Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Passive Dust Collectors
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Westphal, D.L.; Walker, A.L.; Holt, T.R.; Richardson, K.M.; Miller, S.D. COAMPS Real-Time Dust Storm Forecasting during Operation Iraqi Freedom. Weather Forecast. 2007, 22, 192–206. [Google Scholar] [CrossRef]
- Vanderstraeten, P.; Lénelle, Y.; Meurrens, A.; Carati, D.; Brenig, L.; Offer, Z.Y.; Zaady, E. Micromorphology and chemistry of airborne particles during agriculture working periods in Brussels surrounding region. Environ. Monit. Assess. 2007, 146, 33–39. [Google Scholar] [CrossRef]
- Vanderstraeten, P.; Lénelle, Y.; Meurrens, A.; Carati, D.; Brenig, L.; Delcloo, A.; Offer, Z.Y.; Zaady, E. Desert storm originates from Sahara covering Western Europe: A case study. Atmos. Environ. 2008, 42, 5489–5493. [Google Scholar] [CrossRef]
- Vanderstraeten, P.; Forton, M.; Lénelle, Y.; Meurrens, A.; Carati, D.; Brenig, L.; Offer, Z.Y.; Zaady, E. Elevated PM10 concentrations and high PM2,5/PM10 ratio in the Brussels urban area during the 2006 Car-Free Sunday. Waste Manag. 2010, 3, 264–279. [Google Scholar] [CrossRef]
- Zaady, E.; Offer, Y.Z.; Shachak, M. The content and contribution of the accumulated aeolian organic matter in a dry ecosystem. Atmos. Environ. 2001, 35, 769–776. [Google Scholar] [CrossRef]
- Offer, Z.; Zaady, E.; Shachak, M. Aeolian particles input to soil surface at the northern limit of the Negev desert. Arid Land Res. Manag. 1998, 1, 55–62. [Google Scholar] [CrossRef]
- Offer, Y.Z.; Vanderstraeten, P.; Brenig, L.; Carati, D.; Lénelle, Y.; Meurrens, A.; Zaady, E. Atmospheric pollution by Iceland volcano lava dispersion—The Brussels case. Geographical Stud. Environ. Protect. Res. 2012, 11, 5–10. Available online: https://dipot.ulb.ac.be/dspace/bitstream/2013/99068/1/Offer.pd (accessed on 1 December 2021). [CrossRef]
- Zaady, E.; Brenig, L.; Carati, D.; Meurrens, A.; Lénelle, Y.; Vanderstraeten, P.; Offer, Z.Y. Heavy metals identified in airborne particles during weekend periods in Brussels urban environment. Geograph. Studies Environ. Protec. 2010, 9, 87–92. Available online: http://forumgeografic.ro/2010/582/ (accessed on 1 December 2021).
- Nascimento, M.M.; da Rocha, G.O.; de Andrade, J.B. Pesticides in fine airborne particles: From a green analysis method to atmospheric characterization and risk assessment. Sci. Rep. 2017, 7, 2267. [Google Scholar] [CrossRef]
- Elad, D.; Zaretsky, U.; Avraham, S.; Gotlieb, G.; Wolf, W.; Katra, I.; Sarig, S.; Zaady, E. In vitro exposure of nasal epithelial cells to atmospheric dust. Biomech. Modeling Mechanobiol. 2018, 17, 891–901. [Google Scholar] [CrossRef]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; García-Pando, C.P.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Internat. 2019, 130, 104867. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, R.; Manangama, G.; Baldi, I.; Carles, C.; Brochard, P.; Bedos, C.; Delva, F. Assessment of residential exposures to agricultural pesticides: A scoping review. PLoS ONE 2020, 15, e0232258. [Google Scholar] [CrossRef]
- Coker, E.; Gunier, R.; Bradman, A.; Harley, K.; Kogut, K.; Molitor, J.; Eskenazi, B. Association between pesticide profiles used on agricultural fields near maternal residences during pregnancy and IQ at age 7 years. Int. J. Environ. Res. Public Health 2017, 14, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereumeaux, C.; Fillol, C.; Quenel, P.; Denys, S. Pesticide exposures for residents living close to agricultural lands: A review. Environ. Int. 2020, 134, 105210. [Google Scholar] [CrossRef] [PubMed]
- Morman, S.A.; Plumlee, G.S. The role of airborne mineral dusts in human disease. Aeolian Res. 2013, 9, 203–212. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Crooks, J.L.; Cascio, W.E.; Percy, M.S.; Reyes, J.; Neas, L.M.; Hilborn, E.D. Supplemental Material The Association between Dust Storms and Daily Non-Accidental Mortality in the United States. Environ. Health Perspect. 2016, 124, 1735–1743. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophysic. 2012, 50. [Google Scholar] [CrossRef]
- Tewksbury, J.J.; Levey, D.J.; Haddad, N.M.; Sargent, S.; Orrock, J.L.; Weldon, A.; Danielson, B.J.; Brinkerhoff, J.; Damschen, E.I.; Townsend, P. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc. Natl. Acad. Sci. USA 2002, 99, 12923–12926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijay, V.; Armsworth, P.R. Pervasive cropland in protected areas highlights trade-offs between conservation and food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2010121118. [Google Scholar] [CrossRef] [PubMed]
- Hayo, M.G.; van der Werf, H.M. Assessing the impact of pesticides on the environment. Agric. Ecosy. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN. Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.J.; Wiberg-Larsen, P.; Baattrup-Pedersen, A.; Cedergreen, N.; Mcknight, U.S.; Kreuger, J.; Jacobsen, D.; Kristensen, E.A.; Friberg, N. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Res. 2015, 84, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics 1995, 8, 17–29. [Google Scholar] [CrossRef]
- Zaady, E.; Arbel, S.; Barkai, D.; Sarig, S. Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J. Arid Environ. 2013, 90, 5–11. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 284. Offic. J. Europ. Union 2013. Available online: http://data.europa.eu/eli/reg/2013/284/oj (accessed on 1 December 2021).
- Severn, D.J.; Ballard, G. Risk/benefit and regulations. In Pesticides in the Soil Environment; Book Series No. 2; Soil Science Society of America, Inc.: Madison, Wl, USA, 1990; pp. 467–491. [Google Scholar] [CrossRef]
- Leonard, R.A. Movement of pesticides into surface waters. In Pesticides in the Soil Environment; Book Series No. 2; Soil Science Society of America: Madison, WI, USA, 1990; pp. 303–349. [Google Scholar] [CrossRef]
- Taylor, A.W.; Spencer, W.F. Volatilization and vapor transport processes. In Pesticides in the Soil Environment; Book Series No. 2; Soil Science Society of America, Inc.: Madison, WI, USA, 1990; pp. 213–269. [Google Scholar] [CrossRef]
- Schomburg, C.J.; Glotfelty, D.E. Pesticide occurrence and distribution in fog collected near Monterey, California. Environ. Sci. Technol. 1991, 25, 155–160. [Google Scholar] [CrossRef]
- Gregor, D.J.; Gummer, W.D. Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian arctic snow. Environ. Sci. Technol. 1989, 23, 561–565. [Google Scholar] [CrossRef]
- Lavin, K.S.; Hageman, K.J. Contribution of long-range regional atmospheric transport of pesticide concentrations along transect crossing a mountain divide. Environ. Sci. Technol. 2013, 10, 1390–1398. Available online: https://pubs.acs.org/doi/10.1021/es304497e (accessed on 1 December 2021). [CrossRef]
- Yang, R.; Zhang, S.; Li, I.; Jiang, G.; Jing, C. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles and bark of the Southeast Tibetian Plateau: Implications for sources and environmental cycling. Environ. Sci. Technol. 2013, 47, 12736–12743. [Google Scholar] [CrossRef] [PubMed]
- Walker, A. Simulation of herbicide persistence in soil. Pestic. Sci. 1976, 7, 41–49. [Google Scholar] [CrossRef]
- Zhan, H.; Huang, Y.; Lin, Z.; Bhatt, P.; Chen, S. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 2020, 182, 109138. [Google Scholar] [CrossRef]
- Remucal, C.K. The role of indirect photochemical degradation in the environmental fate of pesticides: A review. Environ. Sci. Proc. Imp. 2014, 16, 628–653. [Google Scholar] [CrossRef] [PubMed]
- Paterson, S.; MacKay, D.; Tam, D.; Shiu, W.Y. Uptake of organic chemicals by plants: A review of processes, correlations and model. Chemosphere 1990, 21, 297–331. [Google Scholar] [CrossRef]
- Gill, H.K.; Gar, H. Pesticide: Environmental Impacts and Management Strategies. In Pesticides—Toxic Effects; Solenski, S., Larramenday, M.L., Eds.; Intech: Rijeka, Croatia, 2014; pp. 187–230. [Google Scholar] [CrossRef] [Green Version]
- Kerle, E.A.; Jenkings, J.J.; Vogue, P.A. Understanding Pesticide Persistence and Mobility for Groundwater and Surface Water Protection; Oregon State University Extension Service: Corvallis, OR, USA, 2007; EM8561-E. [Google Scholar]
- Misra, A.K.; Baker, J.L.; Mickelson, S.K.; Shang, H. Contributing area and concentration effects on herbicide removal by vegetative buffer strips. Trans. Am. Soc. Agri. Eng. 1996, 39, 2105–2111. [Google Scholar] [CrossRef]
- Lowrance, R.; Vellidis, G.; Wauchope, R.D.; Gay, P.; Bosch, D.D. Herbicide transport in a managed riparian forest buffer system. Transac. Am. Soc. Agric. Eng. 1997, 40, 1047–1057. [Google Scholar] [CrossRef]
- Schmitt, T.J.; Dosskey, M.G.G.; Hoagland, K.D. Filter strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Qual. 1999, 28, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.H.; Cornish., P.S.; Sun, H. Vegetated biofilters: The relative importance of infiltration and adsorption in reducing loads of water-soluble herbicides in agricultural runoff. Agric. Ecosyst. Environ. 2005, 114, 351–359. [Google Scholar] [CrossRef]
- Rankins, A., Jr.; Shaw, D.R.; Douglas, J. Response of perennial grasses potentially used as filter strips to selected postemergence herbicides. Weed Technol. 2005, 19, 73–77. Available online: https://pubag.nal.usda.gov/download/10429/PDF (accessed on 1 December 2021). [CrossRef]
- Jiang, F.; Preisendanz, H.E.; Veith, T.L.; Cibin, R.; Drohan, P.J. Riperian buffer effectiveness as a function of buffer design and input loads. J. Environ. Qual. 2020, 49, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, G.J.; Munoz-Carpena, R.; Fox, G.A. Distinct influence of filter strips on acute and chronic pesticide aquatic environmental exposure assessments across U.S. EPA scenarios. Chemosphere 2013, 90, 195–202. [Google Scholar] [CrossRef]
- Ucar, A.; Hall, F.R. Windbreaks as a pesticide drift mitigation strategy: A review. Pest. Manag. Sci. 2001, 57, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Zaady, E.; Katra, I.; Shuker, S.; Knoll, Y.; Sarig, S. Tree belts for decreasing aeolian dust carried pesticides from cultivated areas. Geosciences 2018, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Yizhaq, H. Intensity and degree of segregation in bimodal and multimodal grain size distributions. Aeolian Res. 2017, 27, 23–34. [Google Scholar] [CrossRef]
- Martel, A.-C.; Lair, C. Validation of a highly sensitive method for the determination of neonicotinoid insecticide residues in honeybees by liquid chromatography with electrospray tandem mass spectrometry. Intern. J. Environ. Anal. Chem. 2011, 91, 978–988. [Google Scholar] [CrossRef]
- Ganor, E.; Stupp, A.; Alpert, P. A method to determine the effect of mineral dust aerosols on air quality. Atmos. Environ. 2009, 43, 5463–5468. [Google Scholar] [CrossRef]
- Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.-G. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Sci. Total Environ. 2007, 384, 1–35. [Google Scholar] [CrossRef]
- Al Ameri, I.D.S.; Braint, R.M.; Engels, S. Drought severity and increased dust storm frequency in the Middle East: A case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather 2019, 74, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L.L.; Demetrio, P.M.; Agustina Etchegoyen, M.; Marino, D.J. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Sci. Total Environ. 2018, 645, 89–96. [Google Scholar] [CrossRef]
- Ramirez-Haberkon, N.B.; Aimarb, S.B.; Aparicio, V.C.; Buschiazzo, D.E.; De Gerónimo, E.; Costa, J.L.; Mendez, M.J. Management effects on glyphosate and AMPA concentrations in the PM10 emitted by soils of the central semi-arid region of Argentina. Aeolian Res. 2021, 49, 100658. [Google Scholar] [CrossRef]
- Krasovitov, B.; Fominykh, A.; Levy, A.; Kleeorin, N.; Katra, I. Dry deposition of dust particles during medium-and high-level dust storms to a forest canopy in a semiarid region. Atmos. Poll. Res. 2021, 12, 101058. [Google Scholar] [CrossRef]
- Katra, I. Soil erosion by wind and dust emission in semi-arid soils due to agricultural activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Elperin, T.; Fominykh, A.; Krasovitov, B.; Yizhaq, H. Modeling of particulate matter transport in atmospheric boundary layer following dust emission from source areas. Aeolian Res. 2016, 20, 147–156. [Google Scholar] [CrossRef]
- Dayan, U.; Heffter, J.; Miller, J.; Gutman, G. Dust intrusion events into the Mediterranean basin. J. Appl. Meteorol. 1991, 30, 1185–1199. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Mol, H.G.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Krasnov, H.; Katra, I.; Koutrakis, P.; Friger, M. Contribution of dust storms to PM10 levels in an urban arid environment. J. Air Waste Manag. Assoc. 2014, 64, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Gross, A.; Swet, N.; Tanner, S.; Krasnov, H.; Angert, A. Substantial dust loss of bioavailable phosphorus from agricultural soils. Sci. Rep. 2016, 6, 24736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SA-Site Field Edge | Sample Weight (g m−2) | MD-Site Field Edge | Sample Weight (g m−2) |
---|---|---|---|
Summer | 7.69 ± 1.18 b | Summer | 6.75 ± 5.35 b |
Autumn | 9.26 ± 2.98 b | Autumn | 12.50 ± 8.84 ab |
Winter | 110.19 ± 114.67 a | Winter | 7.37 ± 7.15 ab |
Spring | 18.16 ± 16.75 b | Spring | 3.61 ± 1.19 b |
SA-Site (100 m) * | MD-Site (100 m) * | ||
Summer | 6.81 ± 2.12 c | Summer | 5.00 ± 4.14 a |
Autumn | 15.37 ± 8.84 b | Autumn | 3.04 ± 1.55 a |
Winter | 48.19 ± 36.26 a | Winter | 8.49 ± 11.69 a |
Spring | 14.63 ± 9.91 b | Spring | 3.45 ± 1.77 a |
SA-Site planted tree (500 m) ** | MD-Site planted-tree (500 m) ** | ||
Summer | 3.70 ± 2.36 b | Summer | 3.29 ± 2.20 ab |
Autumn | 4.37 ± 2.32 b | Autumn | 1.84 ± 0.82 c |
Winter | 3.43 ± 1.78 b | Winter | 3.33 ± 2.89 ab |
Spring | 36.36 ± 34.59 a | Spring | 7.90 ± 4.19 a |
SA-Site-Size (µm) | MD-Site-Size (µm) | |||||
---|---|---|---|---|---|---|
Season | PM 1 | PM 2.5 | PM 10 | PM 1 | PM 2.5 | PM 10 |
Autumn | 4.12 ± 0.58 a | 11.24 ± 1.12 a | 31.04 ± 0.34 a | 1.86 ± 0.13 b | 6.35 ± 0.02 ab | 24.88 ± 2.52 ab |
Winter | 2.15 ± 0.73 b | 6.78 ± 1.90 b | 24.61 ± 3.86 b | 1.69 ± 0.53 bc | 5.66 ± 1.44 ab | 22.6 ± 3.12 b |
Spring | 2.27 ± 0.93 b | 7.40 ± 2.43 b | 26.82 ± 3.85 ab | 1.57 ± 0.18 c | 5.74 ± 0.57 b | 27.84 ± 3.75 ab |
Summer | 3.46 ± 0.72 ab | 10.45 ± 2.15 a | 30.39 ± 3.71 a | 2.85 ± 0.66 a | 8.93 ± 2.03 a | 32.04 ± 7.30 a |
Site and Location | Season | Material | Concentration (μg/kg) | Target |
---|---|---|---|---|
SA-site center | Summer | Bromopropylate | 240 | Insecticide—Against Acari in citrus and grapes |
SA-site-planted-tree | Summer | Endosulfan | 92.78 | Insecticide—Acari |
SA-site field edge | Autumn | Tetraconazole | 14.5 | Fungicide—Oidiopsis gossypii |
MD-site field edge | Winter | Penconazole | 5.27 | Fungicide—Oidiopsis gossypii |
MD-site location [100 m] | Winter | Penconazole | 4.14 | Fungicide—Oidiopsis gossypii |
MD-site planted-tree | Winter | Penconazole | 4.93 | Fungicide—Oidiopsis gossypii |
MD-Site | Field Edge Summer | Summer * | Summer ** | Field Edge Autumn | Autumn * | Autumn ** | Field Edge Winter | Winter * | Winter ** | Field Edge Spring | Spring * | Spring ** |
PM1 | 2.09 | 3.23 | 3.22 | 2 | 1.83 | 1.76 | 1.54 | 2.27 | 1.25 | 1.49 | 1.44 | 1.77 |
PM2.5 | 6.59 | 10.05 | 10.15 | 6.38 | 6.34 | 6.34 | 5.01 | 7.31 | 4.67 | 5.31 | 5.52 | 6.36 |
PM10 | 23.62 | 35.77 | 36.72 | 22.14 | 25.43 | 27.08 | 19.19 | 25.23 | 23.57 | 23.61 | 29.17 | 30.75 |
SA-site | Field edge Summer | Summer * | Summer ** | Field edge Autumn | Autumn * | Autumn ** | Field edge Winter | Winter * | Winter ** | Field edge Spring | Spring * | Spring ** |
PM1 | 2.73 | 3.48 | 4.18 | 4.38 | 4.52 | 3.45 | 2.62 | 2.52 | 1.31 | 2.21 | 1.37 | 3.23 |
PM2.5 | 8.13 | 10.83 | 12.38 | 11.77 | 11.99 | 9.95 | 7.68 | 8.06 | 4.59 | 7.47 | 4.94 | 9.8 |
PM10 | 27.19 | 29.5 | 34.46 | 30.97 | 30.74 | 31.41 | 24.23 | 28.65 | 20.96 | 29.23 | 22.38 | 28.84 |
Site | Location | Pesticide | Concentration (μg/kg) | Material | Comment (Use, Chemical Group) |
---|---|---|---|---|---|
SA-site | Agricultural field | Bifenthrin | 7 | Insecticide | Annual field crops, Pyrethroids |
MD-site | Agricultural field | Tetraconazole | 34.43 | Fungicide | Puccinia sp. Oidiopsis gossypii, Triazole |
Oxadiazon | 535.45 | Herbicide | Weeds and grasses in vegetable crops, | ||
Quinoxyfen | 81.74 | Fungicide | Oidiopsis gossypii |
Site | Location | Pesticide | Concentration (μg/kg) | Material | Comment (Use, Chemical Group) |
---|---|---|---|---|---|
SA-site | Agricultural field | Bifenthrin | 7 | Insecticide | Annual field crops, Pyrethroids |
Diphenylamine | 8 | Insecticide | Fungicide for citrus and other orchards, Phenylaniline | ||
Chlorpyrifos | 11 | Insecticide | Used for vegetables, orchards and vineyards, Organophosphate group | ||
Oxadiazon | 29 | Herbicide | Pre-emergent herbicide used for control of annual grasses and broadleaf weeds in turf in vines and trees. Active Ingredients: 2% Oxadiazon | ||
MD-site | Agricultural field | Tetraconazole | 34.43 | Fungicide | Used against Puccinia sp. Oidiopsis gossypii in bananas and grapes., Triazole |
Oxadiazon | 535.45 | Herbicide | See Above | ||
Penconazole | 2.07 | Fungicid | Used against Oidiopsis gossypii in orchards, vegetables and flowers | ||
P,P-DDE | 9.2 | a derivative of DDT | Dehydrohalogenation of DDT (Insecticide) | ||
Endosulfan sulfate | 73.54 | Insecticide and Acaricide | Used against mites for deciduous orchards, Organochlorine | ||
Quinoxyfen | 81.74 | Fungicide | Used against Oidiopsis gossypii against powdery mildew in grapevines and barley crops, quinoxyfen | ||
Field edge | Oxyfluorfen | 2.61 | Herbicide | General herbicide for orchards, flowers and field crops, Diphenyl Ether |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaady, E.; Sarig, S.; Katra, I. Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis. Agronomy 2022, 12, 1826. https://doi.org/10.3390/agronomy12081826
Zaady E, Sarig S, Katra I. Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis. Agronomy. 2022; 12(8):1826. https://doi.org/10.3390/agronomy12081826
Chicago/Turabian StyleZaady, Eli, Shlomo Sarig, and Itzhak Katra. 2022. "Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis" Agronomy 12, no. 8: 1826. https://doi.org/10.3390/agronomy12081826
APA StyleZaady, E., Sarig, S., & Katra, I. (2022). Dust Particles as a Pesticide’s Carrier in Agro-Ecosystems; Qualitative and Quantitative Analysis. Agronomy, 12(8), 1826. https://doi.org/10.3390/agronomy12081826