Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Olive Leaves Collection
2.3. Preparation of Olive Leaves Extracts (OLEs)
2.4. Qualitative and Quantitative Determination of Olive Leaves Extracts (OLEs) Polyphenols by HPLC-DAD and HPLC-ESI-MS
2.5. Spectrophotometric Evaluation of Total Phenolic Content of Olive Leaves Extracts (OLEs)
2.6. Antioxidant Activity of Olive Leaves Extracts (OLEs)
2.7. Statistical Analysis
3. Results and Discussion
3.1. HPLC-DAD and HPLC-ESI-MS
3.2. Spectrophotometric Evaluation of Total Polyphenols Content and Antioxidant Activity of Olive Leaves Extracts (OLEs)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Escobar, R.; Moreno, R.; García-Creus, M. Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Sci. Hortic. 1999, 82, 25–45. [Google Scholar] [CrossRef]
- Besnard, G.; Khadari, B.; Navascués, M.; Fernández-Mazuecos, M.; El Bakkali, A.; Arrigo, N.; Baali-Cherif, D.; De Caraffa, V.B.-B.; Santoni, S.; Vargas, P.; et al. The complex history of the olive tree: From Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B Boil. Sci. 2013, 280, 20122833. [Google Scholar] [CrossRef]
- Lavee, S. Biennial Bearing in Olive (Olea Europaea); Olea FAO Olive Network: Cornwall, UK, 2006. [Google Scholar]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Barbagallo, I.; Volti, G.L.; Raffaele, M.; Distefano, A.; Palmeri, R.; Parafati, L.; Licari, M.; Zingales, V.; Avola, R.; Vanella, L. The effects of olive leaf extract from a Sicilian cultivar in an experimental model of hepatic steatosis. Rendiconti Lincei 2017, 28, 643–650. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2016, 243, 89–99. [Google Scholar] [CrossRef]
- Esposto, S.; Taticchi, A.; Di Maio, I.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 2015, 176, 184–192. [Google Scholar] [CrossRef]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Prenzler, P.D.; Lavee, S.; Antolovich, A.M.; Robards, K. Quantitative Changes in Phenolic Content during Physiological Development of the Olive (Olea europaea) Cultivar Hardy’s Mammoth. J. Agric. Food Chem. 2003, 51, 2532–2538. [Google Scholar] [CrossRef]
- Siracusa, L.; Ruberto, G. Not only what is food is good—polyphenols from edible and nonedible vegetable waste. In Polyphenols in Plants, 2nd ed.; Watson, R., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 3–21. [Google Scholar]
- Siracusa, L.; Ruberto, G. Plant polyphenol profiles as a tool for traceability and valuable support to biodiversity. In Polyphenols in Plants: Isolation, Purification and Extract Preparation; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 2; pp. 15–33. ISBN 9780123979346. [Google Scholar]
- Di Donna, L.; Mazzotti, F.; Naccarato, A.; Salerno, R.; Tagarelli, A.; Taverna, D.; Sindona, G. Secondary metabolites of Olea europaea leaves as markers for the discrimination of cultivars and cultivation zones by multivariate analysis. Food Chem. 2010, 121, 492–496. [Google Scholar] [CrossRef]
- Blasi, F.; Urbani, E.; Simonetti, M.S.; Chiesi, C.; Cossignani, L. Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars. J. Appl. Bot. Food Qual. 2016, 89, 202–207. [Google Scholar] [CrossRef]
- Mitsopoulos, G.; Papageorgiou, V.; Komaitis, M.; Hagidimitriou, M. Phenolic Profile of Leaves and Drupes of Ten Olive Varieties. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 162–166. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crop. Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dhibi, M.; Hammami, M. Variations in phenolic compounds and antiradical scavenging activity of Olea europaea leaves and fruits extracts collected in two different seasons. Ind. Crop. Prod. 2013, 49, 256–264. [Google Scholar] [CrossRef]
- Benincasa, C.; Romano, E.; Pellegrino, M.; Perri, E. Characterization of Phenolic Profiles of Italian Single Cultivar Olive Leaves (Olea europaea L.) by Mass Spectrometry. Mass Spectrom. Purif. Tech. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Abbate, E.; Palmeri, R.; Todaro, A.; Blanco, R.M.; Spagna, G. Production of a α-L-Rhamnosidase from Aspergillus Terreus Using Citrus Solid Waste as Inducer for Application in Juice Industry. Chem. Eng. Trans. 2012, 27. Available online: www.asdic.it/cet (accessed on 11 July 2022).
- Palmeri, R.; Parafati, L.; Restuccia, C.; Fallico, B. Application of prickly pear fruit extract to improve domestic shelf life, quality and microbial safety of sliced beef. Food Chem. Toxicol. 2018, 118, 355–360. [Google Scholar] [CrossRef]
- Palmeri, R.; Parafati, L.; Trippa, D.; Siracusa, L.; Arena, E.; Restuccia, C.; Fallico, B. Addition of Olive Leaf Extract (OLE) for Producing Fortified Fresh Pasteurized Milk with an Extended Shelf Life. Antioxidants 2019, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Restuccia, C.; Palmeri, R.; Fallico, B.; Arena, E. Impact of prickly pear extract on the quality parameters of beef burger patties after cooking. Food Biosci. 2021, 42, 101146. [Google Scholar] [CrossRef]
- Restuccia, C.; Muccilli, S.; Palmeri, R.; Randazzo, C.L.; Caggia, C.; Spagna, G. An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Res. 2011, 11, 487–493. [Google Scholar] [CrossRef]
- Palmeri, R.; Restuccia, C.; Monteleone, J.I.; Sperlinga, E.; Siracusa, L.; Serafini, M.; Finamore, A.; Spagna, G. Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes. Mater. Veg. 2017, 72, 211–218. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Todaro, A.; Rapisarda, P. Methods used to evaluate the peroxyl (ROO) radical scavenging capacities of four common antioxidants. Eur. Food Res. Technol. 2012, 235, 1141–1148. [Google Scholar] [CrossRef]
- Bensehaila, S.; Ilias, F.; Saadi, F.; Zaouadi, N. Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L.) Leaves. Asian J. Dairy Food Res. 2022, 41, 237–241. [Google Scholar] [CrossRef]
- Heimler, D.; Pieroni, A.; Cimato, A.; Sani, G.; Tattini, M. Seasonal trend of flavonoids, flavonoid glycosides and biflavonoids in ten olive cultivars. Acta Hortic. 1994, 356, 372–374. [Google Scholar] [CrossRef]
- Sahin, S.; Saeed, N.; Malik, A.; Perez, J.L.; Brockington, J.E. Seasonal Changes of Individual Phenolic Compounds in Leaves of Twenty Olive Cultivars Grown in Texas. J. Agric. Sci. Technol. B 2012, 2, 242–247. [Google Scholar]
- Talhaoui, N.; Gómez-Caravaca, A.M.; Roldán, C.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Chemometric Analysis for the Evaluation of Phenolic Patterns in Olive Leaves from Six Cultivars at Different Growth Stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef]
- López-Alarcón, C.; DeNicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Boss, A.; Bishop, K.S.; Marlow, G.; Barnett, M.P.G.; Ferguson, L.R. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016, 8, 513. [Google Scholar] [CrossRef] [Green Version]
Sample | Cultivar | Harvesting Period | Code |
---|---|---|---|
1 | Biancolilla | January–February | B-I |
2 | Biancolilla | March–April | B-II |
3 | Biancolilla | May–June | B-III |
4 | Biancolilla | July–August | B-IV |
5 | Nocellara Etnea | January–February | NE-I |
6 | Nocellara Etnea | March–April | NE-II |
7 | Nocellara Etnea | May–June | NE-III |
8 | Nocellara Etnea | July–August | NE-IV |
9 | Nocellara Messinese | January–February | NM-I |
10 | Nocellara Messinese | March–April | NM-II |
11 | Nocellara Messinese | May–June | NM-III |
12 | Nocellara Messinese | July–August | NM-IV |
13 | Nocellara Siracusana | January–February | NS-I |
14 | Nocellara Siracusana | March–April | NS-II |
15 | Nocellara Siracusana | May–June | NS-III |
16 | Nocellara Siracusana | July–August | NS-IV |
17 | Zaituna | January–February | Z-I |
18 | Zaituna | March–April | Z-II |
19 | Zaituna | May–June | Z-III |
20 | Zaituna | July–August | Z-IV |
Metabolite Content, mg/g Dry Vegetable Material a | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OLE b | |||||||||||||||||||||
Peak | Compound | B-I | B-II | B-III | B-IV | NE-I | NE-II | NE-III | NE-IV | NM-I | NM-II | NM-III | NM-IV | NS-I | NS-II | NS-III | NS-IV | Z-I | Z-II | Z-III | Z-IV |
1 | hydroxytirosol glucoside | 0.188 | 2.88 | 0.19 | 0.228 | 0.40 | 0.538 | 0.70 | 0.22 | 0.50 | 1.18 | 0.12 | 0.20 | 0.116 | 2.219 | 0.68 | 0.04 | 0.176 | 0.207 | 0.925 | 0.243 |
2 | hydroxytirosol | 0.263 | 0.40 | 0.28 | 0.14 | 0.43 | 0.63 | 0.23 | 0.18 | 0.37 | 0.13 | 0.19 | 0.18 | 0.142 | 0.81 | 0.21 | 0.13 | 0.601 | 0.847 | 0.349 | 0.202 |
3 | dihydroxyphenylacetic | 0.136 | 0.30 | 0.09 | 0.11 | 0.12 | 0.09 | 0.12 | 0.16 | 0.08 | 0.17 | 0.22 | 0.09 | 0.111 | 0.16 | 0.10 | 0.07 | 0.127 | 0.106 | 0.187 | 0.127 |
4 | chlorogenic acid | 0.167 | 0.34 | 0.11 | 0.09 | 0.14 | 0.22 | 0.04 | 0.10 | 0.26 | 0.17 | 0.05 | 0.05 | 0.112 | 0.32 | 0.05 | 0.05 | 0.126 | 0.193 | 0.144 | 0.119 |
5 | caffeic acid | 0.008 | 0.02 | 0.002 | 0.002 | 0.038 | 0.038 | 0.004 | 0.006 | 0.02 | 0.048 | 0.004 | 0.003 | 0.003 | 0.03 | 0.006 | n.d. | 0.018 | 0.013 | 0.004 | 0.006 |
6 | verbascoside | 0.133 | 0.54 | 0.04 | 0.04 | 1.23 | 1.79 | 0.26 | 0.15 | 1.41 | 0.99 | 0.09 | 0.04 | 0.087 | 1.808 | 0.33 | 0.175 | 0.243 | 0.268 | 0.184 | 0.060 |
7 | p-coumaric acid | 0.056 | 0.07 | 0.07 | 0.03 | 0.09 | 0.095 | n.d. c | n.d. c | 0.148 | 0.081 | 0.026 | 0.052 | 0.038 | 0.078 | 0.042 | 0.052 | n.d.c | n.d c | n.d.c | n.d. c |
8 | ferulic acid | n.d.c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d c | n.d.c | n.d.c | n.d.c | 0.107 | 0.144 | 0.106 | 0.049 |
9 | rutin | 0.116 | 0.18 | 0.10 | 0.06 | 0.31 | 0.32 | 0.22 | 0.34 | 0.31 | 0.37 | 0.06 | 0.08 | 0.102 | 0.53 | 0.28 | 0.20 | 0.185 | 0.395 | 0.407 | 0.240 |
10 | luteolin 7-O-glucoside | 0.795 | 1.51 | 0.56 | 1.22 | 2.86 | 3.23 | 2.77 | 3.23 | 2.58 | 2.23 | 1.12 | 1.13 | 3.014 | 4.88 | 2.92 | 1.63 | 0.763 | 1.131 | 1.554 | 0.794 |
11 | apigenin hexoside | 0.317 | 0.32 | 0.33 | 0.23 | 0.28 | 0.31 | 0.31 | 0.42 | 0.41 | 0.30 | 0.29 | 0.36 | 0.252 | 0.45 | 0.33 | 0.15 | 0.296 | 0.280 | 0.332 | 0.222 |
12 | oleuropein | 4.356 | 33.345 | 3.39 | 4.36 | 16.285 | 24.354 | 19.171 | 18.172 | 16.818 | 32.054 | 5.626 | 5.815 | 6.164 | 33.150 | 21.410 | 13.506 | 6.311 | 4.620 | 16.623 | 5.550 |
13 | apigenin 7-O-glucoside | 0.369 | 0.59 | 0.18 | 0.29 | 1.19 | 1.27 | 0.83 | 1.46 | 1.05 | 0.90 | 0.43 | 0.409 | 1.025 | 1.99 | 1.07 | 0.66 | 0.309 | 0.530 | 0.509 | 0.308 |
14 | ligstroside | 0.537 | 4.13 | 0.28 | 0.49 | 1.97 | 3.20 | 1.14 | 1.30 | 2.53 | 2.88 | 0.51 | 0.47 | 0.210 | 3.06 | 1.907 | 0.908 | 0.664 | 0.720 | 0.898 | 0.434 |
15 | oleuropein aglicone | 0.121 | 0.378 | 0.18 | 0.16 | 0.54 | 0.54 | 0.76 | 0.46 | 0.54 | 0.53 | 0.25 | 0.36 | 0.290 | 0.73 | 0.63 | 0.38 | 0.137 | 0.192 | 0.356 | 0.172 |
16 | luteolin | 0.029 | 0.02 | 0.007 | 0.015 | 0.069 | 0.10 | 0.02 | 0.07 | 0.11 | 0.05 | 0.03 | 0.01 | 0.055 | 0.12 | 0.06 | 0.04 | 0.052 | 0.112 | 0.045 | 0.020 |
17 | apigenin | n.d. c | n.d. c | n.d. c | n.d. c | 0.019 | 0.01 | n.d. c | 0.01 | n.d. c | n.d. c | n.d. c | n.d. c | 0.008 | n.d. c | n.d. c | 0.01 | n.d c | n.d c | n.d. c | n.d. c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmeri, R.; Siracusa, L.; Carrubba, M.; Parafati, L.; Proetto, I.; Pesce, F.; Fallico, B. Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change. Agronomy 2022, 12, 2007. https://doi.org/10.3390/agronomy12092007
Palmeri R, Siracusa L, Carrubba M, Parafati L, Proetto I, Pesce F, Fallico B. Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change. Agronomy. 2022; 12(9):2007. https://doi.org/10.3390/agronomy12092007
Chicago/Turabian StylePalmeri, Rosa, Laura Siracusa, Marco Carrubba, Lucia Parafati, Ilaria Proetto, Fabiola Pesce, and Biagio Fallico. 2022. "Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change" Agronomy 12, no. 9: 2007. https://doi.org/10.3390/agronomy12092007
APA StylePalmeri, R., Siracusa, L., Carrubba, M., Parafati, L., Proetto, I., Pesce, F., & Fallico, B. (2022). Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change. Agronomy, 12(9), 2007. https://doi.org/10.3390/agronomy12092007