Assessment of Carrot Production System Using Biologically Active Compounds and Metabolomic Fingerprints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Farming Conditions
2.3. Chemical Analyses
2.3.1. AA Analysis
2.3.2. Carotene Analysis
2.3.3. Metabolomic Fingerprinting
2.3.4. Chemometric Analysis
3. Results and Discussion
3.1. Content of AA and Carotenoids
3.2. Metabolomic Fingerprinting
Identification of Important Ions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Němcová, V.; Buchtová, I. Situational and Development Review: Vegetables; Ministry of Agriculture of the Czech Republic; Institute of Agricultural Economics and Information: Prague, Czech Republic, 2021; Available online: https://eagri.cz/public/web/file/692977/Zelenina_2021_web.pdf (accessed on 29 March 2022).
- Seljasen, R.; Kristensen, H.L.; Lauridsen, C.; Wyss, G.S.; Kretzschmar, U.; Birlouez-Aragone, I.; Kahl, J. Quality of carrots as affected by pre- and postharvest factors and processing. J. Sci. Food Agric. 2013, 93, 2611–2626. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Cawood, M.; Iqbal, Q.; Arino, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and their health benefits—Review article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.M.; Jorgensen, H.; Lauridsen, C. Comparison between conventional and organic agriculture in terms of nutritional quality of food—A critical review. CAB Rev. 2013, 8, 1–13. [Google Scholar] [CrossRef]
- Baudry, J.; Peneau, S.; Alles, B.; Touvier, M.; Hercberg, S.; Galan, P.; Amiot, M.-J.; Lairon, D.; Mejean, C. Kesse-Guyot, E. Food choice motives when purchasing in organic and conventional consumer clusters: Focus on sustainable concerns (The NutriNet-Santé Cohort Study). Nutrients 2017, 9, 88. [Google Scholar] [CrossRef]
- Denver, S.; Jensen, J.D.; Olsen, S.B.; Christensen, T. Consumer preferences for ‘localness’ and organic food production. J. Food Prod. Mark. 2019, 25, 668–689. [Google Scholar] [CrossRef]
- Oplanič, M.; Ban, D.; Boškovič, D.; Par, V.; Žnidarič, D. Ecological vegetable production and tourism—Case study for Croatia. J. Food Agric. Environ. 2009, 7, 799–803. [Google Scholar]
- Rembialkowska, E. The nutritive and sensory quality of carrots and white cabbage from organic and conventional farms. In IFOAM 2000—The World Grows Organic 2000, Proceedings of 13th International IFOAM Scientific Conference, Basel, Switzerland, 28–31 August 2000; Alfoldi, T., Lockeretz, W., Niggli, U., Eds.; Vdf Hochschulverlag: Zürich, Switzerland; IOS 2000: Amsterdam, The Netherlands, 2000; p. 297. [Google Scholar]
- Razzaq, M.; Akram, N.A.; Ashraf, M.; Naz, H.; Al-Qurainy, F. Interactive effect of drought and nitrogen on growth, some key physiological attributes and oxidative defense system in carrot (Daucus carota L.) plants. Sci. Hortic. 2017, 225, 373–379. [Google Scholar] [CrossRef]
- Soltoft, M.; Nielsen, J.; Lauren, K.H.; Husted, S.; Halekoh, U.; Knuthsen, P. Effects of organic and conventional growth systems on the content of flavonoids in onions and phenolic acids in carrots and potatoes. J. Agric. Food Chem. 2010, 58, 10323–10329. [Google Scholar] [CrossRef]
- Soltoft, M.; Bysted, A.; Madsen, K.H.; Mark, A.B.; Bugel, S.G.; Nielsen, J.; Knuthsen, P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J. Sci. Food Agric. 2011, 91, 767–776. [Google Scholar] [CrossRef]
- Chan, G.L. Integrated farming system. Landsc. Plan. 1985, 12, 257–266. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Nicolle, C.; Simon, G.; Rock, E.; Amouroux, P.; Remesy, C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J. Soc. Hortic. Sci. 2004, 129, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Al-Farsi, M.; Quantick, P.; Shahidi, F.; Wiktorowicz, R. Effect of chill storage and modified atmosphere packaging (MAP) on antioxidant activity, anthocyanins, carotenoids, phenolics and sensory quality of ready-to-eat shredded orange and purple carrots. Food Chem. 2005, 89, 69–76. [Google Scholar] [CrossRef]
- Smoleň, S.; Sady, W. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Sci. Hortic. 2009, 120, 315–324. [Google Scholar] [CrossRef]
- Mustafa, A.; Trevino, L.M.; Turner, C. Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules 2012, 17, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faisal, N.A.; Chatha, S.A.S.; Hussain, A.I.; Ikram, M.; Bukhari, S.A. Liaison of phenolic acids and biological activity of escalating cultivars of Daucus carota. Int. J. Food Prop. 2017, 20, 2782–2792. [Google Scholar] [CrossRef] [Green Version]
- Pace, B.; Capotorto, I.; Cefola, M.; Minasi, P.; Montemurro, N.; Carbone, V. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J. Food Compos. Anal. 2020, 86, 103363. [Google Scholar] [CrossRef]
- Baranski, R.; Allender, C.; Klimek-Chodacka, M. Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food. Res. Int. 2012, 47, 182–187. [Google Scholar] [CrossRef]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Mozafar, A. Nitrogen fertilizers and the amount of vitamins in plants: A review. J. Plant Nutr. 1994, 16, 2479–2506. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S. Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. J. Plant. Nutr. 2020, 43, 1534–1554. [Google Scholar] [CrossRef]
- Boskovic-Rakocevic, L.; Pavlovic, R.; Zdravkovic, J.; Zdravkovic, M.; Pavlovic, N.; Djuric, M. Effect of nitrogen fertilization on carrot quality. Afr. J. Agric. Res. 2012, 7, 2884–2900. [Google Scholar] [CrossRef] [Green Version]
- Soltoft, M.; Eriksen, M.R.; Träger, A.W.B.; Nielsen, J.; Laursen, K.H.; Husted, S.; Halekoh, U.; Knuthsen, P. Comparison of polyacetylene content in organically and conventionally grown carrots using a fast ultrasonic liquid extraction method. J. Agric. Food Chem. 2010, 58, 7673–7680. [Google Scholar] [CrossRef] [PubMed]
- Schmiech, L.; Carole, L.; Witulski, B.; Hofmann, T. Structure determination of bisacetylenic oxylipins in carrots (Daucus carota L.) and enantioselective synthesis of falcarindiol. J. Agric. Food Chem. 2009, 57, 11030–11040. [Google Scholar] [CrossRef] [PubMed]
- Dawid, C.; Dunemann, F.; Schwab, W.; Nothnagel, T.; Hofmann, T. Bioactive C 17-Polyacetylenes in carrots (Daucus carota L.): Current knowledge and future perspectives. J. Agric. Food Chem. 2015, 63, 9211–9222. [Google Scholar] [CrossRef]
- Krähmer, A.; Böttcher, C.; Rode, A.; Nothnagel, T.; Schulz, H. Quantifying biochemical quality parameters in carrots (Daucus carota L.)—FT-Raman spectroscopy as efficient tool for rapid metabolite profiling. Food Chem. 2016, 212, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Kidmose, U.; Hansen, S.L.; Christensen, L.P.; Edelenbos, M.; Larsen, E.; Norbaek, R. Effects of genotype, root size, storage, and processing on bioactive compoundsin organically grown carrots (Daucus carota L.). J. Food Sci. 2004, 69, S388–S394. [Google Scholar] [CrossRef]
- Metzger, B.T.; Barnes, D.M.; Reed, J.D. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J. Agric. Food Chem. 2008, 56, 3554–3560. [Google Scholar] [CrossRef]
- Kjellenberg, L.; Johansson, E.; Gustavsson, K.-E.; Granstedt, A.; Olsson, M.E. Correlations between polyacetylene concentrations in carrot (Daucus carota L.) and various soil parameters. Foods 2016, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zduńska, K.; Kolodziejczak, A.D.A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, J.; Rahman, M.; Wan, A.; Punja, Z.K. Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann. Appl. Biol. 2009, 155, 71–80. [Google Scholar] [CrossRef]
- Lecomte, M.; Berruyer, R.; Hamama, L.; Boedo, C.; Hudhomme, P.; Bersihand, S.; Arul, J.; N’Guyen, G.; Gatto, J.; Guilet, D.; et al. Inhibitory effects of the carrot metabolites 6-methoxymellein and falcarindiol on development of the fungal leaf blight pathogen Alternaria dauci. Physiol. Mol. Plant Pathol. 2012, 80, 58–67. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Zhang, X.; Zu, Y.; Yang, Y.; Liu, W.; Xu, Z.; Gao, H.; Sun, X.; Jiang, X.; et al. Current advances in naturally occurring caffeoylquinic acids: Structure, bioactivity, and synthesis. J. Agric. Food Chem. 2020, 68, 10489–10516. [Google Scholar] [CrossRef]
- Mercier, J.; Roussel, D.; Charles, M.T.; Arul, J. Systemic and local responses associated with UV and pathogen induced resistance to Botrytis cinerea in stored carrot. Phytopathology 2000, 90, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Mattheis, J.P.; Roberts, R.G. Biosynthesis of phytoalexin in carrot root requires ethylene action. Physiol. Plant. 2000, 110, 450–454. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; Penalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int. 2014, 60, 95–107. [Google Scholar] [CrossRef]
- Röhlig, R.M.; Engel, K.H. Influence of the input system (conventional versus organic farming) on metabolite profiles of maize (Zea mays) kernels. J. Agric. Food Chem. 2010, 58, 3022–3030. [Google Scholar] [CrossRef]
- Chen, P.; Harnly, J.M.; Lester, G.E. Flow injection mass spectral fingerprints demonstrate Chemical Differences in Rio Red Grapefruit with Respect to Year, Harvest Time, and Conventional versus Organic Farming. J. Agric. Food Chem. 2010, 58, 4545–4553. [Google Scholar] [CrossRef] [Green Version]
- Novotna, H.; Kmiecik, O.; Galazka, M.; Krtkova, V.; Hurajova, A.; Schulzova, V.; Hallmann, E.; Rembialkowska, E.; Hajslova, J. Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming. Food Addit. Contam. A—Chem. Anal. Risk Assess. 2012, 29, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Bonte, A.; Neuweger, H.; Goesmann, A.; Thonar, C.; Mader, P.; Langenkamper, G.; Niehaus, K. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. J. Sci. Food Agric. 2014, 94, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Mie, A.; Laursen, K.H.; Aberg, K.M.; Forshed, J.; Lindahl, A.; Thorup-Kristensen, K.; Olsson, M.; Knuthsen, P.; Larsen, E.H.; Husted, S. Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Anal. Bioanal. Chem. 2014, 406, 2885–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, N.; Bonte, A.; Albaum, S.P.; Mader, P.; Messmer, M.; Goesmann, A.; Niehaus, K.; Langenkamper, G.; Nattkemper, T.W. Learning to classify organic and conventional wheat—A machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Front. Bioeng. Biotechnol. 2015, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef]
- Lundegardh, B.; Botek, P.; Schulzova, V.; Hajslova, J.; Stromberg, A.; Andersson, C. Impact of different green manures on the content of S-alk(en)yl-L-cysteine sulfoxides and L-ascorbic acid in leek (Allium porrum). J. Agric. Food Chem. 2008, 56, 2102–2111. [Google Scholar] [CrossRef]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Koudela MSchulzova, V.; Krmela, A.; Chmelarova, H.; Hajslova, J.; Novotny, C. Effect of agroecological conditions on biologically active compounds and metabolome of carrot. Cells 2021, 10, 784. [Google Scholar] [CrossRef]
- Howard, L.A.; Wong, A.D.; Perry, A.K.; Klein, B.P. Beta-carotene and ascorbic acid retention in fresh and processed vegetables. J. Food Sci. 1999, 64, 929–936. [Google Scholar] [CrossRef]
- Gamboa-Santos, J.; Soria, A.C.; Perez-Mateos, M.; Carrasco, A.; Montilla, A.; Villamiel, A. Vitamin C content and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chem. 2013, 136, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Lisiewska, Z.; Kmiecik, W. Effects of level of nitrogen fertilizer, processing conditions and period of storage of frozen broccoli and cauliflower on vitamin C retention. Food Chem. 1996, 57, 267–270. [Google Scholar] [CrossRef]
- Cserni, I.; Prohaszka, K.; Patocs, I. The effect of different N-doses on changes in the nitrate-sugar and carotene contents of carrot. Acta Agric. Hung. 1989, 38, 341–348. [Google Scholar]
- Rožek, S.; Sady, W.; Kasprzyk, A. Wplyw pozakorzeniowego dokarmiania roslin na wielkošč I jakošč plonu marchwi. Zesz. Nauk. Ak. Rol. W Krakowie 2000, 71, 159–162. [Google Scholar]
- Czepa, A.; Hoffman, T. Structural and Sensory Characterization of Compounds Contributing to the Bitter Off-Taste of Carrots (Daucus carota L.) and Carrot Puree. J. Agric. Food Chem. 2003, 51, 3865–3873. [Google Scholar] [CrossRef]
- Yang, R.-L.; Yan, Z.-H.; Lu, Y. Cytotoxic Phenylpropanoids from Carrot. J. Agric. Food Chem. 2008, 56, 3024–3027. [Google Scholar] [CrossRef]
- Bollina, V.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol. 2011, 77, 355–370. [Google Scholar] [CrossRef]
- Hinds, L.; Kenny, O.; Hossain, M.B.; Walsh, D.; Sheehy, E.; Evans, P.; Gaffney, M.; Rai, D.K. Evaluating the Antibacterial Properties of Polyacetylene and Glucosinolate Compounds with Further Identification of Their Presence within Various Carrot (Daucus carota) and Broccoli (Brassica oleracea) Cultivars Using High-Performance Liquid Chromatography with a Diode Array Detector and Ultra Performance Liquid Chromatography−Tandem Mass Spectrometry Analyses. J. Agric. Food Chem. 2017, 65, 7186–7191. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Chy, N.U.; Kamal, A.T.M.M.; Azad, O.K.; Paul, A.; Uddin, S.B.; Barlow, J.W.; Faruque, M.O.; Park, C.H.; Cho, D.H. Investigation of the biological activities and characterization of bioactive constituents of Opiorrhiza rugose var. prostrata (D.Don) & mondal leaves through in vivo, in vitro and in silico approaches. Molecules 2019, 24, 1367. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-H.; Lee, W.-J.; Cheng, T.-C.; Chang, H.-W.; Chen, L.-C.; Chen, C.-C.; Lien, H.-M.; Lin, T.-N.; Ho, Y.-S. Study of the antitumor mechanisms of apiole derivatives (AP-02) from Petroselinum crispum through induction of G0/G1 phase cell cycle arrest in human COLO 205 cancer cells. BMC Complement Altern Med. 2019, 19, 188. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Kozachok, S.; Kolodziejczyk-Czepas, J.; Marchyshyn, S.; Wojtanowski, K.K.; Zgórka, G.; Oleszek, W. Comparison of Phenolic Metabolites in Purified Extracts of Three Wild-Growing Herniaria L. Species and Their Antioxidant and Anti-Inflammatory Activities In Vitro. Molecules 2022, 27, 530. [Google Scholar] [CrossRef] [PubMed]
- Gampe, N.; Darcsi, A.; Nagyné Nedves, A.; Boldizsár, I.; Kursinszki, L.; Béni, S. Phytochemical analysis of Ononis arvensis L. by liquid chromatography coupled with mass spectrometry. J. Mass Spectrom. 2019, 54, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, W.; Moussa, S.-A.; MNOttoni, M.; Dubois-Laurent, C.; Huet, S.; Aubert, C.; Desnoues, E.; Navez, B.; Cottet, V.; Chalot, G.; et al. Multisite evaluation of phenotypic plasticity for specialized metabolites, some involved in carrot quality and disease resistance. PLoS ONE 2021, 16, e0249613. [Google Scholar] [CrossRef] [PubMed]
Extract (Ionization) | Farming System (Organic vs. Integrated vs. Conventional) | Variety (Cortina vs. Afalon) | Seed Density 6 × 105 vs. 9 × 105 Seeds.ha−1 |
---|---|---|---|
MeOH (+) | R2(X) = 0.97 Q2 = 0.92 | R2(X) = 0.99 Q2 = 0.99 | R2(X) = 0.98 Q2 = 0.88 |
MeOH (−) | R2(X) = 0.82 Q2 = 0.54 | R2(X) = 0.99 Q2 = 0.98 | R2(X) = 0.97 Q2 = 0.92 |
EtOAc (+) | R2(X) = 0.98 Q2 = 0.85 | R2(X) = 0.99 Q2 = 0.96 | R2(X) = 0.98 Q2 = 0.92 |
EtOAc (−) | R2(X) = 0.97 Q2 = 0.87 | R2(X) = 0.99 Q2 = 0.96 | R2(X) = 0.97 Q2 = 0.89 |
MeOH extracts in positive ionization mode | ||||||
RT [min] | Formula | Identification | Δppm | [M + H]+ | Fragments Obtained | Importance for Group |
0.61 | C12H22O11 | Sucrose | −1.17 | 365.1054 [M + Na]+ | 203.0509 | No clear trend |
1.64 | C12H16O8 | Glucosylmaltol | 0.64 | 311.0740 [M + Na]+ | 127.0391 | HD |
2.17 | C18H24O12 | Licoagroside B | −0.70 −1.20 | 433.1343 455.1160 [M + Na]+ | 127.0390 | Cortina, Conv |
4.49 | C12H14O4 | Apiole | 2.24 | 223.0965 | 205.0860 | Int, Conv |
5.33 | C11H12O4 | 6-methoxymellein | 1.96 | 209.0814 | 191.0704; 181.0860; 163.0759; 135.0806; 103.0554 | Afalon, Int |
5.77 | C18H34O5 | Trihydroxy-octadecenoic acid | −1.11 | 353.2300 [M + Na]+ | 213.1474 | Afalon |
7.63 | C21H26O7 | Laserine/epilaserine | −1.75 | 413.1569 [M + Na]+ | 291.1228 | Int, HD |
7.75 | C21H26O7 | Laserine/epilaserine | −1.75 | 413.1569 [M + Na]+ | 291.1228 | Cortina |
7.96 | C25H38O5 | Non-identified | −1.80 | 441.2609 [M + Na]+ | 341.1750; 283.1671; 161.1324 | Conv, Afalon |
MeOH extracts in negative ionization mode | ||||||
RT [min] | Formula | Identification | Δppm | [M − H]− | Fragments obtained | Importance for group |
0.54 | C6H8O7 | Citric acid | −0.93 | 191.0185 | 111.0074 | Afalon |
0.60 | C5H10N2O3 | Glutamine | −1.50 | 145.0605 | LD | |
0.63 | C12H22O11 | Sucrose | −1.17 | 341.1081 | 179.0544 | No clear trend |
1.43 | C16H18O9 | Chlorogenic acid | −1.86 | 353.0866 | 191.0551 | Afalon |
2.17 | C18H24O12 | Licoagroside B | 2.67 | 431.1201 | 369.1672; 329.0829; 269.0706; 125.0233 | Cortina, Conv |
3.93 | C14H26O5 | hydroxytetradecanedioic acid | 0.37 | 273.1702 | 255.1592; 155.0700 | Afalon |
4.22 | C10H10O4 | Ferulic acid | 0.08 | 193.0494 | 133.0269 | Cortina |
5.41 | C18H32O5 | Trihydroxyoctadecedienoic acid | −2.29 | 327.2164 | HD | |
5.75 | C12H22O4 | Dodecanedioic acid | −6.48 | 229.1425 | 211.1332 | Afalon |
5.77 | C18H34O5 | Trihydroxy-octadecenoic acid | −1.82 | 329.2322 | Afalon, HD | |
8.68 | C18H32O2 | Linoleic acid | 2.13 | 279.2330 | Cortina |
EtAOc extracts in positive ionization mode | ||||||
RT [min] | Formula | Identification | Δppm | [M + H]+ | Fragments Obtained | Importance for group |
4.41 | C12H14O4 | Apiole | 2.24 | 223.0965 | 190.0622; 177.0911; 163.0791; 147.0437; 133.0670 | Cortina |
5.72 | C11H10O4 | Eugenin | −2.58 | 207.0652 | 195.1379; 107.0852 | Afalon, Int, LD |
7.34 | C15H20O2 | Eremofrullanolide | −1.72 | 233.1540 | 217.1579; 159.1635; 119.0848 | Cortina |
7.62 | C18H30O2 | Linolenic acid | −2.15 | 279.2320 | 191.0694; 161.1319 | Int |
7.63 | C21H26O7 | Laserine/epilaserine | −1.75 | 413.1569 [M + Na]+ | 291.1239; 259.1665; 159.1170 | Int |
8.12 | C17H24O2 | Falcarindiol | −0.76 | 261.1852 | No clear trend | |
8.70 | C17H24O | Falcarinol | −1.63 | 245.1901 | Cortina | |
EtAOc extracts in negative ionization mode | ||||||
RT [min] | Formula | Identification | Δppm | [M − H]− | Fragments obtained | Importance for group |
5.74 | C18H34O5 | Trihydroxyoctadecenonoic acid | 0.03 | 329.2328 | 229.1432; 211.1326; 183.1368 | Afalon, Org, HD |
7.60 | C18H32O3 | Hydroxyoctadecadienoic acid | −0.23 | 295.2277 | 277.2177; 195.1385 | Int, Afalon |
8.25 | C16H32O3 | Hydroxypalmitic acid | −3.68 | 271.2267 | 225.2209; 223.2040 | Cortina, Conv, HD |
8.69 | C18H32O2 | Linoleic acid | −5.01 | 279.2316 | Cortina |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulzova, V.; Koudela, M.; Chmelarova, H.; Hajslova, J.; Novotny, C. Assessment of Carrot Production System Using Biologically Active Compounds and Metabolomic Fingerprints. Agronomy 2022, 12, 1770. https://doi.org/10.3390/agronomy12081770
Schulzova V, Koudela M, Chmelarova H, Hajslova J, Novotny C. Assessment of Carrot Production System Using Biologically Active Compounds and Metabolomic Fingerprints. Agronomy. 2022; 12(8):1770. https://doi.org/10.3390/agronomy12081770
Chicago/Turabian StyleSchulzova, Vera, Martin Koudela, Hana Chmelarova, Jana Hajslova, and Cenek Novotny. 2022. "Assessment of Carrot Production System Using Biologically Active Compounds and Metabolomic Fingerprints" Agronomy 12, no. 8: 1770. https://doi.org/10.3390/agronomy12081770
APA StyleSchulzova, V., Koudela, M., Chmelarova, H., Hajslova, J., & Novotny, C. (2022). Assessment of Carrot Production System Using Biologically Active Compounds and Metabolomic Fingerprints. Agronomy, 12(8), 1770. https://doi.org/10.3390/agronomy12081770