Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils
Abstract
:1. Introduction
2. Integrating Grassland Ecology and Pasture Agronomy
Experimental Details | Soil Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Agronomy | Management | Length (Years) | Max Seeded Species | Plant Families | Sample Size | Plot Size (ha) | Carbon | Nitrogen | Microbial |
Skinner & Dell 2016 [31] | Rotational Grazing | 10 | 5 | 3 | 4 | 0.90 | ↑ | ||
Bonin et al. 2014 [32] | Rotational Grazing | 5 | 10 | 3 | 4 | 0.35 | - | ||
Skinner et al. 2006 [33] | Rotational Grazing | 4 | 11 | 3 | 2 | 0.40 | ↓ | - | |
Grassland Ecology | |||||||||
Roscher et al. 2004, Weisser et al. 2017 [5,25] (JENA) | Clipped Annually | 15 + | 60 | 15 | ~16 | 0.04 * | ↑ | ↑ | ↑ |
Tilman et al. 2001, 2006 [22,24] (Cedar Creek) 1 | Burned Annually | 28 + | 18 | 4–5 | 25 + | 0.0081 | ↑ | ↑ | ↑ |
Van Ruijven & Berendse 2003, Cong et al. 2014 [23,30] (Netherlands) | Clipped Annually | 22 + | 8 | 5 | 6 | 0.0001 | ↑ | ↑ | |
Hector et al. 1999, Stephan et al. 2000 [24,31] (BIODEPTH) | Clipped Annually | 3 | 14 | 7 | 2 | 0.0004 | ↑ |
3. Assessing Biodiversity
4. The Problem: Low Biodiversity in Pastures
5. Pasture Diversity, Soil Health, and Microbes
6. Practical Considerations for Pasture Diversification
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Land Use. Available online: https://ourworldindata.org/land-use (accessed on 28 June 2022).
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Goslee, S.C.; Sanderson, M.A. Landscape Context and Plant Community Composition in Grazed Agricultural Systems of the Northeastern United States. Landsc. Ecol. 2010, 25, 1029–1039. [Google Scholar] [CrossRef]
- Tracy, B.F.; Sanderson, M.A. Patterns of Plant Species Richness in Pasture Lands of the Northeast United States. Plant Ecol. 2000, 149, 169–180. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant Diversity Effects on Forage Quality, Yield and Revenues of Semi-Natural Grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant Species Diversity and Management of Temperate Forage and Grazing Land Ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Goslee, S.C.; Soder, K.J.; Skinner, R.H.; Tracy, B.F.; Deak, A. Plant Species Diversity, Ecosystem Function, and Pasture Management—A Perspective. Can. J. Plant Sci. 2007, 87, 479–487. [Google Scholar] [CrossRef]
- Roscher, C.; Schumacher, J.; Baade, J.; Wilcke, W.; Gleixner, G.; Weisser, W.W.; Schmid, B.; Schulze, E.-D. The Role of Biodiversity for Element Cycling and Trophic Interactions: An Experimental Approach in a Grassland Community. Basic Appl. Ecol. 2004, 5, 107–121. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and Sustainability Influenced by Biodiversity in Grassland Ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- van Ruijven, J.; Berendse, F. Diversity–Productivity Relationships: Initial Effects, Long-Term Patterns, and Underlying Mechanisms. Proc. Natl. Acad. Sci. USA 2005, 102, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Dukes, J.S. Overyielding among Plant Functional Groups in a Long-Term Experiment. Ecol. Lett. 2004, 7, 95–105. [Google Scholar] [CrossRef]
- Spehn, E.M.; Hector, A.; Joshi, J.; Scherer-Lorenzen, M.; Schmid, B.; Bazeley-White, E.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; et al. Ecosystem Effects of Biodiversity Manipulations in European Grasslands. Ecol. Monogr. 2005, 75, 37–63. [Google Scholar] [CrossRef]
- Fornara, D.A.; Tilman, D. Plant Functional Composition Influences Rates of Soil Carbon and Nitrogen Accumulation. J. Ecol. 2008, 96, 314–322. [Google Scholar] [CrossRef]
- Weisser, W.W.; Roscher, C.; Meyer, S.T.; Ebeling, A.; Luo, G.; Allan, E.; Beßler, H.; Barnard, R.L.; Buchmann, N.; Buscot, F.; et al. Biodiversity Effects on Ecosystem Functioning in a 15-Year Grassland Experiment: Patterns, Mechanisms, and Open Questions. Basic Appl. Ecol. 2017, 23, 1–73. [Google Scholar] [CrossRef]
- Steinauer, K.; Tilman, D.; Wragg, P.D.; Cesarz, S.; Cowles, J.M.; Pritsch, K.; Reich, P.B.; Weisser, W.W.; Eisenhauer, N. Plant Diversity Effects on Soil Microbial Functions and Enzymes Are Stronger than Warming in a Grassland Experiment. Ecology 2015, 96, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakur, M.; Mommer, L. Root Biomass and Exudates Link Plant Diversity with Soil Bacterial and Fungal Biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef]
- Hector, A.; Schmid, B.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; Finn, J.A.; Freitas, H.; Giller, P.S.; Good, J.; et al. Plant Diversity and Productivity Experiments in European Grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.-F.; van Ruijven, J.; Mommer, L.; De Deyn, G.B.; Berendse, F.; Hoffland, E. Plant Species Richness Promotes Soil Carbon and Nitrogen Stocks in Grasslands without Legumes. J. Ecol. 2014, 102, 1163–1170. [Google Scholar] [CrossRef]
- Mueller, K.E.; Tilman, D.; Fornara, D.A.; Hobbie, S.E. Root Depth Distribution and the Diversity–Productivity Relationship in a Long-Term Grassland Experiment. Ecology 2013, 94, 787–793. [Google Scholar] [CrossRef]
- van Ruijven, J.; Ampt, E.; Francioli, D.; Mommer, L. Do Soil-Borne Fungal Pathogens Mediate Plant Diversity–Productivity Relationships? Evidence and Future Opportunities. J. Ecol. 2020, 108, 1810–1821. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.M.H. Biodiversity and Ecosystem Stability in a Decade-Long Grassland Experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Waldron, A.; Miller, D.C.; Redding, D.; Mooers, A.; Kuhn, T.S.; Nibbelink, N.; Roberts, J.T.; Tobias, J.A.; Gittleman, J.L. Reductions in Global Biodiversity Loss Predicted from Conservation Spending. Nature 2017, 551, 364–367. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological Feedbacks in Global Desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Kumar, S. A Global Meta-Analysis of Livestock Grazing Impacts on Soil Properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef] [PubMed]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A Generalized Model of the Effects of Grazing by Large Herbivores on Grassland Community Structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Khoramivafa, M.; Hadidi, M.; Jalilian, N.; Bagheri, A. Overgrazing Is a Critical Factor Affecting Plant Diversity in Nowa-Mountain Rangeland, West of Iran. J. Rangel. Sci. 2021, 11, 141–151. [Google Scholar]
- Zhang, C.; Dong, Q.; Chu, H.; Shi, J.; Li, S.; Wang, Y.; Yang, X. Grassland Community Composition Response to Grazing Intensity under Different Grazing Regimes. Rangel. Ecol. Manag. 2017, 2, 196–204. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y. A Global Meta-Analyses of the Response of Multi-Taxa Diversity to Grazing Intensity in Grasslands. Environ. Res. Lett. 2019, 14, 114003. [Google Scholar] [CrossRef]
- Zanella, P.G.; Junior, L.H.P.D.G.; Pinto, C.E.; Baldissera, T.C.; Werner, S.S.; Garagorry, F.C.; Jaurena, M.; Lattanzi, F.A.; Sbrissia, A.F. Grazing Intensity Drives Plant Diversity but Does Not Affect Forage Production in a Natural Grassland Dominated by the Tussock-Forming Grass Andropogon Lateralis Nees. Sci. Rep. 2021, 11, 16744. [Google Scholar] [CrossRef]
- Skinner, R.H.; Dell, C.J. Yield and Soil Carbon Sequestration in Grazed Pastures Sown with Two or Five Forage Species. Crop Sci. 2016, 56, 2035–2044. [Google Scholar] [CrossRef]
- Bonin, C.L.; Lal, R.; Tracy, B.F. Evaluation of Perennial Warm-Season Grass Mixtures Managed for Grazing or Biomass Production. Crop Sci. 2014, 54, 2373–2385. [Google Scholar] [CrossRef]
- Skinner, R.H.; Sanderson, M.A.; Tracy, B.F.; Dell, C.J. Above- and Belowground Productivity and Soil Carbon Dynamics of Pasture Mixtures. Agron. J. 2006, 98, 320–326. [Google Scholar] [CrossRef]
- Deak, A.; Hall, M.H.; Sanderson, M.A.; Archibald, D.D. Production and Nutritive Value of Grazed Simple and Complex Forage Mixtures. Agron. J. 2007, 99, 814–821. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An Agronomic Perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing Diverse Agricultural Pastures for Improving Ruminant Production Systems. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
- Billman, E.D.; Williamson, J.A.; Soder, K.J.; Andreen, D.M.; Skinner, R.H. Mob and Rotational Grazing Influence Pasture Biomass, Nutritive Value, and Species Composition. Agron. J. 2020, 112, 2866–2878. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Stout, R.; Brink, G. Productivity, Botanical Composition, and Nutritive Value of Commercial Pasture Mixtures. Agron. J. 2016, 108, 93–100. [Google Scholar] [CrossRef]
- Papadopoulos, Y.A.; McElroy, M.S.; Fillmore, S.A.E.; McRae, K.B.; Duyinsveld, J.L.; Fredeen, A.H. Sward Complexity and Grass Species Composition Affect the Performance of Grass-White Clover Pasture Mixtures. Can. J. Plant Sci. 2012, 92, 1199–1205. [Google Scholar] [CrossRef]
- USDA Plants Database. Available online: https://plants.usda.gov/home (accessed on 28 June 2022).
- Daly, A.J.; Baetens, J.M.; De Baets, B. Ecological Diversity: Measuring the Unmeasurable. Mathematics 2018, 6, 119. [Google Scholar] [CrossRef]
- Pielou, E.C. The Measurement of Diversity in Different Types of Biological Collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Jost, L. The Relation between Evenness and Diversity. Diversity 2010, 2, 207–232. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A Tribute to Claude Shannon (1916–2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Chao, A. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers. PLoS ONE 2014, 9, e100014. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Bastazini, V.A.G.; Griffin, J.N. Choosing and Using Multiple Traits in Functional Diversity Research. Environ. Conserv. 2015, 42, 104–107. [Google Scholar] [CrossRef]
- Intercropping Legumes with Native Warm-Season Grasses for Livestock Forage Production in the Mid-South. Available online: https://extension.tennessee.edu/publications/Documents/SP731-G.pdf (accessed on 28 June 2022).
- Deng, M.; Liu, W.; Li, P.; Jiang, L.; Li, S.; Jia, Z.; Yang, S.; Guo, L.; Wang, Z.; Liu, L. Intraspecific Trait Variation Drives Grassland Species Richness and Productivity under Changing Precipitation. Ecosphere 2021, 12, e03707. [Google Scholar] [CrossRef]
- Spehn, E.M.; Joshi, J.; Schmid, B.; Diemer, M.; Körner, C. Above-Ground Resource Use Increases with Plant Species Richness in Experimental Grassland Ecosystems. Funct. Ecol. 2000, 14, 326–337. [Google Scholar] [CrossRef]
- Hector, A.; Hautier, Y.; Saner, P.; Wacker, L.; Bagchi, R.; Joshi, J.; Scherer-Lorenzen, M.; Spehn, E.M.; Bazeley-White, E.; Weilenmann, M.; et al. General Stabilizing Effects of Plant Diversity on Grassland Productivity through Population Asynchrony and Overyielding. Ecology 2010, 91, 2213–2220. [Google Scholar] [CrossRef]
- Kindscher, K.; Wells, P.V. Prairie Plant Guilds: A Multivariate Analysis of Prairie Species Based on Ecological and Morphological Traits. Vegetatio 1995, 117, 29–50. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant Diversity and Ecosystem Productivity: Theoretical Considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Carson, W.P. Treefall Gaps and the Maintenance of Species Diversity in a Tropical Forest. Ecology 2001, 82, 913–919. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant Diversity Enhances Productivity and Soil Carbon Storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed]
- Ampt, E.A.; van Ruijven, J.; Zwart, M.P.; Raaijmakers, J.M.; Termorshuizen, A.J.; Mommer, L. Plant Neighbours Can Make or Break the Disease Transmission Chain of a Fungal Root Pathogen. New Phytol. 2022, 233, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Sheail, J. Grassland Management and the Early Development of British Ecology. Br. J. Hist. Sci. 1986, 19, 283–299. [Google Scholar] [CrossRef]
- Tunnell, S.J.; Engle, D.M.; Jorgensen, E.E. Old-Field Grassland Successional Dynamics Following Cessation of Chronic Disturbance. J. Veg. Sci. 2004, 15, 431–436. [Google Scholar] [CrossRef]
- Ellis-Felege, S.N.; Dixon, C.S.; Wilson, S.D. Impacts and Management of Invasive Cool-Season Grasses in the Northern Great Plains: Challenges and Opportunities for Wildlife. Wildl. Soc. Bull. 2013, 37, 510–516. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Kreuter, U.; Teague, R. Understanding Producers’ Perspectives on Rotational Grazing Benefits Across US Great Plains. Renew. Agric. Food Syst. 2021, 37, 24–35. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Laca, E.; Shipley, L.; Reid, E. Structural Anti-Quality Characteristics of Range and Pasture Plants. J. Range Manag. 2001, 54, 413–419. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Ravi, S. A Combined Grazing and Fire Management May Reverse Woody Shrub Encroachment in Desert Grasslands. Landsc. Ecol. 2019, 34, 2017–2031. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Li, X.-Y.; Yang, X.; Shi, Y.; Zhang, S.-Y.; Jiang, Z.-Y. Changes in Soil Properties Following Shrub Encroachment in the Semiarid Inner Mongolian Grasslands of China. Soil Sci. Plant Nutr. 2020, 66, 369–378. [Google Scholar] [CrossRef]
- Holmes, M.A. Pasture Trees Contribute to Structural Heterogeneity and Plant Distributions in Post-Agricultural Forests Decades after Canopy Closure. J. Veg. Sci. 2020, 31, 454–464. [Google Scholar] [CrossRef]
- Emms, J.; Vercoe, P.E.; Hughes, S.J.; Jessop, P.; Norman, H.C.; Kilminster, T.; Kotze, A.; Durmic, Z.; Phillips, N.; Revell, D.K. Making Decisions to Identify Forage Shrub Species for Versatile Grazing Systems. 2013, 22, 1372. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1546&context=igc (accessed on 28 June 2022).
- Papanastasis, V.P.; Yiakoulaki, M.D.; Decandia, M.; Dini-Papanastasi, O. Integrating Woody Species into Livestock Feeding in the Mediterranean Areas of Europe. Anim. Feed Sci. Technol. 2008, 140, 1–17. [Google Scholar] [CrossRef]
- Steinbeiss, S.; BEßLER, H.; Engels, C.; Temperton, V.M.; Buchmann, N.; Roscher, C.; Kreutziger, Y.; Baade, J.; Habekost, M.; Gleixner, G. Plant Diversity Positively Affects Short-Term Soil Carbon Storage in Experimental Grasslands. Glob. Change Biol. 2008, 14, 2937–2949. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Herrero-Jáuregui, C.; Oesterheld, M. Effects of Grazing Intensity on Plant Richness and Diversity: A Meta-Analysis. Oikos 2018, 127, 757–766. [Google Scholar] [CrossRef]
- Gao, J.; Carmel, Y. A Global Meta-Analysis of Grazing Effects on Plant Richness. Agric. Ecosyst. Environ. 2020, 302, 107072. [Google Scholar] [CrossRef]
- Zhan, T.; Zhang, Z.; Sun, J.; Liu, M.; Zhang, X.; Peng, F.; Tsunekawa, A.; Zhou, H.; Gou, X.; Fu, S. Meta-Analysis Demonstrating That Moderate Grazing Can Improve the Soil Quality across China’s Grassland Ecosystems. Appl. Soil Ecol. 2020, 147, 103438. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, D.; Chen, H.Y.H.; Seabloom, E.W.; Han, G.; Wang, S.; Yu, G.; Li, Z.; Niu, S. Biodiversity Alleviates the Decrease of Grassland Multifunctionality under Grazing Disturbance: A Global Meta-Analysis. Glob. Ecol. Biogeogr. 2022, 31, 155–167. [Google Scholar] [CrossRef]
- Fargione, J.; Tilman, D.; Dybzinski, R.; Lambers, J.H.R.; Clark, C.; Harpole, W.S.; Knops, J.M.H.; Reich, P.B.; Loreau, M. From Selection to Complementarity: Shifts in the Causes of Biodiversity–Productivity Relationships in a Long-Term Biodiversity Experiment. Proc. R. Soc. B Biol. Sci. 2007, 274, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, S.A.; Klironomos, J.N.; HilleRisLambers, J.; Kinkel, L.L.; Reich, P.B.; Xiao, K.; Rillig, M.C.; Sikes, B.A.; Callaway, R.M.; Mangan, S.A.; et al. Soil Microbes Drive the Classic Plant Diversity–Productivity Pattern. Ecology 2011, 92, 296–303. [Google Scholar] [CrossRef]
- Bennett, J.A.; Koch, A.M.; Forsythe, J.; Johnson, N.C.; Tilman, D.; Klironomos, J. Resistance of Soil Biota and Plant Growth to Disturbance Increases with Plant Diversity. Ecol. Lett. 2020, 23, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.M.; Jastrow, J.D. Mycorrhizal Fungi Influence Soil Structure. In Arbuscular Mycorrhizas: Physiology and Function; Kapulnik, Y., Douds, D.D., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 3–18. ISBN 978-94-017-0776-3. [Google Scholar]
- Rillig, M.C.; Wright, S.F.; Nichols, K.A.; Schmidt, W.F.; Torn, M.S. Large Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Pools in Tropical Forest Soils. Plant Soil 2001, 233, 167–177. [Google Scholar] [CrossRef]
- Wilson, G.W.T.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil Aggregation and Carbon Sequestration Are Tightly Correlated with the Abundance of Arbuscular Mycorrhizal Fungi: Results from Long-Term Field Experiments. Ecol. Lett. 2009, 12, 452–461. [Google Scholar] [CrossRef]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative Assessment of Microbial Necromass Contribution to Soil Organic Matter. Glob. Change Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) Framework Integrates Plant Litter Decomposition with Soil Organic Matter Stabilization: Do Labile Plant Inputs Form Stable Soil Organic Matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.; Jonas, J.; Paschke, M. Optimizing Seed Mixture Diversity and Seeding Rates for Grassland Restoration. Restor. Ecol. 2016, 25, 396–404. [Google Scholar] [CrossRef]
- Carter, D.L.; Blair, J.M. High Richness and Dense Seeding Enhance Grassland Restoration Establishment but Have Little Effect on Drought Response. Ecol. Appl. Publ. Ecol. Soc. Am. 2012, 22, 1308–1319. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service Guide to Pasture Condition Scoring 2020. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/pasture/?cid=stelprdb1045215 (accessed on 28 June 2022).
- Majewski, C. National Resources Conservation Service Specification Guide Sheet for Pasture and Hay Planting 2009. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_016364.pdf (accessed on 28 June 2022).
- Tracy, B.; Foster, J.; Butler, T.; Islam, M.; Toledo, D.; Vendramini, J. Resilience in Forage and Grazinglands. Crop Sci. 2017, 58, 31–42. [Google Scholar] [CrossRef]
- Grange, G.; Finn, J.A.; Brophy, C. Plant Diversity Enhanced Yield and Mitigated Drought Impacts in Intensively Managed Grassland Communities. J. Appl. Ecol. 2021, 58, 1864–1875. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Soder, K.J.; Muller, L.D.; Klement, K.D.; Skinner, R.H.; Goslee, S.C. Forage Mixture Productivity and Botanical Composition in Pastures Grazed by Dairy Cattle. Agron. J. 2005, 97, 1465–1471. [Google Scholar] [CrossRef]
- Bråthen, K.A.; Pugnaire, F.I.; Bardgett, R.D. The Paradox of Forbs in Grasslands and the Legacy of the Mammoth Steppe. Front. Ecol. Environ. 2021, 19, 584–592. [Google Scholar] [CrossRef]
- Piepho, H.-P.; Richter, C.; Spilke, J.; Hartung, K.; Kunick, A.; Thöle, H. Statistical Aspects of On-Farm Experimentation. Crop Pasture Sci. 2011, 62, 721–735. [Google Scholar] [CrossRef]
- Kyveryga, P.M. On-Farm Research: Experimental Approaches, Analytical Frameworks, Case Studies, and Impact. Agron. J. 2019, 111, 2633–2635. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Root-Zone Soil Organic Carbon Enrichment Is Sensitive to Land Management across Soil Types and Regions. Soil Sci. Soc. Am. J. 2022, 86, 79–90. [Google Scholar] [CrossRef]
- Norris, C.E.; Bean, G.M.; Cappellazzi, S.B.; Cope, M.; Greub, K.L.H.; Liptzin, D.; Rieke, E.L.; Tracy, P.W.; Morgan, C.L.S.; Honeycutt, C.W. Introducing the North American Project to Evaluate Soil Health Measurements. Agron. J. 2020, 112, 3195–3215. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reed, K.; Morrissey, E.M. Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils. Agronomy 2022, 12, 1893. https://doi.org/10.3390/agronomy12081893
Reed K, Morrissey EM. Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils. Agronomy. 2022; 12(8):1893. https://doi.org/10.3390/agronomy12081893
Chicago/Turabian StyleReed, Kinsey, and Ember M. Morrissey. 2022. "Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils" Agronomy 12, no. 8: 1893. https://doi.org/10.3390/agronomy12081893
APA StyleReed, K., & Morrissey, E. M. (2022). Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils. Agronomy, 12(8), 1893. https://doi.org/10.3390/agronomy12081893