Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Handling
2.2. Chemical Parameters
2.3. Thermal Treatment
2.4. Statistical Evaluation
3. Results and Discussion
3.1. Acids
3.2. Thermal Treatment—Sugars
3.3. Thermal Treatment—Acids
3.4. L-Ascorbic Acid Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, D.R.; Maikhuri, K.; Misra, S.; Rao, K.S. Endorsing the declining indigenous ethnobotanical knowledge system of Seabuckthorn in Central Himalaya. Indian J. Ethnopharmacol. 2020, 127, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, N.K.; Kumar, R.; Mandotra, S.K.; Meena, R.N.; Siddiqui, M.S.; Sawhney, R.C.; Gupta, A. Safety and wound healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in experimental rats. Food Chem. Toxicol. 2009, 47, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Franquesa, A.; Saldo, J.; Juan, B. Food Production. Processing Nutr. 2020, 2, 1–17. [Google Scholar]
- Wani, T.A.; Wani, S.M.; Ahmad, M.; Ahmad, M.; Gani, A.; Masoodi, F.A. Influence of processing on physicochemical and antioxidant properties of apricot (Prunus armeniaca L. variety Narmo). Cogent Food Agric. 2016, 2, 1–9. [Google Scholar]
- Ren, R.; Li, N.; Su, C.; Wang, Y.; Zhao, X.; Yang, L.; Li, Y.; Zhang, B.; Chen, J.; Ma, X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 2020, 10, 44654. [Google Scholar] [CrossRef]
- Leskinen, H.M.; Suomela, J.P.; Yang, B.; Kallio, H.P. Regioisomer compositions of vaccenic and oleic acid containing triacylglycerols in sea buckthorn (Hippophae rhamnoides) pulp oils: Influence of origin and weather conditions. J. Agric. Food Chem. 2010, 58, 537–545. [Google Scholar] [CrossRef]
- Pop, R.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Isrigova, T.A.; Salmanov, M.M.; Isrigova, V.S.; Taibova, D.S.; Sannikova, E.V. Development of a technology for the production of a functional food based on plant raw materials. In Proceedings of the E3S Web of Conferences Cep. International Scientific and Practical Conference “Development of the Agro-lndustrial Complex in the Context of Robotization and Digitalization of Production in Russia and Abroad”, DAIC, Yekaterinburg, Russia, 15–16 October 2020. [Google Scholar]
- Mukailov, M.D.; Ulchibekova, N.A.; Isrigova, T.A.; Akhmedov, M.E.; Selimova, U.A. Functional foods produced from strawberries. Int. J. Adv. Sci. Technol. 2020, 9, 03003. [Google Scholar]
- Titorenko, K.V.; Zhichkin, K.A. Innovative approaches to breeding in the dairy industry. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032003. [Google Scholar] [CrossRef]
- Tiitinen, K.; Vahvaselka, M.; Laakso, S.; Kallio, H. Malolactic fermentation in four varieties of sea buckthorn (Hippophae rhamnoides L.). Eur. Food Res. Technol. 2007, 224, 725–732. [Google Scholar] [CrossRef]
- Walczak-Zeidler, K.; Feliczak-Guzik, A.; Nowak, I. Oleje Roslinne Stosowane Jako Surowce Kosmetyczne-Leksykon; Wydawnictwo Cursiva: Kostrzyn, Poland, 2012; ISBN 9788362108206. [Google Scholar]
- Stobdan, T.; Korekar, G.; Srivastava, R.B. Nutritional attributes and health application of seabuckthorn (Hippophae rhamnoides L.) a review. Current Nutr. Food Sci. 2013, 9, 151–165. [Google Scholar] [CrossRef]
- Verbeyst, L.; Bogaerts, R.; Plancken, I.; Hendrickx, M.; Loe, A. Modeling of vitamin C degradation during thermal and high-pressure treatments of red fruit. Food Bioprocess Technol. 2013, 6, 1015–1023. [Google Scholar] [CrossRef]
- Gutzeit, D.; Baleanu, G.; Winterhalter, P.; Jerz, G. Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: A kinetic study on the storage stability and the determination of processing effects. Food Sci. 2008, 73, C615–C620. [Google Scholar] [CrossRef]
- Manea, I.; Buruleanu, L. Mathematical model for the evaluation of the sea-buckthorn juice preservation. Ovidius Univ. Ann. Chem. 2009, 20, 83–86. [Google Scholar]
- Sampedro, F.; Geveke, D.J.; Fan, X.; Zhang, H.Q. Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice–milk based beverage. Innov. Food Sci. Emerg. Technol. 2009, 10, 463–469. [Google Scholar] [CrossRef]
- Alexandrakis, Z.; Kyriakopoulou, K.; Katsaros, G.; Krokida, M.; Taoukis, P. Selection of Process Conditions for High Pressure Pasteurization of Sea Buckthorn Juice Retaining High Antioxidant Activity. Food Bioprocess Technol. 2014, 7, 3226–3234. [Google Scholar] [CrossRef]
- Bal, L.M.; Meda, V.; Naik, S.N.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for neutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Barkhuu, B.; Lodonjav, M.; Ganzorig, O.; Tumurtogoo, N. The Physicochemical Composition of Sea Buckthorn (Hippophae rhamnoides L.) Oil and Its Treatment Characteristics. In Proceedings of the 5th International Conference on Chemical Investigation and Utilization of Natural Resource (ICCIUNR-2021), Ulaanbaatar, Mongolia, 4–15 October 2021; Atlantis Press: Dordrecht, The Netherlands, 2021; pp. 43–51. [Google Scholar]
- Mezey, J.; Mezeyová, I. Changes in the levels of selected organic acids and sugars in apple juice after cold storage. Czech J. Food Sci. 2018, 36, 175–180. [Google Scholar]
- Hegedűs, O.; Szarka, K.; Hegedűsová, A.; Gódány, Z.; Šlosár, M.; Nechifor, A.C.; Tonk, S. Validation and Quality Assurance of Ascorbic Acid Determination in Agricultural Products. Rev. De Chim. 2019, 70, 2308–2314. [Google Scholar] [CrossRef]
- Kuhkheil, A.; Naghdi Badi, H.; Mehrafarin, A.; Abdossi, V. Chemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of central Alborz Mountains in Iran. Res. J. Pharmacogn. RJP 2017, 4, 1–12. [Google Scholar]
- Isrigova, T.A.; Selimova, U.A.; Ganakaev, A.I.; Taibova, D.S.; Sannikova, E.Y. Nutritional value of fruit and berry raw material for the production of functional food. IOP Conf. Series Earth Environ. Sci. 2022, 979, 012073. [Google Scholar] [CrossRef]
- Ilhan, G.; Gundogdu, M.; Karlovi’c, K.; Židovec, V.; Vokurka, A.; Ercisli, S. Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability 2021, 13, 1198. [Google Scholar] [CrossRef]
- Gâtlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Raffo, A.; Paoletti, F.; Antonelli, M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three sea buckthorn (Hippophae rhamnoides L.) cultivars. Eur. Food Res. Technol. 2004, 219, 360–368. [Google Scholar] [CrossRef]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophae rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometric methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. J. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, J.; Duo, J.; Ren, B.; Guo, J. Preliminary study of biochemical constitutions of berry of sea buckthorn growing in Shanxi province and their changing trend. In Proceedings of the International Symposium on Sea Buckthorn (Hippohae rhamnoides L.), Xi’an, China, 19–23 October 1989; pp. 96–105. [Google Scholar]
- Tong, J.C.; Zhang, Z.; Zhao, Y.; Yang, T.K. The determination of the physical-chemical constants and sixteen mineral elements in raw sea buckthorn juice. In Proceedings of the International Symposium on Sea buckthorn (H. rhamnoides L.), Xi’an, China, 19–23 October 1989; pp. 132–137. [Google Scholar]
- Pallavee, K.; Ashwani, M. Sea Buckthorn Juice: Nutritional Therapeutic Properties and Economic Considerations. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Tang, X. Breeding in Sea Buckthorn: Genetic of Berry Yield, Quality and Plant Cold Hardiness; University of Helsinki: Helsinki, Finland, 2002. [Google Scholar]
- Buya, B.; Zheng, H.Z.; Chung, S.K. Chemical Composition of Mongolian Sea-buckthorn (Hippophae rhamnoides L.) Fruits. Agric. Rex. Bull. Kyungpook Natl. Univ. 2012, 30, 35–39. [Google Scholar]
- Shourove, J.H.; Zzaman, W.; Chowdhury, R.S.; Hoque, M.M. Effect of thermal treatment on physicochemical stability and antioxidant properties of locally available underutilized star fruit juice. Asian Food Sci. J. 2020, 14, 41–53. [Google Scholar] [CrossRef]
- Jaśniewska, A.; Diowksz, A. Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae rhamnoides) for Disease Prevention and Food Production. Antioxidants 2021, 12, 1279. [Google Scholar] [CrossRef]
- Chen, J.; Tao, X.Y.; Sun, A.D.; Wang, Y.; Liao, X.J.; Li, L.N.; Zhang, S. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int. J. Food Prop. 2014, 17, 1419–1427. [Google Scholar] [CrossRef]
- Zeb, S. Chemical and Nutritional Constituents of Sea Buckthorn Juice. Pak. J. Nutr. 2004, 3, 99–106. [Google Scholar]
- Igwemmar, N.C.; Kolawole, S.A.; Imran, I.A. Effect of Heating on Vitamin C Content of Some Selected Vegetables. Int. J. Sci. Technol. Res. 2013, 2, 209–212. [Google Scholar]
- Munyaka, A.W.; Makule, E.E.; Oey, I.; Van Loey, A.; Hendrickx, M. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica). J. Food Sci. 2010, 75, C336–C340. [Google Scholar] [CrossRef] [Green Version]
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Review Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 7, 930–944. [Google Scholar] [CrossRef]
- Seglina, D.; Karklina, D. The dynamics of Vitamin C and total carotenes content in peasteurized sea-buckthorn juice. In Proceedings of the International Scientific Conference: Research for Rural Development, International Scientific Conference: Research for Rural Development, Jelgava, Latvia, 19–22 May 2005; pp. 205–207. [Google Scholar]
- Seglina, D.; Karklina, D.; Ruisa, S.; Krasnova, I. The effect of processing on the composition of sea buckthorn juice. J. Fruit Ornam. Plant Res. 2006, 14, 257. [Google Scholar]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical composition and biological activity of berries and leaves from four Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef] [Green Version]
Variety | Variant | Fructose | Glucose | TSS | Total Sugar |
---|---|---|---|---|---|
(g/L) | (g/L) | (°BRIX) | (g/L) | ||
Leikora | sterilization | 26.53 ± 4.03 | 8.94 ± 1.6 | 5.37 ± 1.01 | 47.64 ± 4.25 |
MVPP 2x | 23.95 ± 3.88 | 7.81 ± 1.52 | 4.66 ± 1.30 | 42.15 ± 3.19 | |
MVPP 1x | 22.73 ± 3.92 | 7.58 ± 1.67 | 4.62 ± 0.99 | 43.52 ± 3.32 | |
fresh | 25.44 ± 4.12 | 7.83 ± 1.71 | 4.81 ± 0.78 | 44.26 ± 3.56 | |
Hergo | sterilization | 33.88 ± 5.98 | 12.92 ± 1.58 | 5.26 ± 1.12 | 45.81 ± 4.01 |
MVPP 2x | 29.74 ± 5.97 | 11.77 ± 1.65 | 4.71 ± 0.79 | 41.68 ± 3.25 | |
MVPP 1x | 26.59 ± 6.04 | 11.23 ± 1.78 | 4.7 ± 0.8 | 42.15 ± 3.28 | |
fresh | 31.92 ± 6.24 | 10.72 ± 1.52 | 4.71 ± 0.85 | 43.06 ± 3.45 | |
Average | sterilization | 30.21 ± 3.68 d | 10.93 ± 1.99 b | 5.32 ± 0.06 b | 46.73 ± 0.91 b |
MVPP 2x | 26.85 ± 2.90 b | 9.79 ± 1.98 a | 4.69 ± 0.02 a | 41.92 ± 0.23 a | |
MVPP 1x | 24.66 ± 0.57 a | 9.41 ± 1.83 a | 4.66 ± 0.04 a | 42.84 ± 0.69 ab | |
fresh | 28.68 ± 3.24 c | 9.28 ± 1.45 a | 4.76 ± 0.05 a | 43.66 ± 0.6 ab |
Variety | Variant | Malic Acid | pH | Total Acid |
---|---|---|---|---|
(g/L) | (g/L) | |||
Leikora | sterilization | 22.98 ± 3.58 | 2.38 ± 0.21 | 28.06 ± 4.01 |
MVPP 2x | 22.56 ± 3.78 | 2.34 ± 0.15 | 27.26 ± 3.9 | |
MVPP 1x | 22.04 ± 3.45 | 2.36 ± 0.18 | 26.54 ± 3.81 | |
fresh | 21.34 ± 3.12 | 2.38 ± 0.25 | 26.11 ± 4.12 | |
Hergo | sterilization | 32.66 ± 5.41 | 2.3 ± 0.11 | 37.17 ± 5.25 |
MVPP 2x | 31.24 ± 5.65 | 2.28 ± 0.27 | 35.28 ± 5.11 | |
MVPP 1x | 30.56 ± 3.64 | 2.3 ± 0.09 | 34.98 ± 6.01 | |
fresh | 29.98 ± 5.89 | 2.31 ± 0.17 | 34.15 ± 5.54 | |
Average | sterilization | 27.82 ± 4.84 a | 2.34 ± 0.04 a | 32.62 ± 4.55 b |
MVPP 2x | 26.9 ± 4.34 a | 2.31 ± 0.03 a | 31.27 ± 4.01 a | |
MVPP 1x | 26.3 ± 4.26 a | 2.33 ± 0.03 a | 30.76 ± 4.22 a | |
fresh | 25.66 ± 4.32 a | 2.35 ± 0.03 a | 30.13 ± 4.02 a |
Storage | Leikora | Hergo | ||
---|---|---|---|---|
AA (mg/kg) | Ux (mg/kg) | AA (mg/kg) | Ux (mg/kg) | |
fresh (no storage) | 1149 | 138 | 2551 | 306 |
23 days −20 °C | 1190 | 143 | 2588 | 311 |
52 days −20 °C | 1090 | 131 | 2582 | 310 |
Storage | Leikora | Hergo | ||
---|---|---|---|---|
AA (mg/kg) | Ux (mg/kg) | AA (mg/kg) | Ux (mg/kg) | |
fresh | 1091 | 131 | 2523 | 303 |
MVPP 1x | 1154 | 138 | 2641 | 317 |
MVPP 2x | 1270 | 152 | 2682 | 322 |
sterilization | 1047 | 126 | 2477 | 297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezey, J.; Hegedűs, O.; Mezeyová, I.; Szarka, K.; Hegedűsová, A. Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice. Agronomy 2022, 12, 1834. https://doi.org/10.3390/agronomy12081834
Mezey J, Hegedűs O, Mezeyová I, Szarka K, Hegedűsová A. Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice. Agronomy. 2022; 12(8):1834. https://doi.org/10.3390/agronomy12081834
Chicago/Turabian StyleMezey, Ján, Ondrej Hegedűs, Ivana Mezeyová, Katarína Szarka, and Alžbeta Hegedűsová. 2022. "Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice" Agronomy 12, no. 8: 1834. https://doi.org/10.3390/agronomy12081834
APA StyleMezey, J., Hegedűs, O., Mezeyová, I., Szarka, K., & Hegedűsová, A. (2022). Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice. Agronomy, 12(8), 1834. https://doi.org/10.3390/agronomy12081834