholar] [CrossRef]
- Shaukat, S.S.; Qadir, S.A. Multivariate analysis of the vegetation of calcarious hills around Karachi. Vegetatio 1971, 23, 235–253. [Google Scholar] [CrossRef]
- Ahmed, M. Multivariate analysis of the vegetation around Skardu. Agri. Pak. 1976, 26, 177–187. [Google Scholar]
- Moinuddin, A. Vegetation of some foothills of Himalayan range in Pakistan. Pak. J. Bot. 1986, 18, 261–269. [Google Scholar]
- Enright, N.J.; Miller, B.P. Livestock grazing impacts on desert vegetation, Khirthar National Park, Pakistan. Rangel. Ecol. Manag. 2007, 60, 680–684. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A. Mechanism of tobacco osmotin gene in plant responses to biotic and abiotic stress tolerance: A brief history. Biocell 2022, 46, 623. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ali, Q.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S.; Munis, M.F.H. Disease severity, resistance analysis, and expression profiling of pathogenesis-related protein genes after the inoculation of Fusarium equiseti in wheat. Agronomy 2021, 11, 2124. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ullah, A.; Gul, S.; Shaban, M.; Khan, A.H.; Ali, M.; Sani, S.G.A.S.; Chaudhary, H.J.; Munis, M.F.H. Expression analysis of defense related genes in wheat and maize against Bipolaris sorokiniana. Physiol. Mol. Plant Pathol. 2018, 103, 36–46. [Google Scholar] [CrossRef]
- Naz, H.S.; Gul, S.; Chaudhary, H.J.; Munis, M.F.H. First report of Rhizopus oryzae causing fruit rot of Citrus medica L. in Pakistan. J. Plant Pathol. 2015, 97, 215. [Google Scholar]
- Shaukat, S.S.; Uddin, M. An application of canonical correlation and principal component analysis to the study of desert environment. Abstr. Bot. 1989, 13, 17–45. [Google Scholar]
- Ahmed, M.; Tareen, R.; Tareen, K. Vegetation ordination of Chilton in Balochistan. Mod. Trends Plant Sci. Res. Pak. 1987, 39–43. [Google Scholar]
- Hussain, F.; Ahmed, M.; Shaheen, G.; Durrant, M.J. Phytosociology of the vanishing tropical deciduous forest in district Swabi, Pakistan. II. Ordination. Pak. J. Bot. 1994, 26, 149–160. [Google Scholar]
- Ahmad, S.S.; Fazal, S.; Valeem, E.E.; Khan, Z.I.; Sarwar, G.; Iqbal, Z. Evaluation of ecological aspects of roadside vegetation around Havalian city using multivariate techniques. Pak. J. Bot 2009, 41, 53–60. [Google Scholar]
- Ilyas, M.; Shinwari, Z.K.; Qureshi, R. Vegetation composition and threats to the montane temperate forest ecosystem of Qalagai hills, Swat, Khyber Pakhtunkhwa, Pakistan. Pak. J. Bot. 2012, 44, 113–122. [Google Scholar]
- Siddiqui, M.F.; Ahmed, M.; Shaukat, S.S.; Khan, N. Advanced multivariate techniques to investigate vegetation-environmental complex of pine forests of moist temperate areas of Pakistan. Pak. J. Bot 2010, 42, 267–293. [Google Scholar]
- Siddiqui, M.F.; Shaukat, S.S.; Ahmed, M.; Khan, N.; Khan, I.A. Vegetation-Environment relationship of conifer dominating forests of moist temperate belt of Himalayan and Hindukush regions of Pakistan. Pak. J. Bot 2013, 45, 577–592. [Google Scholar]
- Rashid, A.; Swati, M.F.; Sher, H.; Al-Yemeni, M.N. Phytoecological evaluation with detail floristic appraisal of the vegetation arround Malam Jabba, Swat, Pakistan. Asian Pac. J. Trop. Biomed. 2011, 1, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.; Moinuddin, A.; Nasrullah, K.; Sarangzai, A.M. A phytosociological study of pine forests from district Dir, Pakistan. Int. J. Biol. Biotechnol. 2011, 7, 219–226. [Google Scholar]
- Khan, N. Vegetation ecology and Dendrochronology of Chitral. Ph.D. Thesis, Federal Urdu University of Arts Sciences & Technology, Islamabad, Pakistan, 2011. [Google Scholar]
- Huo, H.; Feng, Q.; Su, Y.H. The influences of canopy species and topographic variables on understory species diversity and composition in coniferous forests. Sci. World J. 2014, 2014, 252489. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.; Neill, A.R.; Puettmann, K.J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. For. Ecol. Manag. 2010, 260, 1104–1113. [Google Scholar] [CrossRef]
- Spanner, M.A.; Pierce, L.L.; Peterson, D.L.; Running, S.W. Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance. Remote Sens. 1990, 11, 95–111. [Google Scholar] [CrossRef]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Koedam, N. Empirical estimate of the reliability of the use of the Point-Centred Quarter Method (PCQM): Solutions to ambiguous field situations and description of the PCQM+ protocol. For. Ecol. Manag. 2006, 228, 1–18. [Google Scholar] [CrossRef] [Green Version]
- de Lucena, R.F.P.; de Medeiros, P.M.; de Lima Araújo, E.; Alves, A.G.C.; de Albuquerque, U.P. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: An assessment based on use value. J. Environ. Manag. 2012, 96, 106–115. [Google Scholar] [CrossRef]
- Eaton, S.V. Physical Properties of Soil. Bot. Gaz. 1931, 380. [Google Scholar]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962. [Google Scholar]
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM software design: Gleneden Beach, OR, USA, 2002; Volume 28. [Google Scholar]
- Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. In Proceedings of the Theory and Models in Vegetation Science: Proceedings of Symposium, Uppsala, Sweden, July 8–13, 1985; Prentice, I.C., van der Maarel, E., Eds.; Springer Netherlands: Dordrecht, Holand, 1987; pp. 89–107. [Google Scholar]
- Tansley, A.G.; Chipp, T.F. Aims and Methods in the Study of Vegetation; White friars Press: London, UK, 1926. [Google Scholar]
- Khan, M.; Hussain, F. Classification and ordination of vegetation in Tehsil Takht-e-Nasrati, District Karak, Khyber Pakhtunkhawa, Pakistan. J. Ecol. Nat. Environ. 2013, 5, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Greig-Smith, P. Quantitative Plant Ecology, 3rd ed.; Black-Well Scientific Publications: London, UK, 1983. [Google Scholar]
- Frades, I.; Matthiesen, R. Overview on techniques in cluster analysis. Bioinform. Methods Clin. Res. 2010, 593, 81–107. [Google Scholar]
- Lovett, J.C.; Clarke, G.P.; Moore, R.; Morrey, G.H. Elevational distribution of restricted range forest tree taxa in eastern Tanzania. Biodivers. Conserv. 2001, 10, 541–550. [Google Scholar] [CrossRef]
- Gajoti, T.E.; Haciyev, V.; Javanshir, A.; Nosrati, H.; Haghighi, A.R.; Eimanifar, A.; Stewart, N., Jr. Vegetation analysis of Sutan-Chay Basin in Arasbaran. Am. J. Agric. Biol. Sci. 2010, 5, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.L.; He, Y.Q.; Pang, H.X. Variation of glaciers in response to ENSO in the Mount Yulong. J. Glaciol Geogryology 2004, 26, 294–297. [Google Scholar]
- Saima, S.; Dasti, A.A.; Hussain, F.; Wazir, S.M.; Malik, S.A. Floristic compositions along an 18-km long transect in Ayubia National Park district Abbottabad, Pakistan. Pak. J. Bot. 2009, 41, 2115–2127. [Google Scholar]
- Ahmad, S.S.; Abdul, W.; Akbar, K.F. Multivariate classification and data analysis of vegetation along motorway (M-2), Pakistan. Pak. J. Bot. 2010, 42, 1173–1185. [Google Scholar]
- Akbar, M. Forest Vegetation and Dendrochronology of Gilgit, Astore and Skardu Districts of Northern Areas (Gilgit-Baltistan), Pakistan. Ph.D. Thesis, Federal Urdu University of Arts, Science & Technology, Islamabad, Pakistan, 2013. [Google Scholar]
- Wahab, M.; Ahmed, M.; Khan, N. Phytosociology and dynamics of some pine forests of Afghanistan. Pak. J. Bot. 2008, 40, 1071–1079. [Google Scholar]
- Malik, N.Z.; Malik, Z.H. Present status of subtropical chir pine vegetation of Kotli Hills, Azad Jammu and Kashmir. J. Res. Sci. 2004, 15, 85–90. [Google Scholar]
- Ali, S.M.; Malik, R.N. Spatial patterns of vegetation with underlying soil properties prevailing along drain side areas in Islamabad City. Pak. J. Bot. 2010, 42, 2397–2410. [Google Scholar]
- Bai, X.; Sadia, S.; Yu, J. Community composition and structure along the environmental gradients of Larix gmelinii forest in northeast China. Pak. J. Bot. 2021, 53, 1845–1850. [Google Scholar] [CrossRef]
- Ullah, F.; Gao, Y.; Sari, İ.; Jiao, R.; Saqib, S.; Gao, X. Macro-Morphological and Ecological Variation in Rosa sericea Complex. Agronomy 2022, 12, 1078. [Google Scholar] [CrossRef]
- Tabaripour, R.; Keshavarzi, M.; Ullah, F. Micromorphological characters variation of lemma and palea in subtribe of Loliinae (Poaceae). Microsc. Res. Tech. 2022, 85, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Ayaz, A.; Saqib, S.; Parmar, G.; Bahadur, S.; Zaman, W. Taxonomic implication of leaf epidermal anatomy of selected taxa of Scrophulariaceae from Pakistan. Microsc. Res. Tech. 2021, 84, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Gao, Y.; Jiao, R.-F.; Gao, X.-F. Comparative taxonomic variation in fruits and seeds’ surface morphology among populations of alpine Rosa sericea complex (Rosaceae). Microsc. Res. Tech. 2021, 84, 2337–2350. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD Multivariate Analysis of Ecological Data, Version 5.31; MjM Solfware Gleneden Beach: Gleneden Beach, OR, USA, 2006. [Google Scholar]
- Holdridge, L.R. Ecología Basada En Zonas De Vida; Instituto Interamericano de Cooperacion´ para la Agricultura: San Jose, Costa Rica, 1978. [Google Scholar]
- García, E. Climates of the State of Veracruz according to the climatic classification of Koppen modified by the author. An. Del Inst. De Biologia. Ser. Bot. Mex. 1970, 41, 3–41. [Google Scholar]
- Ver Hoef, J.M.; Neiland, B.J.; Glenn-Lewin, D.C. Vegetation gradient analysis of two sites in southeast Alaska. Northwest Sci. 1988, 62, 171–180. [Google Scholar]
Tree Species | Group 1 (a) | Group 1 (b) | Group 1 (c) | Group 2 | Group 3 | Group 4 |
---|---|---|---|---|---|---|
Pinus wallichiana | 100 ± 0 | 98.33 ± 1.67 | 80.9 ± 2.2 | * | 26.3 ± 9.3 | * |
Abies pindrow | * | 1.67 ± 1.67 | 10 ± 6.1 | 92.5 ± 4.6 | 9.75 ± 9.75 | * |
Cedrus deodara | * | * | * | * | 44 ± 20.7 | * |
Picea smithiana | * | * | * | 7.5 ± 4.6 | 16.25 ± 16.25 | * |
Pinus roxburghii | * | * | * | * | * | 100 ± 0 |
Quercus baloot | * | * | 9.0 ± 5.2 | * | 3.75 ± 2.5 | * |
Variables | Group 1 | Group | Group | Group | ||
---|---|---|---|---|---|---|
1(a) | 1(b) | 1(c) | 2 | 3 | 4 | |
1. Topographic variables | ||||||
1.Elevation(m) | 1953.1 ± 69.7 | 2203.3 ± 29.6 | 2171.5 ± 35.0 | 2691.2 ± 47.6 | 2188 ± 76.25 | 1374.5 ± 76.5 |
2. Slope | 39.05 ± 1.4 | 38.33 ± 4.41 | 30.8 ± 3.3 | 34.0 ± 7.48 | 38.2 ± 4.04 | 35.0 ± 5 |
2. Edaphic variables | ||||||
1.pH | 7.94 ± 0.04 | 8.06 ± 0.03 | 7.8 ± 0.2 | 7.78 ± 0.09 | 7.60 ± 0.06 | 7.40 ± 0.02 |
2.WHC | 12.24 ± 0.06 | 11.7 ± 0.9 | 9.5 ± 0.6 | 15.4 ± 1.81 | 12.05 ± 0.83 | 8.07 ± 4.23 |
3.Salinity | 0.06 ± 0.01 | 0.04 ± 0.0 | 0.07 ± 0.02 | 0.04 ± 0.01 | 0.05 ± 0.0 | 0.04 ± 0.02 |
4.Cond | 136.5 ± 13.7 | 96.67 ± 10.0 | 143.8 ± 37.6 | 82.6 ± 7.59 | 108 ± 12.73 | 89.5 ± 34.5 |
5.TDS | 68.0 ± 6.8 | 48.67± 5.3 | 71.3 ± 19.1 | 44.4 ± 7.01 | 51.2 ± 4.95 | 45.0 ± 17.0 |
6. Soil Moisture | 24.5 ± 1.2 | 23.4 ± 1.8 | 18.9 ± 1.2 | 30.8 ± 3.61 | 24.1 ± 1.7 | 16.14 ± 8.46 |
3. Soil Texture | ||||||
1. Sand | 53.37 ± 1.9 | 51.73 ± 7.66 | 49.4 ± 5.0 | 45.88 ± 2.59 | 47.56 ± 5.85 | 27 ± 0.0 |
2. Silt | 32.37 ± 1.6 | 36.93 ± 7.36 | 42.0 ± 6.0 | 34.48 ± 3.11 | 43.44 ± 5.61 | 53.8 ± 11.0 |
3. Clay | 13.9 ± 1.5 | 11.33 ± 1.13 | 8.7 ± 2.6 | 19.64 ± 4.22 | 9 ± 0.6 | 19.2 ± 11.0 |
4. Soil nutrients | ||||||
1. OM | 0.62 ± 0.07 | 0.43 ± 0.03 | 0.7 ± 0.2 | 0.42 ± 0.07 | 0.48 ± 0.05 | 0.4 ± 0.2 |
2. Phos | 0.43 ± 0.09 | 0.23 ± 0.03 | 0.33 ± 0.11 | 0.53 ± 0.17 | 0.46 ± 0.09 | 0.3 ± 0.0 |
Source of Variation | SS | df | MS | F | p-Level | |
---|---|---|---|---|---|---|
1. Topographic Variables | ||||||
1 | Elevation | |||||
Between Groups | 3,337,292.82 | 5 | 667,458.57 | 10.15 | p < 0.001 | |
Within Groups | 2,236,902.77 | 34 | 65,791.26 | |||
Total | 5,574,195.6 | 39 | ||||
2 | Slope | |||||
Between Groups | 307.81 | 5 | 61.56 | 0.814 | NS | |
Within Groups | 2571.17 | 34 | 75.62 | |||
Total | 2878.98 | 39 | ||||
2. Edaphic Variables | ||||||
1 | PH | |||||
Between Groups | 1.043235 | 5 | 0.208647 | 5.73 | p < 0.01 | |
Within Groups | 1.240102 | 34 | 0.036474 | |||
Total | 2.2833375 | 39 | ||||
2 | WHC | |||||
Between Groups | 115.4212 | 5 | 23.08424 | 2.766 | p < 0.05 | |
Within Groups | 283.7654 | 34 | 8.346041 | |||
Total | 399.1866 | 39 | ||||
3 | Salinity | |||||
Between Groups | 0.003552 | 5 | 0.00071 | 0.981 | NS | |
Within Groups | 0.024625 | 34 | 0.000724 | |||
Total | 0.028178 | 39 | ||||
4 | Conductivity | |||||
Between Groups | 19,125.115 | 5 | 3825.023 | 1.251 | NS | |
Within Groups | 103,938.26 | 34 | 3057.008 | |||
Total | 123,063.38 | 39 | ||||
5 | TDS | |||||
Between Groups | 4271.35833 | 5 | 854.2717 | 1.116 | NS | |
Within Groups | 26,021.4167 | 34 | 765.3358 | |||
Total | 30,292.775 | 39 | ||||
6 | Soil Moisture | |||||
Between Groups | 461.68485 | 5 | 92.33697 | 2.766 | p < 0.05 | |
Within Groups | 1135.0615 | 34 | 33.38416 | |||
Total | 1596.7464 | 39 | ||||
3. Soil Texture | ||||||
1 | Sands | |||||
Between Groups | 1421.31148 | 5 | 284.2623 | 3.241 | p < 0.05 | |
Within Groups | 2981.75952 | 34 | 87.69881 | |||
Total | 4403.071 | 39 | ||||
2 | Silt | |||||
Between Groups | 1278.40024 | 5 | 255.68005 | 2.967 | p < 0.05 | |
Within Groups | 2930.09476 | 34 | 86.179258 | |||
Total | 39 | |||||
3 | Clay | |||||
Between Groups | 716.5828095 | 5 | 143.3166 | 3.384 | p < 0.05 | |
Within Groups | 1440.14819 | 34 | 42.3573 | |||
Total | 2156.731 | 39 | ||||
4. Soil Nutrients | ||||||
1 | Organic matter | |||||
Between Groups | 9564.9254 | 5 | 1912.985 | 7.120 | p < 0.001 | |
Within Groups | 9135.4484 | 34 | 268.6897 | |||
Total | 18,700.374 | 39 | ||||
2 | Phosphorus | |||||
Between Groups | 0.24110417 | 5 | 0.048221 | 0.406 | NS | |
Within Groups | 4.04083333 | 34 | 0.118848 | |||
Total | 4.28193750 | 39 |
Axis 1 | Axis 2 | Axis 3 | |||||
---|---|---|---|---|---|---|---|
S. No. | Variables | r | Prob. Level | R | Prob. Level | r | Prob. Level |
1. Topographic variables | |||||||
1 | Elevation | 0.316 | p < 0.05 | −0.309 | NS | 0.509 | p < 0.001 |
2 | Slope | −0.079 | NS | 0.122 | NS | −0.044 | NS |
2. Edaphic variables | |||||||
1 | Ph | −0.511 | NS | −0.321 | NS | 0.059 | NS |
2 | MWHC | 0.144 | NS | −0.319 | NS | 0.235 | p< 0.05 |
3 | Salinity | −0.240 | NS | 0.008 | NS | 0.127 | NS |
4 | Conductivity | −0.262 | NS | −0.017 | NS | 0.094 | NS |
5 | TDS | −0.263 | NS | −0.013 | NS | 0.093 | NS |
6 | Soil moisture | 0.144 | NS | −0.329 | NS | 0.245 | p < 0.05 |
3. Soil Texture | |||||||
1 | Sand | −0.346 | NS | −0.309 | 0.224 | NS | |
2 | Silt | 0.255 | p < 0.05 | 0.423 | p < 0.005 | −0.088 | NS |
3 | Clay | 0.228 | NS | −0.149 | NS | −0.198 | NS |
4. Soil nutrients | |||||||
1 | OM | −0.240 | NS | 0.008 | NS | 0.124 | NS |
2 | Phosphorus | 0.136 | NS | 0.017 | NS | 0.128 | NS |
S No. | Species Name | Group I (A) | Group I (B) | Group II | Group III | Group IV |
---|---|---|---|---|---|---|
1 | Adiantum venustum D.Don | 22.5 ± 3.2 | 27.5 ± 2.5 | * | 30 | 45 |
2 | Amaranthus tricolor L. | 25 ± 5 | 20 | * | 33.3 ± 4.4 | 25 |
3 | Ammannia baccifera L. | 27.5 ± 2.5 | * | 30 ± 5 | 32.5 ± 7.5 | * |
4 | Anaphalis scopulosa Boriss | * | 33.3 ± 9.3 | 31.7 ± 8.3 | * | 47.5 ± 2.5 |
5 | Asplenium ceterach L. | 37.5 ± 3.10 | 31.25 ± 2.3 | 30 ± 2.04 | 36 ± 1.25 | 35 ± 5 |
6 | Berberis lycium L. | * | 40 | * | * | * |
7 | Bistorta amplixiculis D.Don | * | * | 40 ± 5 | 28.7 ± 4.3 | 30 ± 2.9 |
8 | Cannabis sativa L. | 21.7 ± 1.7 | 27.5 ± 7.5 | 33.7 ± 3.15 | * | 37.5 ± 2.5 |
9 | Cenchrus penusaliformis L. | 30 | 28.33 ± 8.3 | 27.5 ± 7.5 | 30 ± 3.54 | 20 |
10 | Cicota virosa L. | 35 | * | * | 30 | * |
11 | Conyza bonarensis L. | 33.3 ± 6.01 | 20 ± 5 | 22.5 ± 7.5 | 20 | * |
12 | Corbichonia decumbers (Forssk.). | 30 | 35 ± 5 | 22.5 ± 2.5 | * | 20 |
13 | Digiteria sanguinalis L. | 40 | 25 | 40 | 17.5 ± 2.5 | 27.5 ± 7.5 |
14 | Droypteris stewartii L. | 20 | * | 31.7 ± 4.4 | * | 15 |
15 | Fragaria nubicola L. | 40 | 40 ± 10 | 30 ± 5 | 45 ± 10 | 25± 10 |
16 | Fragaria orientalis Los. | 22.5 ± 12.5 | 25 | 30 ± 5 | 26.7 ± 8.3 | 36.7 ± 1.7 |
17 | Hedera nepalensis K.Koch | 33.3 ± 2.1 | 28.7 ± 5.15 | 32 ± 4.36 | * | 29 ± 3.32 |
18 | Impatiens braclycenera L. | 33.3 ± 8.8 | 36.6 ± 1.7 | * | 32.5 ± 12.5 | * |
19 | Indigofera gerardiana Wall. | 28.3 ± 2.5 | * | * | * | 25 |
20 | Launaea procumbens (Roxb.) | 20 | 15 | 26.7 ± 4.4 | * | 15 |
21 | Morchella esculenta L. | * | 32.5 ± 2.5 | 23.3 ± 1.7 | * | * |
22 | Ocimum bacilicum L. | 31.25 ± 4.7 | 17.5 ± 2.5 | 25 | * | 30 |
23 | Panicum miliaceum L. | 26.7 ± 2.8 | 32.5 ± 1.7 | * | 27.5 ± 2.5 | 31.7 ± 3.3 |
24 | Persicaria punctata (Elliott.) | 25 ± 5 | 31.7 ± 3.3 | * | * | * |
25 | Pinus wallichiana seedling | 40 ± 5 | 30 ± 5 | * | * | 30 |
26 | Pteridium aquilinium L. | 23.5 ± 3.1 | * | 33.7 ± 5.5 | 25 | 25 |
27 | Phragmites karka (Retz.) | 33.7 ± 2.4 | * | 50 | * | * |
28 | Polygonatum multiflorium L. | 22.5 ± 4.8 | 45 | 35 | * | * |
29 | Rubus fruticosus L. | 23.3 ± 1.7 | 26.7 ± 1.7 | 30 | 25 | 27.5 ± 2.5 |
30 | Rumex hastatus D.Don | * | * | 40 | 28.3 ±6.01 | 32.5 ± 7.5 |
31 | Solanum nigrum L. | 28.3 ± 4.4 | 35 ± 20 | 20 | 32.5 ± 7.5 | 25 |
32 | Tagetis minuta L. | 26.7 ± 6.01 | 27.5 ± 5.2 | 55 | * | 27.5 ± 12.5 |
33 | Urtica dioica. L. | 15 | 30 | 21.7 ± 3.3 | * | 23.3 ± 3.3 |
34 | Verbascum Thapsus L. | 40 | * | 25 | 26.2 ± 8.3 | * |
Variables | Group 1 | Group | Group | Group | |
---|---|---|---|---|---|
(A) | (B) | 2 | 3 | 4 | |
1. Topographic variables | |||||
Elevation | 2062.73 ± 17 | 2249.5 ± 28.9 | 2645.75 ± 37.01 | 1509.83 ± 52 | 1792.14 ± 19 |
Slope | 38.18 ± 2.6 | 36.13 ± 2.5 | 36.25 ± 4.6 | 34.17 ± 2.01 | 40.71 ± 2.5 |
2. Edaphic variables | |||||
MWHC | 11.49 ± 0.6 | 10.38 ± 1.3 | 14.24 ± 1.24 | 11.68 ± 1.7 | 12.86 ± 0.7 |
Salinity | 0.05 ± 0.0 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.07 ± 0.01 |
OM | 0.5 ± 0.04 | 0.58 ± 0.09 | 0.49 ± 0.07 | 0.55 ± 0.2 | 0.71 ± 0.15 |
3. Soil Texture | |||||
Sand | 51.33 ± 3.5 | 51.5 ± 3.6 | 48.78 ± 2.7 | 44.73 ± 5.9 | 51.34 ± 3.9 |
Silt | 37.2 ± 3.8 | 37.23 ± 3.5 | 35.3 ± 2.6 | 40.93 ± 5.3 | 32.57 ± 3.2 |
Clay | 11.47 ± 2.2 | 11.28 ± 1.2 | 15.93 ± 3.1 | 14.33 ± 3.3 | 16.09 ± 3.4 |
Source of Variance | SS | Df | MS | F | p-Level |
---|---|---|---|---|---|
1. Topographic variables | |||||
1 Elevation | |||||
Between Groups | 532,2642 | 4 | 1,330,661 | 185.14 | p < 0.001 |
Within Groups | 251,553.4 | 35 | 7187.239 | ||
Total | 5,574,196 | 39 | |||
2 Slope | |||||
Between Groups | 168.701732 | 4 | 42.1754329 | 0.545 | Nonsignificant |
Within Groups | 2710.27327 | 35 | 77.4363791 | ||
Total | 2878.975 | 39 | |||
2. Edaphic variables | |||||
1 Water holding capacity | |||||
Between Groups | 69.5759929 | 4 | 17.394 | 1.847 | Nonsignificant |
Within Groups | 329.6106046 | 35 | 9.417446 | ||
Total | 399.1865975 | 39 | |||
2 Salinity | |||||
Between Groups | 0.002504286 | 4 | 0.000626 | 0.854 | Nonsignificant |
Within Groups | 0.025673214 | 35 | 0.000734 | ||
Total | 0.0281775 | 39 | |||
3 Organic Matter | |||||
Between Groups | 0.250428571 | 4 | 0.062607 | 0.854 | Nonsignificant |
Within Groups | 2.567321429 | 35 | 0.073352 | ||
Total | 2.81775 | 39 | |||
3. Soil Texture | |||||
1 Sand | |||||
Between Groups | 227.7037056 | 4 | 56.92593 | 0.477 | Nonsignificant |
Within Groups | 4175.367294 | 35 | 119.2962 | ||
Total | 4403.071 | 39 | |||
2 Silt | |||||
Between Groups | 246.852381 | 4 | 61.7131 | 0.545 | Nonsignificant |
Within Groups | 3961.642619 | 35 | 113.1898 | ||
Total | 4208.495 | 39 | |||
3 Clay | |||||
Between Groups | 182.6822771 | 4 | 45.67057 | 0.814 | Nonsignificant |
Within Groups | 1963.733723 | 35 | 56.10668 | ||
Total | 2146.416 | 39 |
Axis 1 | Axis 2 | ||||
---|---|---|---|---|---|
S. No | Variables | R | Prob. Level | R | Prob. Level |
1. Topographic variables | |||||
1 | Elevation | 0.7801 | p < 0.001 | 0.9417 | p < 0.001 |
2 | Slope | −0.1411 | NS | −0.0221 | NS |
2. Edaphic variables | |||||
3 | WHC | 0.1517 | NS | 0.1502 | NS |
4 | Salinity | −0.1718 | NS | −0.1645 | NS |
5 | OM | −0.1718 | NS | −0.1645 | NS |
3. Soil Texture | |||||
6 | Sand | −0.1661 | NS | 0.2367 | NS |
7 | Silt | 0.0350 | NS | −0.1366 | NS |
8 | Clay | 0.1889 | NS | −0.1478 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, J.; Shaikh, N.; Ahmed, M.; Zaman, W.; Khan, A.; Ayaz, A.; El-Ansary, D.O.; Sharma, H.; Elansary, H.O.; Park, S. Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach. Agronomy 2022, 12, 1723. https://doi.org/10.3390/agronomy12071723
Iqbal J, Shaikh N, Ahmed M, Zaman W, Khan A, Ayaz A, El-Ansary DO, Sharma H, Elansary HO, Park S. Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach. Agronomy. 2022; 12(7):1723. https://doi.org/10.3390/agronomy12071723
Chicago/Turabian StyleIqbal, Javed, Nasiruddin Shaikh, Moinuddin Ahmed, Wajid Zaman, Adam Khan, Asma Ayaz, Diaa O. El-Ansary, Hanoor Sharma, Hosam O. Elansary, and SeonJoo Park. 2022. "Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach" Agronomy 12, no. 7: 1723. https://doi.org/10.3390/agronomy12071723
APA StyleIqbal, J., Shaikh, N., Ahmed, M., Zaman, W., Khan, A., Ayaz, A., El-Ansary, D. O., Sharma, H., Elansary, H. O., & Park, S. (2022). Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach. Agronomy, 12(7), 1723. https://doi.org/10.3390/agronomy12071723