A Review on the Composition and Biosynthesis of Alkaloids and on the Taxonomy, Domestication, and Cultivation of Medicinal Fritillaria Species
Abstract
:1. Introduction
2. Composition and Biosynthesis of Alkaloids in Fritillaria Species
2.1. The Composition of Alkaloids in Fritillaria Species
2.2. Comparison of Alkaloids in Fritillaria from Different Base Sources
2.3. Synthesis and Regulation of Alkaloids in Fritillaria
3. Taxonomy of Fritillaria Species
3.1. The Taxonomy Based on Classical Methods
3.2. Molecular Decoding- and Phylogenetic Analysis-Based Taxonomy
4. Domestication and Culture of Fritillaria Species
4.1. Artificial Cultivation of Fritillaria Species
4.2. In Vitro Cultivation of Fritillaria Species
4.3. The Management of Fritillaria Diseases
5. Conclusions and Discussion
6. Data Collection
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.D.; Chen, X.; Atanasov, A.G.; Yi, X.; Wang, S. Plant resource availability of medicinal Fritillaria species in traditional producing regions in Qinghai-Tibet Plateau. Front. Pharmacol. 2017, 8, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, D.C.; Gu, X.J.; Xiao, P.G.; Peng, Y. Phytochemical and biological research of Fritillaria medicine resources. Chin. J. Nat. Med. 2013, 11, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chan, S.W.; Ma, J.; Li, P.; Shaw, P.C.; Lin, G. Investigation of association of chemical profiles with the tracheobronchial relaxant activity of Chinese medicinal herb Beimu derived from various Fritillaria species. J. Ethnopharmacol. 2018, 210, 39–46. [Google Scholar] [CrossRef]
- Nile, S.H.; Su, J.J.; Wu, D.; Wang, L.R.; Hu, J.N.; Sieniawska, E.; Kai, G.Y. Fritillaria thunbergii Miq. (Zhe Beimu): A review on its traditional uses, phytochemical profile and pharmacological properties. Food Chem. Toxicol. 2021, 153, 112289. [Google Scholar] [CrossRef]
- Commission Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medicine Science Technology Press: Beijing, China, 2020; pp. 38–39, 101–102, 148–149, 304–305, 363–364. [Google Scholar]
- Xie, Z.; Wang, M.; Lu, R. Herbological study for the Beimu categorical Chinese medicine on the original plants. Zhong Yao Cai 2000, 23, 423–427. [Google Scholar]
- Yao, L.W.; Liu, Y. Determ ination of Naringin in Fufang Beimu Tablets by HPLC. Drug Stand. China 2009, 10, 215–217. [Google Scholar]
- Miao, J.L.; Xiao, C.Y.; You, D.; Wang, Z.G. Pharmacodynamic study on Qiuzao Ganmao Granules. Contemp. Med. Forum 2014, 12, 152–153. [Google Scholar]
- Mukemre, M.; Behcet, L.; Cakilcioglu, U. Ethnobotanical study on medicinal plants in villages of Catak (Van-Turkey). J. Ethnopharmacol. 2015, 166, 361–374. [Google Scholar] [CrossRef]
- Wang, D.; Wang, S.; Du, Q.; Wang, N.; Liu, S.; Wang, X.; Jiang, J. Optimization of extraction and enrichment of steroidal alkaloids from bulbs of cultivated Fritillaria cirrhosa. Biomed. Res. Int. 2014, 2014, 258402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, F.; Hou, K.; Gao, F.; Hu, B.; Chen, Q.; Wu, W. Peimisine and peiminine production by endophytic fungus Fusarium sp isolated from Fritillaria Unibracteata var. wabensis. Phytomedicine 2014, 21, 1104–1109. [Google Scholar] [CrossRef]
- Rashid, I.; Yaqoob, U. Traditional uses, phytochemistry and pharmacology of genus Fritillaria—A review. Bull. Natl. Res. Cent. 2021, 45, 124. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, H.P.; Ren, Q.; Hu, H.Y.; Yang, T.C.; Li, X.W. Natural drug sources for respiratory diseases from Fritillaria: Chemical and biological analyses. Chin. Med. 2021, 16, 40. [Google Scholar] [CrossRef]
- Liu, F.J.; Jiang, Y.; Li, P.; Liu, Y.D.; Yao, Z.P.; Xin, G.Z.; Li, H.J. Untargeted metabolomics coupled with chemometric analysis reveals species-specific steroidal alkaloids for the authentication of medicinal Fritillariae Bulbus and relevant products. J. Chromatogr. A 2020, 1612, 460630. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, L.N.; Du, J.F.; Zheng, X.Y.; Li, H.J.; Li, P.; Xin, G.Z.; Jiang, Y. Comparative analysis and natural evolution of squalene epoxidase in three Fritillaria species. Plant Mol. Biol. 2020, 103, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.C.; Chen, S.J.; Wang, H.H.; Pan, P.; Luo, Y.Y.; Sha, X.X. Mechanisms of Fritillariae thunbergii Flos in lung cancer treatment from a systems pharmacology perspective. J. Ethnopharmacol. 2021, 264, 113245. [Google Scholar] [CrossRef] [PubMed]
- Dziurka, M.; Kubica, P.; Kwiecien, I.; Biesaga-Koscielniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; Elansary, D.O.; Elansary, H.O.; Szopa, A. In vitro cultures of some medicinal plant species (Cistus x incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants-evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants 2021, 10, 454. [Google Scholar] [CrossRef]
- Sharma, B.; Seth, R.; Thakur, S.; Parmar, R.; Masand, M.; Devi, A.; Singh, G.; Dhyani, P.; Choudhary, S.; Sharma, R.K. Genome-wide transcriptional analysis unveils the molecular basis of organ-specific expression of isosteroidal alkaloids biosynthesis in critically endangered Fritillaria roylei Hook. Phytochemistry 2021, 187, 112772. [Google Scholar] [CrossRef]
- Lin, G.; Li, P.; Li, S.L.; Chan, S.W. Chromatographic analysis of Fritillaria isosteroidal alkaloids, the active ingredients of Beimu, the antitussive traditional Chinese medicinal herb. J. Chromatogr. A 2001, 935, 321–338. [Google Scholar] [CrossRef]
- Li, H.J.; Jiang, Y.; Li, P. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Nat. Prod. Rep. 2006, 23, 735–752. [Google Scholar] [CrossRef]
- Benveniste, P. Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol. 2004, 55, 429–457. [Google Scholar] [CrossRef]
- Chen, T.; Zhong, F.R.; Yao, C.; Chen, J.; Xiang, Y.Q.; Dong, J.J.; Yan, Z.Y.; Ma, Y.T. A systematic review on traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of Fritillariae cirrhosae bulbus. Evid. Based Complementary Altern. Med. 2020, 2020, 1536534. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Q.; Ji, H.; Li, P.; Jiang, Y.; Fang, W. Selective antagonism activity of alkaloids from bulbs Fritillariae at muscarinic receptors: Functional studies. Eur. J. Pharmacol. 2006, 551, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, M.; Li, J.; Xiao, P.; Chen, S.; Chen, S. Alkaloid constituents of Fritillaria cirrhosa. Zhong Cao Yao 2009, 40, 15–17. [Google Scholar]
- Wang, D.D.; Zhu, J.Y.; Wang, S.; Wang, X.X.; Ou, Y.; Wei, D.D.; Li, X.P. Antitussive, expectorant and anti-inflammatory alkaloids from Bulbus Fritillariae Cirrhosae. Fitoterapia 2011, 82, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Lu, Y.; Ding, W.; Chen, Z. Studies on the chemical constituents of Fritillaria cirrhosa D. Don. Acta Univertitatis Med. Second. Shanghai 1999, 19, 487–489. [Google Scholar]
- Zhang, Q.J.; Zheng, Z.F.; Yu, D.Q. Steroidal alkaloids from the bulbs of Fritillaria unibracteata. J. Asian Nat. Prod. Res. 2011, 13, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hung, A.; Li, M.D.; Yang, A.W.H. Fritillariae thunbergii bulbus: Traditional uses, phytochemistry, pharmacodynamics, pharmacokinetics and toxicity. Int. J. Mol. Sci. 2019, 20, 1667. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, M.R.; Yang, T.C.; Ming, T.W.; Gaun, T.K.W.; Ye, B.G. LC-MS/MS coupled with chemometric analysis as an approach for the differentiation of bulbus Fritillaria unibracteata and Fritillaria ussuriensis. Phytochem. Anal. 2021, 32, 957–969. [Google Scholar] [CrossRef]
- Yu, S.C.; Xiao, P.G. Study on chemical constituents of the plant Fritillaria unibracteata. J. Integr. Plant Biol. 1990, 32, 929–935. [Google Scholar]
- Hu, C.H.; Shang, E.N.; Lin, W.H.; Cai, M.S. Studies on the chemical constituents of Fritillaria taipaiensis L. J. Integr. Plant Biol. 1993, 28, 516–521. [Google Scholar]
- Feng, R.; Lin, W.H.; Cai, M.S. Studies on the chemical constituents of Fritillaria taipaiensis L. Chin. Chem. Lett. 1994, 5, 383–384. [Google Scholar]
- Peng, R.; Ma, P.; Mo, R.Y.; Sun, N.X. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis P. Y. Li. Acta Pharm. Sin. B 2013, 3, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.W.; Liu, Y.M.; Zhu, M.M.; Ma, R.X. Isosteroidal alkaloids of Fritillaria taipaiensis and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Phytochemistry 2022, 201, 113279. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Ma, P.; Peng, R. Quantitative determination of peimisin and total alkaloids in Fritillaria taipaiensis of different growing stage. Zhong Yao Cai 2011, 34, 1034–1037. [Google Scholar] [PubMed]
- Kaneko, K.; Katsuhara, T.; Mitsuhashi, H.; Chen, Y.P.; Hsu, H.Y.; Shiro, M. Isolation and structure elucidation of new alkaloids from Fritillaria delavayi Franch. Chem. Pharm. Bull. 1985, 33, 2614–2617. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.W.; Chen, S.B.; Li, J.; Xiao, P.G.; Chen, S.L. Steroidal alkaloids from the bulbs of Fritillaria delavayi Franch. (Liliaceae). Biochem. Syst. Ecol. 2008, 36, 665–668. [Google Scholar] [CrossRef]
- Huang, E.Y.; Li, C.S.; Xu, D.M. Study on the alkaloid constituente of Fritillaria pallidiflora Schrenk. Zhongguo Zhong Yao Za Zhi 1990, 15, 551–552. [Google Scholar]
- Xu, D.M.; Huang, E.X.; Wang, S.Q.; Wen, X.Q.; Wu, X.Y. Chemical constituents of Fritillaria pallidiflora Schrenk. J. Integr. Plant Biol. 1990, 32, 789–793. [Google Scholar] [CrossRef]
- Duan, B.Z.; Huang, L.F.; Chen, S.L. Simultaneous determination of peimisine and sipeimine in Fritillaria walujewii regel and Fritillaria pallidiflora schrenk by UPLC-ELSD. Acta Pharm. Sin. B 2010, 45, 1541–1544. [Google Scholar]
- Xu, W.L.; Liu, M.; Chen, D.L.; Wang, J.Z. Chemical constituents from bulbs of Fritillaria pallidiflora Schrenk. Biochem. Syst. Ecol. 2014, 57, 198–202. [Google Scholar] [CrossRef]
- Li, Y.; Yili, A.; Li, J.; Muhamat, A.; Aisa, H.A. New isosteroidal alkaloids with tracheal relaxant effect from the bulbs of Fritillaria pallidiflora Schrenk. Bioorg. Med. Chem. Lett. 2016, 26, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xu, W.; Xu, C.; Chen, D.; Wang, J. Two new steroidal alkaloids from bulbs of Fritillaria pallidiflora. Zhong Cao Yao 2016, 47, 876–880. [Google Scholar]
- Wang, D.D.; Li, Z.; Zhang, L.; Atanasov, A.G.; Wang, S. Characterization of the isosteroidal alkaloid chuanbeinone from bulbus of Fritillaria pallidiflora as novel antitumor agent in vitro and in vivo. Planta Med. 2016, 82, 195–204. [Google Scholar] [CrossRef]
- Li, Y.; Yili, A.; Muhamat, A.; Aisa, H.A. A new alkaloid with tracheal relaxant effect from the bulbs of Fritillaria pallidiflora. Chem. Nat. Compd. 2017, 53, 926–928. [Google Scholar] [CrossRef]
- Zhang, M.L.; Si, Y.; Ma, G.X.; Wei, H.Y.; Xu, X.Q.; Guan, Y.Q.; Shi, L.L.; Zhang, J. Three new compounds isolated from the bulbs of Fritillaria pallidiflora Schrenk and their anti-inflammatory activity. Phytochem. Lett. 2022, 47, 97–101. [Google Scholar] [CrossRef]
- Xu, Y.J.; Xu, D.M.; Luo, G.; Huang, E.X.; Wu, X.Y.; Jin, X.Q.; Cui, D.B.; Liu, S.Y. Isolation and identification of yibeissine. Acta Pharm. Sin. B 1992, 27, 121–124. [Google Scholar]
- Shen, S.; Li, G.; Huang, J.; Chen, C.; Ren, B.; Lu, G.; Tan, Y.; Zhang, J.; Li, X.; Wang, J. Steroidal saponins from Fritillaria pallidiflora Schrenk. Fitoterapia 2012, 83, 785–794. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, X.; Ren, Y.; Muhatar; Liang, X. Study on the constituents of Fritillaria walujewii. Acta Pharm. Sin. B 1984, 19, 894–898. [Google Scholar]
- Liu, Y.M.; Feng, Y.D.; Lu, X.; Nie, J.B.; Li, W.; Wang, L.N.; Tian, L.J.; Liu, Q.H. Isosteroidal alkaloids as potent dual-binding site inhibitors of both acetylcholinesterase and butyrylcholinesterase from the bulbs of Fritillaria walujewii. Eur. J. Med. Chem. 2017, 137, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, Y.; Kwon, Y.; Kim, C. Alkaloid compounds of the bulbus of Fritillaria walujewii. Korean J. Pharmacogn. 1998, 29, 104–109. [Google Scholar]
- Huang, J.; Lei, C.; Aisa, H.A.; Yu, M.; Yili, A.; Hou, A. Isosteroidal alkaloids from Fritillaria karelinii. Chin. J. Org. Chem. 2019, 39, 842–847. [Google Scholar] [CrossRef]
- Qian, Z.Z.; Nohara, T. Steroidal alkaloids of Fritillaria Maximowiczii. Phytochemistry 1995, 40, 979–981. [Google Scholar] [CrossRef]
- Kaneko, K.; Naruse, N.; Haruki, K.; Mitsuhashi, H. Isobaimonidine, a new Fritillaria alkaloid from the aerial part of Fritillaria verticillata. Chem. Pharm. Bull. 1980, 28, 1345–1346. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Naruse, N.; Tanaka, M.; Yoshida, N. Fritillarizine, a new Fritillaria alkaloid isolated from the aerial part of mature Fritillaria verticillata. Chem. Pharm. Bull. 1980, 28, 3711–3713. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, Y.; Kaneko, K.; Shiro, M.; Chen, Y.P.; Hsu, H.Y.; Lee, P.; Xu, G.J. Tortifoline, a novel (20s, 22r)-5-alpha-cevanine alkaloid from Fritillaria tortifolia. Chem. Pharm. Bull. 1989, 37, 1514–1516. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zong, J.F.; Yili, A.; Yu, M.H.; Aisa, H.A.; Hou, A.J. Isosteroidal alkaloids from the bulbs of Fritillaria tortifolia. Fitoterapia 2018, 131, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lao, A.; Ma, G.; Xu, R. Studies on chemical constituents of Fritillaria thunbergii Miq. J. Integr. Plant Biol. 1991, 33, 923–926. [Google Scholar]
- Zhang, J.; Lao, A.; Huang, H.; Ma, G.; Xu, R. Study on the chemical constituents of Fritillaria thunbergii Miq. III. isolation and identification of zhebeinone. J. Integr. Plant Biol. 1992, 27, 472–475. [Google Scholar]
- Zhang, J.; Lao, A.; Chen, Q.; Xu, R. Studies on the chemcial constituents of Dongbeimu (Fritillaria thunbergii var. chekiangensis) (I). Zhong Cao Yao 1993, 24, 341–342. [Google Scholar]
- Chan, S.W.; Li, P.; Kwan, Y.W.; Lin, G. In vitro tracheobronchial relaxation of Fritillaria alkaloids. Chin. J. Nat. Med. 2011, 9, 345–353. [Google Scholar]
- Du, Q.; Wang, D.; Wang, S. The pharmaceutical research of Bulbus fritillariae. Res. Rev. J. Pharmacogn. Phytochem. 2016, 4, 6–18. [Google Scholar]
- Zhang, J.; Lao, A.; Xu, R. Studies on the chemical constituents of fresh bulbs of Fritillaria thunbergii Miq. Zhongguo Zhong Yao Za Zhi 1993, 18, 354–355. [Google Scholar] [PubMed]
- He, C.L.; Liu, X.H.; Liu, Y.R.; Wang, J.Z.; Chen, D.L. A new alkaloid with cytotoxic activity from Fritillaria thunbergii Miq. Nat. Prod. Res. 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, J.; Komori, T.; Kawasaki, T.; Schulten, H.R. Field desorption mass-spectrometry of natural-products. 9. basic steroid saponins from aerial parts of Fritillaria-Thunbergii. Phytochemistry 1982, 21, 187–192. [Google Scholar] [CrossRef]
- Wu, J.Z.; Wang, M.T. Chemical constituents of Fritillaria in Hubei VⅢ. Carbon-13 NMR spectrum analysis of hupehenine and its derivatives. Zhong Cao Yao 1989, 20, 530–532. [Google Scholar]
- Li, P.; Xu, G.J.; Xu, L.S. Determination of verticine and verticinone in Hupeh Fritillary (Fritillaria hupehensis). Zhong Cao Yao 1993, 24, 579–580. [Google Scholar]
- Zhang, Z.; Fan, C. Research of chemical components of Jiangxi Fritillaria monantha Migo (I). Zhong Cao Yao 1994, 38, 48. [Google Scholar]
- Zhang, Y.H.; Yang, X.L.; Zhang, P.; Zhou, X.F.; Ruan, H.L.; Pi, H.F.; Wu, J.Z.; Sun, H.D. Cytotoxic alkaloids from the bulbs of Fritillaria hupehensis. Chem. Biodivers 2008, 5, 259–266. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, M.; Liu, Y.R.; Chen, D.L. Study on isosteroidal alkaloid constituents from the bulbs of Fritillaria hupehensis. West China J. Pharm. Sci. 2022, 37, 233–235. [Google Scholar]
- Liu, H.N.; Li, F.; Luo, Y.M.; Zhu, W.F. Two novel isosteroid alkaloids from Fritillaria monatha. J. Asian Nat. Prod. Res. 2007, 9, 563–567. [Google Scholar] [CrossRef]
- Zhang, P.; Pi, H.; Zhang, J.; Ruan, H.; Zhang, Y.; Wu, J. Alkaloid of stems and leaves in Fritillaria hupehensis. Zhong Cao Yao 2008, 39, 1294–1296. [Google Scholar]
- Li, Q.; Wu, Z. Isolation and identification of alkaloids from Fritillaria anhuensis S. C. Chen et S. F. Yin. J. Integr. Plant Biol. 1986, 21, 767–771. [Google Scholar]
- Shou, Q.Y.; Wohlmuth, H.; He, X.X.; Liu, L.; Shen, Z.W. Chemical constituents from Fritillaria anhuiensis. Biochem. Syst. Ecol. 2012, 45, 16–19. [Google Scholar] [CrossRef]
- Shou, Q.Y.; Tan, Q.; Wu Shen, Z. Two 22S-solanidine-type steroidal alkaloids from Fritillaria anhuiensis. Fitoterapia 2010, 81, 81–84. [Google Scholar] [CrossRef]
- Xu, M.; Xu, D.; Huang, E.; Zheng, W. Alkaloids research of Fritillaria ussuriensis Maxim flower. Zhong Yao Tong Bao 1988, 13, 32–33. [Google Scholar]
- Yang, Z.D.; Duan, D.Z. A new alkaloid from Fritillaria ussuriensis Maxim. Fitoterapia 2012, 83, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Jiang, Y.; Wu, K.; Wang, S.; Wang, Y.T. Evaluation of antitumor property of extracts and steroidal alkaloids from the cultivated Bulbus Fritillariae ussuriensis and preliminary investigation of its mechanism of action. BMC Complementary Altern. Med. 2015, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yao, Z.P.; Li, P.; Chen, S.B.; So, P.K.; Shi, Z.Q.; Hu, B.; Liu, L.F.; Xin, G.Z. Global detection and semi-quantification of Fritillaria alkaloids in Fritillariae Ussuriensis Bulbus by a non-targeted multiple reaction monitoring approach. J. Sep. Sci. 2016, 39, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Nishizawa, M.; Kaneko, K.; Ikura, M.; Hikichi, K.; Shiro, M.; Chen, Y.P.; Hsu, H.Y. New steroidal alkaloids having a novel seven ring skeleton from Fritillaria ussuriensis Maxim. Tetrahedron. Lett. 1989, 45, 5755–5766. [Google Scholar] [CrossRef]
- Xu, D.M.; Xu, M.L.; Wang, S.Q.; Huang, E.X.; Wen, X.G.; Arihara, S.; Shoji, N. Two new steroidal alkaloids from Fritillaria ussuriensis. J. Nat. Prod. 1990, 53, 549–552. [Google Scholar] [CrossRef]
- Xiao, P.G.; Jiang, Y.; Li, P.; Luo, Y.B.; Liu, Y. The botanical origin and pharmacophylogenetic treatment of Chinese materia medica Beimu. Acta Phytotaxon. Sin. 2007, 45, 473–487. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Gong, X.; Yang, X.L.; Zhu, Y.G.; Cheng, Z. Characterizing the major morphological traits and chemical compositions in the bulbs of widely cultivated Fritillaria species in China. Biochem. Syst. Ecol. 2013, 46, 130–136. [Google Scholar] [CrossRef]
- Liu, Z.D.; Wang, S.; Chen, S.C. A taxonomic note of Fritillaria wabuensis. Acta Bot. Yunnanica 2009, 31, 145–146. [Google Scholar] [CrossRef]
- Goncalves, D.J.P.; Simpson, B.B.; Ortiz, E.M.; Shimizu, G.H.; Jansen, R.K. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 2019, 138, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Zhu, X.; Wu, J. UPLC-ELSD fingerprints of Fritillariae pallidiflorae bulbus of wild growing and cultivated species from different habitats. Chin. J. Mod. Appl. Pharm. 2018, 35, 1660–1664. [Google Scholar]
- Kul’Kova, V.V.; Shakirov, R.; D’Yakonov, A.L. Steroid alkaloids of the plant and animal Kingdoms. Chem. Nat. Compd. 1999, 35, 107–149. [Google Scholar] [CrossRef]
- Kutchan, T.M.; Frick, S.; Weid, M. Engineering plant alkaloid biosynthetic pathways: Progress and prospects. Adv. Plant Biochem. 2008, 1, 283–310. [Google Scholar]
- Zhao, Q.; Li, R.; Zhang, Y.; Huang, K.; Wang, W.; Li, J. Transcriptome analysis reveals in vitro-cultured regeneration bulbs as a promising source for targeted Fritillaria cirrhosa steroidal alkaloid biosynthesis. 3 Biotech. 2018, 8, 191. [Google Scholar] [CrossRef]
- Kumar, P.; Ashrita; Acharya, V.; Warghat, A.R. Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.)-High value Himalayan medicinal herb. Phytochemistry 2021, 183, 112631. [Google Scholar] [CrossRef]
- Lu, S. Recent advances in biosynthesis and regulation of bioactive compounds in medicinal plants. Curr. Pharm. Biotechnol. 2021, 22, 720–721. [Google Scholar] [CrossRef]
- Donald, K.A.G.; Hampton, R.Y.; Fritz, I.B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl. Environ. Microb. 1997, 63, 3341–3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Ma, J.; Li, B.; Tao, Q.; Gan, J.; Yan, Z. Effects of different harvesting times and processing methods on the quality of cultivated Fritillaria cirrhosa D. Don. Food Sci. Nutr. 2021, 9, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Chen, J.; Niu, Y.; Lin, X. Full-length transcriptome sequencing provides insights into flavonoid biosynthesis in Fritillaria hupehensis. Life 2021, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Day, P.D.; Berger, M.; Hill, L.; Fay, M.F.; Leitch, A.R.; Leitch, I.J.; Kelly, L.J. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 2014, 80, 11–19. [Google Scholar] [CrossRef]
- Muraseva, D.S.; Novikova, T.I. Efficient protocol for in vitro propagation from bulb scale explants of Fritillaria ruthenica Wikstr. (Liliaceae), a rare ornamental species. Rend. Lincei Sci. Fis. Nat. 2018, 29, 491–497. [Google Scholar] [CrossRef]
- He, X. The varieties and characters of Fritillaria species. Strait Pharm. J. 2002, 14, 55–56. [Google Scholar]
- Jiang, R.; Zou, M.; Qin, Y.; Tan, G.; Huang, S.; Quan, H.; Zhou, J.Y.; Liao, H. Modeling of the potential geographical distribution of three Fritillaria species under climate change. Front. Plant Sci. 2021, 12, 749838. [Google Scholar] [CrossRef]
- Ambrozova, K.; Mandakova, T.; Bures, P.; Neumann, P.; Leitch, I.J.; Koblizkova, A.; Macas, J.; Lysak, M.A. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 2011, 107, 255–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 2015, 90, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Bock, D.G.; Kane, N.C.; Ebert, D.P.; Rieseberg, L.H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: Neither from Jerusalem nor an artichoke. New Phytol. 2014, 201, 1021–1030. [Google Scholar] [CrossRef]
- Alwadani, K.G.; Janes, J.K.; Andrew, R.L. Chloroplast genome analysis of box-ironbark Eucalyptus. Mol. Phylogenet. Evol. 2019, 136, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, M.; Cui, N.; Xiang, L.; Li, Y.; Li, X.; Chen, S. Plant super-barcode: A case study on genome-based identification for closely related species of Fritillaria. Chin. Med. 2021, 16, 52. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.Q.; Yu, Y.; Liu, Y.M.; Xie, D.F.; Li, J.; He, X.J.; Zhou, S.D. Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae): Bi-directional dispersal between biodiversity hotspots in Eurasia. Ann. Bot. 2018, 122, 1245–1262. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, Y.; Liu, Y.M.; Xie, D.F.; He, X.J.; Zhou, S.D. Comparative chloroplast genomics of Fritillaria (Liliaceae), inferences for phylogenetic relationships between Fritillaria and Lilium and plastome evolution. Plants 2020, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Z.; Yang, J.; Lv, G. Complete chloroplast genome of seven Fritillaria species, variable DNA markers identification and phylogenetic relationships within the genus. PLoS ONE 2018, 13, e0194613. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Jiang, J.W.; Wang, C.; Fitzgerald, M.; Hu, W.F.; Zhou, Y.M.; Zhang, H.; Chen, S.L. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm. Sin. B 2020, 10, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Xian, Y.F.; Zhang, J.; Bian, Z.X.; Zhou, H.; Zhang, Z.B.; Lin, Z.X.; Xu, H.X. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B 2020, 10, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Paek, K.Y.; Murthy, H.N. High frequency of bulblet regeneration from bulb scale sections of Fritillaria thunbergii. Plant Cell Tiss. Org. 2002, 68, 247–252. [Google Scholar] [CrossRef]
- Xue, J.P.; Zhang, A.M.; Geng, M.L.; Ma, L. Study on bulblet induction of Fritillaria anhuiensis in vitro. Zhongguo Zhong Yao Za Zhi 2008, 33, 2603–2606. [Google Scholar]
- Chen, T.; Zhang, L.; Zhou, X.; Shu, G.; Zhou, Y. Preliminary study of fertilizer effect on yield and quality of Fritillaria ussuriensis. Zhongguo Zhong Yao Za Zhi 2009, 34, 544–546. [Google Scholar]
- Editorial Board of Yinxian Local Chronicles, Z.P. Yin Xian Zhi; China Publishing House: Shanghai, China, 1996; pp. 343–345. [Google Scholar]
- Panan County Annals Compilation Committee. Panan Xian Zhi; Zhejiang People’s Publishing House: Hangzhou, China, 1993; pp. 185–190. [Google Scholar]
- Zhu, S.Y.; Hu, Z.H.; Yu, W.Q. Study on the annual periodicity of growth and development of Fritillaria palldielora Schrenk. J. Integr Plant Biol. 1980, 22, 22–25. [Google Scholar]
- Commission Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medicine Science Technology Press: Beijing, China, 2010; pp. 34–35, 90–91, 132–133, 274–275, 327–328. [Google Scholar]
- Wan, J.M. The new research progress of Fritillaria hupehensis Hsiao et K. C. Hsia. Tea Fujian 2019, 41, 8. [Google Scholar]
- Chang, W.C. Fritillaria Ussuriensis Cultivation; Science Popularization Press: Beijing, China, 1984; pp. 2–3. [Google Scholar]
- Cui, D.L.; Zong, X.C.; Ren, R.Y.; Wei, J.C.; Situ, L.L.; Zhang, Y.L. Pollination biology and breeding system of Fritillaria ussuriensis Maxim. Xibei Zhiwu Xuebao 2010, 30, 1404–1408. [Google Scholar]
- Cunningham, A.B.; Brinckmann, J.A.; Pei, S.J.; Luo, P.; Schippmann, U.; Long, X.; Bi, Y.F. High altitude species, high profits: Can the trade in wild harvested Fritillaria cirrhosa (Liliaceae) be sustained? J. Ethnopharmacol. 2018, 223, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Partap, M.; Ashrita; Rana, D.; Kumar, P.; Warghat, A.R. Metabolite and expression profiling of steroidal alkaloids in wild tissues compared to bulb derived in vitro cultures of Fritillaria roylei-High value critically endangered Himalayan medicinal herb. Ind. Crop Prod. 2020, 145, 111945. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Li, Z. Experiment on the rapid reproduction of Fritillaria taipaiensis P.Y. Li. Zhongguo Zhong Yao Za Zhi 1996, 21, 15–17. [Google Scholar]
- Zhang, Z.M.; Wang, B.; Yang, S.M.; Liu, Y.X. Effects of biochar on yield, quality and soil physical and chemical properties of Fritillaria thunbergii. J. Zhejiang Agric. Sci. 2022, 63, 492–494. [Google Scholar]
- Riziwanguli, S.; Kaisa, S.; Aybiek. Research on identification of pathogeny and biological characteristics of bulbus Fritillaria root rot. Tianjin Agric. Sci. 2015, 21, 118–121. [Google Scholar]
- Ning, R.B.; Sun, H.F. Progress of researches on the management of diseases of medical Fritillaria. J. Northeast Agric. Sci. 2018, 43, 34–37. [Google Scholar] [CrossRef]
- Xiang, D.S. Several major diseases and integrated control methods of Hubei Fritillaria. Hubei Agric. Sci. 2010, 49, 1109–1111. [Google Scholar] [CrossRef]
- Wang, C.Y. Artificial cultivation technique of Fritillaria ussuriensis. For. By-Prod. Spec. China 2019, 1, 52–53. [Google Scholar]
- Ma, Y.Z.; Zhang, W.G.; Li, R.; Cheng, Y.C.; Jin, L.; Cui, Z.J.; Ma, Y.; Wang, Z.H.; Wang, Y.Y. A study of the different cultivation treatments and effects on the sowing process of Fritillaria cirrhosa and Fritillaria unibracteata. Acta Prataculturae Sin. 2022, 31, 86–95. [Google Scholar] [CrossRef]
- Fang, C.F.; Zhang, W.T.; Ma, L.K.; Chen, B.L. Determination of carbendazim residues in Fritillaria thunbergii and acute dietary intake risk assessment. Chin. Tradit. Pat. Med. 2018, 40, 234–236. [Google Scholar]
- Zhu, R.W.; Zheng, C.J. The test of control Fritillaria ussuriensis Maxim rust by using several biological pesticides. Heilongjiang Agric. Sci. 2008, 3, 76–77. [Google Scholar]
- Song, X.S.; Yu, W.J.; Zhou, Q.; Deng, X. Control effect of combination of Trichoderma virens T43 and soil improvement agent to black rot of Fritillaria ussuriensis and its induced resistance to Fritillaria ussuriensis. For. Eng. 2015, 31, 24–28. [Google Scholar] [CrossRef]
- Wang, W.T.; Guo, W.Y.; Jarvie, S.; Svenning, J.C. The fate of Meconopsis species in the Tibeto-Himalayan region under future climate change. Ecol. Evol. 2020, 11, 887–899. [Google Scholar] [CrossRef]
- Chen, H.R.; Chen, F.T.; Chen, M.; Zhong, F.L. Tissue culture of Fritillaria cirrhosae. China J. Chin. Mater. Med. 1985, 10, 442. [Google Scholar]
- Jiang, J.P.; Zong, K.K.; Wang, S.L.; Chen, Y.Q. Ecological planting mode and benefit of F. thunbergii in Zhejiang Province. J. Zhejiang Agric. Sci. 2021, 62, 536–537. [Google Scholar] [CrossRef]
- Gottesfeld, L.M.J. The role of plant foods in traditional wetsuweten nutrition. Ecol. Food Nutr. 1995, 34, 149–169. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Paniagua-Zambrana, N.Y.; Sikharulidz, S.; Kikvidze, Z.; Kikodze, D.; Jinjikhadze, T.; Shanshiashvili, T.; Chelidze, D.; Batsatsashvili, K.; Bakanidze, N. Wine, beer, snuff, Medicine and loss of diversity-ethnobotanical travels in Georgian Caucasus. Ethnobot. Res. Appl. 2014, 12, 237–313. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.K.; Dong, X.D.; Yang, X.X. Investigation in Resources of Fritillaries in Yunnan Province. J. Dali Med. Coll. 1998, 7, 8–9. [Google Scholar]
- Wang, L.X.; Mao, S.H.; Liu, X.M. Study on chemical composition of Fritillaria davidii. J. Chengdu Univ. Tradit. Chin. Med. 1979, 4, 84–87. [Google Scholar]
- Ping, L.; Xu, G.J.; Xu, L.S.; Wang, Y.X. Active constituents of the bulbs of Fritillaria-ebeiensis and their antitumor-activity in mice. Phytother. Res. 1995, 9, 460–462. [Google Scholar] [CrossRef]
- Yu, S.C.; Xiao, P.G. Germplasm resources and application of Fritillaria in China. Zhong Yao Cai 1991, 1, 18–23. [Google Scholar]
- Ulloa, C.U.; Acevedo-Rodriguez, P.; Beck, S.; Belgrano, M.J.; Bernal, R.; Berry, P.E.; Brako, L.; Celis, M.; Davidse, G.; Forzza, R.C.; et al. An integrated assessment of the vascular plant species of the Americas. Science 2017, 358, 1614–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Li, H.J.; Wei, X.P.; Wei, J.H.; Liu, H.T.; Li, X.X.; Pan, C.Z.; Zhang, B.G.; Qi, Y.D. Study on the phylogenetic relationship of Fritillaria L. from Xinjiang. Mod. Chin. Med. 2018, 20, 502–509. [Google Scholar]
- Matsuo, Y.; Shinoda, D.; Nakamaru, A.; Mimaki, Y. Steroidal glycosides from the bulbs of Fritillaria meleagris and their cytotoxic activities. Steroids 2013, 78, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, C. Drug identification and research on Fritillaria monantha Migo (pengze beimu) produced in Jiangxi Province. Zhongguo Zhong Yao Za Zhi 1991, 16, 711–713. [Google Scholar]
- Lambert, M.S.; Mariam, T.T.; Susan, F.H. Fritillaria Ojaiensis; Betascript Publishing: Totnes, UK, 2010; pp. 1–10. [Google Scholar]
- Kazutomo, O.; Yoshihiro, M.; Yutaka, S.; Tamotsu, N.; Taichi, O. Cerveratrum alkaloids from bulbs of Fritillaria persica. Phytochemistry 1992, 31, 3605–3607. [Google Scholar]
- Ma, R.L.; Xu, S.R.; Chen, Y.; Guo, F.X.; Wu, R.; Okyere, S.A.; Wang, F.S.; Jing, Y.M.; Wang, X.Z. Effects of exogenous application of salicylic acid on drought performance of medicinal plant, Fritillaria przewalskii Maxim. Phytoprotection 2019, 99, 27–35. [Google Scholar] [CrossRef]
- Lambert, M.S.; Mariam, T.T.; Susan, F.H. Fritillaria Pudica; Betascript Publishing: Totnes, UK, 2010; pp. 2–8. [Google Scholar]
- Sajad, A.; Ali, T.; Mahmoud, S.S.L.; Homayuon, F. Fritillaria raddeana: An important and neglected species of fritillaria in northeastern provinces of Iran. In Proceedings of the International Symposium on Role of Plant Genetic Resources on Reclaiming Lands and Environment Deteriorated, Shiraz, Iran, 16–20 May 2016. [Google Scholar]
- Lambert, M.S.; Mariam, T.T.; Susan, F.H. Fritillaria Recurve; Betascript Publishing: Totnes, UK, 2010; pp. 1–9. [Google Scholar]
- Hickman, J.C. The Jepson Manual Higher Plants of California; University of California Press, Ltd.: London, UK, 1996; pp. 381–382. [Google Scholar]
- Wang, D.; Wang, S.; Chen, X.; Xu, X.; Zhu, J.; Nie, L.; Long, X. Antitussive, expectorant and anti-inflammatory activities of four alkaloids isolated from Bulbus of Fritillaria wabuensis. J. Ethnopharmacol. 2012, 139, 189–193. [Google Scholar] [CrossRef] [PubMed]
Species | The Number of Main Bulbs | Bulb Diameter (cm) | Plant Height (cm) | Florescence | Habitat Types and Specimen Collection Places |
---|---|---|---|---|---|
Group 1 (approximately 2700–4000 m) | |||||
F. cirrhosa | 2 | 1–1.5 | 15–65 | May–July | Under forests, in alpine thickets, or on meadows and flood lands. The growth altitude ranged from 2500 to 4600 m. The regions: Sichuan, Xizang, and Yunnan in China; Nepal; India |
The types of alkaloids | Cevanine type with cis-configuration (8): imperialine, chuanbeinone, imperialine-β-N-oxide, delavine, 3β-acetylimperialine, delavinone, isodelavine, yibeinoside A [22,23,24,25]. Cevanine type with trans-configuration (6): peimine, peiminine, puqiedine, ebeiedinone, ebeiedine, isoforticine [22,23,25]. Jervine type (2): peimisine-3-O-β-D-glucopyranoside, peimisine [22,24]. Veratramine type (1): puqienine B [22]. Verazine type (4): puqietinone, cirrhosinine A, cirrhosinine B, delavidine [22,23]. Solanidine type (4): solanidine, solanidine-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside, demissidine, demissidine-3-O-β-D-glucopyranosyl (1→4) glucopyranoside [22,24,26]. | ||||
F. unibracteata | 2 | 0.6–0.8 | 15–50 | June | In moist places of thickets, or on meadows. The altitude ranged from 3200 to 4700 m. The regions: Sichuan and Qinghai in China. |
The types of alkaloids | Cevanine type with cis-configuration (6): chuanbeinone, imperialine, delavinone, delavine, yibeinoside A, imperialine-3β-D-glucoside [27,28,29] Cevanine type with trans-configuration (5): ebeiedinone, peiminine, isopeimine, peimine, puqiedinone-3-O-β-D-glucopyranoside [28,29]. Jervine group (3): songbeisine, peimisine, peimisine-3-O-β-D-glucopyranoside [28,29,30]. | ||||
F. taipaiensis | 2 | 1–1.5 | 20–100 | May–July | Under forests, in hill thickets, or on grassy slopes. The growth altitude ranged from 1500 to 3200 m. The regions: Shaanxi, Gansu, Sichuan, and Hubei in China. |
The types of alkaloids | Cevanine type with cis-configuration (4): taipaienine, chuanbeinone, imperialine, taipainine D [31,32,33,34]. Cevanine type with trans-configuration (2): peimine, peiminine [31,32]. Jervine type (2): peimisine, taipainine A [32,34,35]. | ||||
F. delavayi | 2–3 | 1–2 | 35 | June–July | In sandy and gravelly places or on flood lands. The growth altitude ranged above 4000 m. The regions: Yunnan, Sichuan, Qinghai, and Xizang in China. |
The types of alkaloids | Cevanine type with cis-configuration (5): chuanbeinone, yibeinoside A, imperialine, delavine, delavinone [36,37]. Cevanine type with trans-configuration (2): peimine, peiminine [36,37]. Jervine type (1): peimisine [36]. Verazine type (1): delavidine [37]. | ||||
F. crassicaulis | 2 | 2–2.5 | 30–60 | May | Under forests, or in alpine thickets. The growth altitude ranged from 2500 to 3500 m. The region: Yunnan in China. |
F. przewalskii | 2 | 0.6–1.3 | 20–40 | June–July | In thickets or on meadows. The growth altitude ranged from 2800 to 4400 m. The regions: Gansu, Qinghai, and Sichuan in China. |
Group 2 (approximately 1500–2700 m) | |||||
F. pallidiflora | 2 | 1.5–3.5 | 30–60 | May | In thickets, or on meadows. The growth altitude ranged from 1300 to 1780 m. The region: Xinjiang Uygur Autonomous region in China. |
The types of alkaloids | Cevanine type with cis-configuration (12): imperialine, imperialine-3β-D-glucoside, imperialine-β-N-oxide, yibeinoside A, delavine, yubeinine, sinpeinine A, delavinone, chuanbeinone, 5α, 14α, 17β-cevanin-6-oxo-3β, 20β, 24β-triol, 17β-cevanin-6-oxo-5α,20β-diol, yibeinine [38,39,40,41,42,43,44,45,46]. Cevanine type with trans-configuration (7): yibeinone C, yibeinone D, dongbeinine, zhebeinone-3β-D-glucoside, peimine, yibeinone E, yibeirine [41,42,45]. Other cevanine type (1): ebeinone [45]. Jervine type (6): peimisine, yibeissine, cyclopamine, cycloposine, (20R,22R,23R,25R)-3β,23-dihydroxy-N-methyl-veratram-13(17)-en-6-one, yibeinone A [39,42,47,48]. Veratramine type (1): yibeinone B [42]. Verazine type (2): pingbeinine, yibeinoside C [41]. Solanidine type (4): avenacoside C, (25R)-26-[β-D-glucopyranosyl]oxy]-3β-[(O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl)oxy]-cholesta-5,17-diene-16,22-dione, 26-O-β-D-glucopyranosyl-3,26-dihydroxy-(25R)-5β-furost-12-on-20(22)-ene-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside, aspidistrin [48]. | ||||
F. walujewii | 2 | 1–1.5 | 20–40 | May–June | In thickets, on meadows, or in the cracks of rocks. The growth altitude ranged from 1300 to 2000 m. The regions: Xinjiang Uygur Autonomous region in China; Russia. |
The types of alkaloids | Cevanine type with cis-configuration (8): tortifoline, imperialine-3β-D-glucoside, imperialine, yibeinoside A, walujewine B, walujewine C, walujewine D, walujewine E [49,50]. Cevanine type with trans-configuration (2): petilidine, ebeiedine [50,51]. Jervine group (3): walujewine A, songbeisine, peimisine [50]. | ||||
F. karelinii | 2 | 1 | 12–35 | April | In Artemisia desert or on ferulic beach. The growth altitude ranged from 590 to 3150 m. The region: Xinjiang Uygur Autonomous region in China. |
The types of alkaloids | Cevanine type with cis-configuration (1): persicanidine B [52]. Other cevanine type (3): 27-epiebeienine, ebeienine, heilonine [52]. Jervine type (2): karelinine, 5-epikarelinine [52]. | ||||
F. maximowiczii | 4–5 | 1–2 | 27–54 | June | On the hillsides. The growth altitude ranged from 1400 to 1480 m The regions: Hebei, Liaoning, and Jilin in China. |
The types of alkaloids | Jervine type (2): kuroyurinidine, 23-isokuroyurinidine [53]. | ||||
F. davidii | 3–4 | 1–2 | 10–35 | April | On meadows, or in the cracks of rocks. The growth altitude ranged from 1800 to 2300 m. The region: Sichuan in China. |
F. verticillata | 2 | 2 | 40–50 | April–July | On the hillsides. The growth altitude ranged at 1600 m. The regions: Xinjiang Uygur Autonomous region in China; Japan. |
The types of alkaloids | Cevanine type with trans-configuration (2): fritillarizine, isobaimonidine [54,55]. | ||||
F. tortifolia | 2–3 | 1–3 | 20–40 | April–May | In alpine thickets or on grassy slopes. The growth altitude range was: 1500–2000 m. The region: Xinjiang Uygur Autonomous region in China. |
The types of alkaloids | Cevanine type with cis-configuration (9): tortifoline, frititorine A, frititorine B, imperialinol, imperialine, yubeinine, imperialine-3β-D-glucoside, delavinone, hupehenizioiside [56,57]; Cevanine type with trans-configuration (2): ebeinine, ebeiedinone [57]; Jervine type (3): frititorine C, peimisine, peimisine-3-O-β-D-glucopyranoside [57]. | ||||
F. meleagroides | 2 | 0.5–1.5 | 40 | April | In thickets, on meadows, or on flood lands. The growth altitude range was: 1500 m. The region: Xinjiang Uygur Autonomous region in China; Kazakhstan. |
Group 3 below 1500 m | |||||
F. thunbergii | 2–3 | 1.5–3 | 50–80 | March–April | Low altitude hill under partial shade. The regions: Zhejiang, Anhui, Jiangsu, Jiangxi, and Hunan in China; Japan. |
The types of alkaloids | Cevanine type with trans-configuration (15): peimine, peimidine, peiminine, zhebeinine, eduardine, zhebeirine, ebeiedine, puqiedine, fritillarizine, isobaimonidine, isopeimine, zhebeininoside, peiminoside, verticine-N-oxide, ebeiedinone [3,4,58,59,60,61,62]. Jervine type (2): cyclopamine, peimisine [4,63]. Veratramine type (1): zhebeisine [64]. Verazine type (2): N-demethylpuqietinone, fetisinine [64]. Solanidine type (2): solanidine, solanidine [65]. | ||||
F. monantha | 2–3 | 1.2–3 | 60–100 | April–June | Under forests, in water side, or on wetlands. The growth altitude ranged from 700 to 1200 m. The regions: Hubei, Henan, Anhui, Zhejiang, and Jiangxi in China. |
The types of alkaloids | Cevanine type with trans-configuration (6): peimine, peiminine, hupeheninoside, isopeiminine, 3-O-acetoxyverticinone, 3-O-acetylverticine [66,67,68,69,70]. Cevanine type with cis-configuration (1): delavine [66,69]. Jervine type (4): pengbeimine B, pengbeimine D, peimisine, ebeiensine [71,72]. Veratramine type (2): (3β, 5α, 13α, 23β)-7, 8, 12, 14-tetradehydro-5, 6, 12, 13-tetrahydro-3, 23-dihydroxyveratraman-6-one, (3β, 5α, 13α, 23β)-7, 8, 12, 14-tetradehydro-5, 6, 12, 13-tetrahydro-3, 13, 23-trihydroxyveratraman-6-one [69]. | ||||
F. anhuiensis | 2–3 | 2 | 50 | March–April | Under forests. The growth altitude ranged from 300 to 1500 m. The region: Anhui in China. |
The types of alkaloids | Cevanine type with trans-configuration (6): wanpeinine A, peimine, peiminine, isopeimine, ebeiedinone, verticinedinone [73,74]. Jervine type (4): peimisine, pengbeimine A, pengbeimine B, pengbeimine D [74]. Verazine type (1): sitosterol [74]. Solanidine type (2): solanidine, (22S,25S)-solanid-5,20(21)-dien-3beta-ol [75]. | ||||
F. ussuriensis | 2 | 1–1.5 | 100 | May–June | In thickets, on meadows, or in river valleys. The growth altitude ranged at low elevations. The regions: Liaoning, Jilin, and Heilongjiang in China; Russia, Korea. |
The types of alkaloids | Cevanine type with trans-configuration (7): pingpeimine A, pingpeimine C, peimine, peiminine, ebeiedinone, eduardine, isopeimine [76,77,78,79]. Cevanine type with cis-configuration (3): pingpeimine B, delavine, imperialine [78,79]. Other Cevanine type (5): ussuriedine, ussurienine, ussurienone, ussuriedinone, heilonine [77,79,80]. Jervine type (1): peimisine [76]. Veratramine type (1): pingbeimunone A [77]. Verazine type (2): pingbeinine, pingbeidinoside [81]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, A.; Wu, Q.; Su, J.; Li, C.; Yang, L.; Wang, Z.; Wang, Z.; Li, Z.; Ruan, X.; Zhao, Y.; et al. A Review on the Composition and Biosynthesis of Alkaloids and on the Taxonomy, Domestication, and Cultivation of Medicinal Fritillaria Species. Agronomy 2022, 12, 1844. https://doi.org/10.3390/agronomy12081844
Qu A, Wu Q, Su J, Li C, Yang L, Wang Z, Wang Z, Li Z, Ruan X, Zhao Y, et al. A Review on the Composition and Biosynthesis of Alkaloids and on the Taxonomy, Domestication, and Cultivation of Medicinal Fritillaria Species. Agronomy. 2022; 12(8):1844. https://doi.org/10.3390/agronomy12081844
Chicago/Turabian StyleQu, Aili, Qingfei Wu, Jiahao Su, Chengyuan Li, Li Yang, Zhi’an Wang, Zhonghua Wang, Zhaohui Li, Xiao Ruan, Yingxian Zhao, and et al. 2022. "A Review on the Composition and Biosynthesis of Alkaloids and on the Taxonomy, Domestication, and Cultivation of Medicinal Fritillaria Species" Agronomy 12, no. 8: 1844. https://doi.org/10.3390/agronomy12081844
APA StyleQu, A., Wu, Q., Su, J., Li, C., Yang, L., Wang, Z., Wang, Z., Li, Z., Ruan, X., Zhao, Y., & Wang, Q. (2022). A Review on the Composition and Biosynthesis of Alkaloids and on the Taxonomy, Domestication, and Cultivation of Medicinal Fritillaria Species. Agronomy, 12(8), 1844. https://doi.org/10.3390/agronomy12081844