Physical Attributes of an Irrigated Oxisol after Brassicas Crops under No-Tillage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.1.1. Experimental Area
2.1.2. Region Climate
2.1.3. Soil Type
2.2. Experimental Design
2.3. Additional Information
2.4. Assessments
2.4.1. Mechanical Resistance of Soil to Root Penetration
2.4.2. Soil Density, Microporosity, Saturation Volume, Macroporosity and Total Porosity
2.4.3. Soil Moisture
2.4.4. Stability of Aggregates and Their Indexes
2.5. Statistical Analysis
3. Results
3.1. The Soil Compaction Indicators
3.2. The Correlations between Physical Soil Attributes
3.3. Analysis of the Main Components
4. Discussion
4.1. The Physical Attributes of the Soil and Its Indicators and Quality
4.2. The Principal Components Analysis and Their Interpretations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazetto Júnior, J.C.; Torres, J.L.R.; Costa, D.D.d.A.; Silva, V.R.e.; Souza, Z.M.d.; Lemes, E.M. Production and Decomposition of Cover Crop Residues and Associations with Soil Organic Fractions. J. Agric. Sci. 2019, 11, 58–69. [Google Scholar] [CrossRef]
- Silva, V.R.e.; Torres, J.L.R.; Costa, D.D.d.A.; Silveira, B.d.S.; Vieira, D.M.d.S.; Lemes, E.M. Soil Physical Attributes in Long-Term Soil Management Systems (Tillage and No-till). J. Agric. Sci. 2020, 12, 194–207. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G.; Rodrigues Junior, D.J.; Loss, A. Production, decomposition of residues and yield of maize and soybeans grown on cover crops. Rev. Cienc. Agron. 2015, 46, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.L.R.; Mazetto Júnior, J.C.; Silva Júnior, J.; Vieira, D.M.d.S.; de Souza, Z.M.; Assis, R.L.d.; Lemes, E.M. Soil physical attributes and organic matter accumulation under no-tillage systems in the Cerrado. Soil Res. 2019, 57, 712–718. [Google Scholar] [CrossRef]
- Mcphee, J.E.; Aird, P.L.; Hardie, M.A.; Corkrey, S.R. The effect of controlled traffic on soil physical properties and tillage requirements for vegetable production. Soil Tillage Res. 2015, 149, 33–45. [Google Scholar] [CrossRef]
- Moraes, M.T.d.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; da Silva, V.R.; da Luz, F.B. Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil Tillage Res. 2016, 155, 351–362. [Google Scholar] [CrossRef]
- Silva, R.F.; Santos, G.G.; Nóbrega, J.C.A.; Santos, D.P.; Silva Júnior, J.P.; Lustosa Filho, J.F.; Oliveira, G.C.; Dias, B.O. Soil use and management systems, time since adoption, and their impacts over aggregation. Rev. Bras. de Cienc. Agrar. 2018, 13, e5544. [Google Scholar] [CrossRef]
- Lima, D.T.; Paula, A.D.M.; Lemes, E.M.; Rodrigues, G.I.; Torres, J.L.R.; Vieira, D.M.S. Organic carbon and carbon stock: Rela-tions with physical indicator and soil aggregation in áreas cultivated with sugar cane. Trop. Subtrop. Agroecosystems 2017, 20, 341–352. [Google Scholar]
- Loss, A.; Pereira, M.G.; Perin, A.; Dos Anjos, L.H.C. Carbon and Nitrogen Content and Stock in No-Tillage and Crop-livestock Integration Systems in the Cerrado of Goias State, Brazil. J. Agric. Sci. 2012, 4, 96–105. [Google Scholar] [CrossRef]
- Pinto, L.A.D.S.R.; Torres, J.L.R.; Morais, I.D.S.; Ferreira, R.; da Silva, W.F.; Lima, S.D.S.; Beutler, S.J.; Pereira, M.G. Physicogenic and biogenic aggregates under different management systems in the Cerrado region, Brazil. Rev. Bras. de Cienc. do Solo 2021, 45, e0200114. [Google Scholar] [CrossRef]
- Vischi Filho, O.J.; Souza, Z.M.d.; de Souza, G.S.; Silva, R.B.d.; Torres, J.L.R.; Lima, M.E.d.; Tavares, R.L.M. Physical attributes and limiting water range as soil quality indicators after mechanical harvesting of sugarcane. Aust. J. Crop. Sci. 2017, 11, 169–176. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Soratto, R.P. Nitrogen Supply for Cover Crops and Effects on Peanut Grown in Succession under a No-Till System. Agron. J. 2009, 101, 41–46. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Gomes, F.R.d.C.; Barreto, A.C.; Tamburús, A.Y.; Vieira, D.M.d.S.; Souza, Z.M.d.; Mazetto Júnior, J.C. Application of different cover crops and mineral fertilizer doses for no-till cultivation of broccoli, cauliflower and cabbage. Aust. J. Crop. Sci. 2017, 11, 1339–1345. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Magalhães, E.M.; Oliveira, G.C.; Severiano, E.C.; Costa, K.A.P.; Castro, M.B. Recuperação estrutural e produção do capim-Tifton 85 em um Argissolo Vermelho-Amarelo compactado. Cienc. Anim. Bras. 2009, 10, 68–76. [Google Scholar]
- Coelho, V.O.; Ribeiro Neto, A.; Anhê, A.C.B.M.; Lima, S.S.d.; Vieira, D.M.d.S.; Loss, A.; Torres, J.L.R. Soil macrofauna as bioindicator of soil quality in different management systems. Res. Soc. Dev. 2021, 10, e54210616118. [Google Scholar] [CrossRef]
- Torres, J.L.R.; e Silva, V.R.; Costa, D.D.d.A.; Pereira, M.G.; Assunção, S.A.; Gonzalez, A.P.; Pinto, L.A.D.S.R.; Loss, A. Aggregation and dynamics of soil organic matter under different management systems in the Brazilian Cerrado. Soil Res. 2021, 59, 715–716. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inmte. Gráficos. Available online: http://www.inmet.gov.br/portal/index.php?r=tempo/graficos (accessed on 8 January 2018).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos, 5ª ed.; Brasília, D.F., Ed.; Embrapa: Brasília, DF, Brazil, 2018; 356p. [Google Scholar]
- Stolf, R.; Murakami, J.H.; Brugnaro, C.; Silva, L.G.; Da Silva, L.C.F.; Margarido, L.A.C. Penetrômetro de impacto stolf-programa computacional de dados em EXCEL-VBA. Rev. Bras. de Cienc. do Solo 2014, 38, 774–782. [Google Scholar] [CrossRef] [Green Version]
- Sene, M.; Vepraskas, M.J.; Naderman, G.C.; Denton, H.P. Relationships of Soil Texture and Structure to Corn Yield Response to Subsoiling. Soil Sci. Soc. Am. J. 1985, 49, 422–427. [Google Scholar] [CrossRef]
- Arshad, M.A.; Azooz, R.H. Tillage Effects on Soil Thermal Properties in a Semiarid Cold Region. Soil Sci. Soc. Am. J. 1996, 60, 561–567. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; Embrapa: Rio de Janeiro, Brazil, 2017; 573p. [Google Scholar]
- Kemper, W.D.; Chepil, W.S. Size Distribution of Aggregates. In Methods of Soil Analysis: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Black, C.A., Evans, D.D., White, J.L., Ensmin, E.L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 39, pp. 499–510. [Google Scholar]
- Demarchi, J.C.; Perusi, M.C.; Piroli, E.L. Análise da estabilidade de agregados de solos da microbacia do Ribeirão São Domingos, Santa Cruz do Rio Pardo – SP, sob diferentes tipos de uso e ocupação. Rev. Bras. de Tecnol. Apl. Nas Cienc. Agrar. 2012, 4, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.; Saraiva, O.F. Camadas de Impedimento do Solo em Sistemas Agrícolas com A Soja; Circular Técnica, 23; Embrapa: Londrina, Brazil, 1999; 58p. [Google Scholar]
- Tamburús, A. Formas de descompactação mecânica e biologia em um Latossolo Vermelho e relação com o rendimento do milho. 20f, Monografia (Graduação em Engenharia Agronômica); Instituto Federal do Triângulo Mineiro: Uberaba, Brazil, 2017. [Google Scholar]
- de Assis, R.L.; Lanças, K.P. Avaliação dos atributos físicos de um Nitossolo Vermelho distroférrico sob sistema plantio direto, preparo convencional e mata nativa. Rev. Bras. de Cienc. do Solo 2005, 29, 515–522. [Google Scholar] [CrossRef]
- Mottin, M.C.; Seidel, E.P.; Fey, E.; Vanelli, J.; Alves, A.L.; Richart, A.; Frandoloso, J.F.; Anschau, K.A.; Francziskowski, M.A. Biomass Productivity and Physical Properties of the Soil after Cultivation of Cover Plant in the Autumn and Winter. Am. J. Plant. Sci. 2018, 9, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Sales, R.P.; Portugal, A.F.; Moreira, J.A.A.; Kondo, M.K.; Pegoraro, R.F. Qualidade física de um Latossolo sob plantio direto e preparo convencional no semiárido. Rev. Cienc. Agron. 2016, 47, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Tavares Filho, J.; Tessier, D. Compressibility of Oxisol aggregates under no-till in response to soil water potential. Rev. Bras. de cienc. do Solo 2009, 33, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Vaz, C.M.P.; Primavesi, O.; Patrizzi, V.C.; Lossi, M.F. Influência da Umidade na Resistência do solo Medida com Penetrômetro de Impacto; Comunicado Técnico, nº 51; Embrapa Instrumentação Agropecuária: São Carlos, SP, Brazil, 2002; pp. 1–5. [Google Scholar]
- da Silva, R.H.; Rosolem, C.A. Crescimento radicular de soja em razão da sucessão de cultivos e da compactação do solo. Pesqui. Agropecu. Bras. 2002, 37, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Reinert, D.J.; Albuquerque, J.A.; Reichert, J.M.; Aita, C.; Andrada, M.M.C. Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Rev. Bras. de Cienc. do Solo 2008, 32, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.D.S.; Stone, L.F.; Da Silveira, P.M. Culturas de cobertura e qualidade física de um Latossolo em plantio direto. Rev. Bras. de Eng. Agrícola E Ambient. 2009, 13, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Cunha, E.Q.; Stone, L.F.; Moreira, J.A.A.; Ferreira, E.P.B.; Didonet, A.D.; Leandro, W.M. Sistemas de preparo do solo e culturas de cobertura na produção orgânica de feijão e milho. I – Atributos físicos do solo. Rev. Bras. de cienc. do Solo 2011, 35, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.L.R.; e Silva, V.R.; de Assis, R.L.; de Souza, Z.M.; Vieira, D.M.d.S.; Tamburús, A.Y. Soil physical quality after the fifth and sixth harvest of sugarcane in Brazilian Cerrado. Aust. J. Crop. Sci. 2016, 10, 1306–1311. [Google Scholar] [CrossRef]
- Ferreira, F.P.; deAzevedo, A.C.; Dalmolin, R.S.D.; Girelli, D. Carbono orgânico, óxidos de ferro e distribuição de agregados em dois solos derivados de basalto no Rio Grande do Sul-Brasil. Cienc. Rural. 2007, 37, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Loss, A.; Pereira, M.G.; Anjos, L.H.C.; Beutler, S.J.; Ferreira, E.P.; Silva, E.M.R. Oxidizable organic carbon fractions and soil aggregation in areas under different organic production systems in Rio de Janeiro, Brazil. Trop. Subtrop. Agroecosystems 2011, 14, 699–708. [Google Scholar]
- Kondo, M.K.; Albuquerque, C.J.B.; Wendling, B.; Silva, P.B.; Cardoso, M.M. Efeito de coberturas vegetais sobre os atributos físicos do solo e características agronômicas do sorgo granífero. Biosci. J. 2012, 28, 33–40. [Google Scholar]
- Loss, A.; Pereira, M.G.; Beutler, S.J.; Perin, A.; Piccolo, M.D.C.; Assunção, S.A.; Zonta, E. The impact of agricultural systems in the soil organic matter content in brazilian cerrado. Int. J. Res. Granthaalayah 2019, 7, 220–244. [Google Scholar] [CrossRef]
- Santos, F.S.; Zanão Junior, L.A.; Secco, D.; Dias, P.P.; Tomassoni, F.; Pereira, N. A utilização de plantas de cobertura na recuperação de solos compactados. Acta Iguazu 2014, 3, 82–91. [Google Scholar] [CrossRef]
Cover Crops | RP | SD | VM |
---|---|---|---|
Mpa | kg dm−3 | cm3 cm−3 | |
0–0.1 m | |||
Brachiaria (B) | 1.94 aA | 1.68 bB | 0.25 aA |
Sunn hemp (S) | 2.17 aA | 1.74 bA | 0.26 aA |
Pearl millet (M) | 1.66 aB | 1.43 aC | 0.27 aA |
B + S | 1.43 aC | 1.72 bB | 0.26 aA |
B + M | 1.62 aA | 1.67 bA | 0.26 aA |
M + S | 1.89 aA | 1.76 bA | 0.28 aA |
0.1–0.2 m | |||
Brachiaria (B) | 1.66 aB | 1.78 aA | 0.25 aA |
Sunn hemp (S) | 1.80 aB | 1.71 bA | 0.29 aA |
Pearl millet (M) | 1.89 aA | 1.73 bA | 0.28 aA |
B + S | 2.17 aA | 1.77 aA | 0.27 aA |
B + M | 1.61 aA | 1.71 bA | 0.26 aA |
M + S | 1.75 aB | 1.75 bA | 0.27 aA |
0.2–0.3 m | |||
Brachiaria (B) | 1.39 aC | 1.73 bA | 0.28 aA |
Sunn hemp (S) | 1.71 bC | 1.77 aA | 0.30 aA |
Pearl millet (M) | 1.57 aB | 1.69 bA | 0.27 aA |
B + S | 1.89 bA | 1.70 bB | 0.28 aA |
B + M | 1.48 aB | 1.73 bA | 0.28 aA |
M + S | 1.52 aC | 1.66 bA | 0.27 aA |
0.3–0.4 m | |||
Brachiaria (B) | 1.34 aC | 1.61 aB | 0.27 aA |
Sunn hemp (S) | 1.71 bC | 1.65 bA | 0.30 aA |
Pearl millet (M) | 1.38 aC | 1.53 aB | 0.26 aA |
B + S | 1.66 bB | 1.71 bB | 0.27 aA |
B + M | 1.25 aC | 1.70 bA | 0.29 aA |
M + S | 1.43 aD | 1.58 aB | 0.28 aA |
CV (%) | 4.24 | 5.60 | 14.10 |
Variables | Pearson Correlation | Significance |
---|---|---|
r2 | % | |
0–0.1 m | ||
RP × SD | 0.31 ns | ns |
RP × VM | −0.54 ** | 99 ** |
SD × VM | 0.91 ** | 99 ** |
0.1–0.2 m | ||
RP × SD | 0.32 * | 99 ** |
RP × VM | −0.37 ** | 99 ** |
SD × VM | 0.38 ns | ns |
0.2–0.3 m | ||
RP × SD | 0.12 * | 99 ** |
RP × VM | −0.21 ** | 99 ** |
SD × VM | 0.03 ns | ns |
0.3–0.4 m | ||
RP × SD | 0.30 ns | ns |
RP × VM | 0.12 ** | 99 ** |
SD × VM | 0.24 ns | ns |
Variables | Ma | Mi | TP | MWD | GMD | ASI |
---|---|---|---|---|---|---|
0–0.1 m | ||||||
SD | −0.86 * | −0.11 | −0.97 * | −0.74 | −0.77 * | −0.68 |
Ma | −0.35 | 0.85 * | 0.44 | 0.49 | 0.50 | |
Mi | 0.20 | 0.31 | 0.28 | 0.20 | ||
TP | 0.63 | 0.68 | 0.61 | |||
MWD | 0.99 * | 0.74 | ||||
GMD | 0.74 | |||||
0.1–0.2 m | ||||||
SD | −1 * | −0.70 | −0.97 * | −0.68 | −0.27 | 0.96 * |
Ma | 0.68 | 0.97 * | 0.63 | 0.21 | −0.97 * | |
Mi | 0.84 * | 0.22 | −0.19 | −0.81 * | ||
TP | 0.54 | 0.09 | −0.99 * | |||
MWD | 0.89 * | −0.47 | ||||
GMD | 0 | |||||
0.2–0.3 m | ||||||
SD | −0.95 * | −0.97 * | −0.98 * | −0.14 | 0.06 | 0.84 * |
Ma | 0.93 * | 0.97 * | −0.12 | −0.31 | −0.93 * | |
Mi | 0.99 * | −0.01 | −0.21 | −0.90 * | ||
TP | −0.06 | −0.25 | −0.93 * | |||
MWD | 0.98* | 0.43 | ||||
GMD | 0.60 | |||||
0.3–0.4 m | ||||||
SD | −0.85 * | −0.69 | −0.96 * | 0.25 | 0.33 | 0.52 |
Ma | 0.26 | 0.94 * | −0.71 | −0.77 * | −0.87 * | |
Mi | 0.58 | 0.35 | 0.29 | 0.06 | ||
TP | −0.47 | −0.55 | −0.72 | |||
MWD | 1 * | 0.95 * | ||||
GMD | 0.97 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, J.L.R.; Mazetto Júnior, J.C.; de Souza Silveira, B.; Loss, A.; dos Santos, G.L.; de Assis, R.L.; Lemes, E.M.; da Silva Vieira, D.M. Physical Attributes of an Irrigated Oxisol after Brassicas Crops under No-Tillage System. Agronomy 2022, 12, 1825. https://doi.org/10.3390/agronomy12081825
Torres JLR, Mazetto Júnior JC, de Souza Silveira B, Loss A, dos Santos GL, de Assis RL, Lemes EM, da Silva Vieira DM. Physical Attributes of an Irrigated Oxisol after Brassicas Crops under No-Tillage System. Agronomy. 2022; 12(8):1825. https://doi.org/10.3390/agronomy12081825
Chicago/Turabian StyleTorres, José Luiz Rodrigues, José Carlos Mazetto Júnior, Bruna de Souza Silveira, Arcângelo Loss, Gilsonley Lopes dos Santos, Renato Lara de Assis, Ernane Miranda Lemes, and Dinamar Márcia da Silva Vieira. 2022. "Physical Attributes of an Irrigated Oxisol after Brassicas Crops under No-Tillage System" Agronomy 12, no. 8: 1825. https://doi.org/10.3390/agronomy12081825
APA StyleTorres, J. L. R., Mazetto Júnior, J. C., de Souza Silveira, B., Loss, A., dos Santos, G. L., de Assis, R. L., Lemes, E. M., & da Silva Vieira, D. M. (2022). Physical Attributes of an Irrigated Oxisol after Brassicas Crops under No-Tillage System. Agronomy, 12(8), 1825. https://doi.org/10.3390/agronomy12081825