The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain
2.2. Solid Spawn and Liquid Media Preparation
2.3. Chemicals
2.4. Glasshouse Experiment
2.4.1. Cultivation
2.4.2. Basidiocarp Production and Yield Record
2.4.3. Soil Sampling and Chemical Analysis
2.4.4. Mushroom Yield and Productivity
2.4.5. Quantification of Nutrient Content
2.4.6. Compost and Soil Parameters
2.5. Liquid Culture Experiment
2.5.1. Liquid Culture Preparation
2.5.2. Liquid Culture Sampling and Chemical Analysis
2.5.3. Degradation Rate
2.6. Data Analysis
3. Results
3.1. Glasshouse Experiment
3.1.1. Yield and Nutrient Properties of Basidiocarps
3.1.2. Soil Chemical Properties during the Glasshouse Experiment
3.2. Agaricus Subrufescens Liquid Culture Experiment
3.2.1. Toxicity of β-CY and Gla on Agaricus Subrufescens Mycelial Growth
3.2.2. Degradation of β-CY and Gla by Fungal Mycelium under NOEC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Ding, J.; Zhu, D.; Hu, H.W.; Delgado-Baquerizo, M.; Ma, Y.B.; He, J.Z.; Zhu, Y.G. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 2020, 141, 107686. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Xu, J.; Ma, L. An overview of the problems and prospects for circular agriculture in sustainable food systems in the Anthropocene. Circular Agricultural Systems 2021, 1, 3. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Change Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Cheema, S.A.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil Tillage Res. 2020, 196, 104464. [Google Scholar] [CrossRef]
- Ma, X.; Wang, B.; Li, Z.; Ding, X.; Wen, Y.; Shan, W.; Hu, W.; Wang, X.; Xia, Y. Effects of glufosinate-ammonium on male reproductive health: Focus on epigenome and transcriptome in mouse sperm. Chemosphere 2022, 287, 132395. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Oturan, N.; Oturan, M.A. Electrochemically assisted remediation of pesticides in soils and water: A review. Chem. Rev. 2014, 114, 8720–8745. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.A.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Rath, S.K.; Mohapatra, P.K. Bioremediation of insecticides by white-rot fungi and its environmental relevance. In Mycoremediation and Environmental Sustainability, 1st ed.; Yesilada, O., Birhanli, E., Geckil, H., Eds.; Springer: Cham, Switzerland, 2018; Volume 2, pp. 181–212. [Google Scholar]
- Chiesa, L.M.; Labella, G.F.; Giorgi, A.; Panseri, S.; Pavlovic, R.; Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482–490. [Google Scholar] [CrossRef]
- Dinehart, S.K.; Smith, L.M.; McMurry, S.T.; Anderson, T.A.; Smith, P.N.; Haukos, D.A. Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA. Sci. Total Environ. 2009, 407, 1065–1071. [Google Scholar] [CrossRef]
- Faro, L.R.F.; Nunes, B.V.F.; Alfonso, M.; Ferreira, V.M.; Durán, R. Role of glutamate receptors and nitric oxide on the effects of glufosinate ammonium, an organophosphate pesticide, on in vivo dopamine release in rat striatum. Toxicology 2013, 311, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; Dayan, F.E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Meng, Z.; Jia, M.; Li, R.; Yan, S.; Tian, S.; Zhou, Z.; Diao, J. Effects of L-Glufosinate-ammonium and temperature on reproduction controlled by neuroendocrine system in lizard (Eremias argus). Environ. Pollut. 2020, 257, 113564. [Google Scholar] [CrossRef]
- Masiol, M.; Giannì, B.; Prete, M. Herbicides in river water across the northeastern Italy: Occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium. Environ. Sci. Pollut. Res. 2018, 25, 24368–24378. [Google Scholar] [CrossRef]
- Yeo, B.S.; Chu, W.L.; Wong, C.Y.; Kok, Y.Y.; Phang, S.M.; Tan, B.K.; Mustafa, E.M. Combined effects of glufosinate ammonium and temperature on the growth, photosynthetic pigment content and oxidative stress response of Chlorella sp. and Pseudokirchneriella subcapitata. J. Appl. Phycol. 2018, 30, 3043–3055. [Google Scholar] [CrossRef]
- Xiong, G.; Deng, Y.; Li, J.; Cao, Z.; Liao, X.; Liu, Y.; Lu, H. Immunotoxicity and transcriptome analysis of zebrafish embryos in response to glufosinate-ammonium exposure. Chemosphere 2019, 236, 124423. [Google Scholar] [CrossRef]
- Geng, Y.; Jiang, L.; Zhang, D.; Liu, B.; Zhang, J.; Cheng, H.; Wang, L.; Peng, Y.; Wang, Y.; Zhao, Y.; et al. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Sci. Total Environ. 2021, 769, 144396. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Wu, J.; Zhang, H. Field dissipation and storage stability of glufosinate ammonium and its metabolites in soil. Int. J. Anal. Chem. 2014, 2014, 256091. [Google Scholar] [CrossRef]
- Wolterink, G.; Mahieu, C.M.; Davies, L. Pesticide Residues in Food—2012 Toxiciological Evaluations, 1st ed.; Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues: Rome, Italy, 2013; pp. 547–652. [Google Scholar]
- Mir-Tutusaus, J.A.; Masís-Mora, M.; Corcellas, C.; Eljarrat, E.; Barceló, D.; Sarrà, M.; Caminal, G.; Vicent, T.; Rodríguez-Rodríguez, C.E. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci. Total Environ. 2014, 500, 235–242. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yang, Q.; Liu, Q.; Hu, Z.; Gao, Q.; Dong, Y.; Xiao, J.; Yu, L.; Cao, H. The effects of beta-cypermethrin, chlorbenzuron, chlorothalonil, and pendimethalin on apis mellifera ligustica and apis cerana cerana larvae reared in vitro. Pest Manag. Sci. 2021, 78, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Yang, G.; Weng, H.; Wang, X.; Wang, Q. Changes of enzyme activity and gene expression in embryonic zebrafish co-exposed to beta-cypermethrin and thiacloprid. Environ. Pollut. 2020, 256, 113437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, W. Microbial flora analysis for the degradation of beta-cypermethrin. Environ. Sci. Pollut. Res. 2017, 24, 6554–6562. [Google Scholar] [CrossRef]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, A.N.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Yadav, K.K.; Sharma, G.K.; Cabral-Pinto, M.; et al. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021, 284, 131325. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Hu, Y.; Mortimer, P.E.; Hyde, K.D.; Kakumyan, P.; Thongklang, N. Mushroom cultivation for soil amendment and bioremediation. Circ. Agric. Syst. 2021, 1, 11. [Google Scholar] [CrossRef]
- Maqbool, Z.; Hussain, S.; Imran, M.; Mahmood, F.; Shahzad, T.; Ahmed, Z.; Azeem, F.; Muzammil, S. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 16904–16925. [Google Scholar] [CrossRef]
- Wisitrassameewong, K.; Karunarathna, S.C.; Thongklang, N. Zhao. R.; Callac, P.; Moukha, S.; Férandon, C.; Chukeatirote, E.; Hyde, K.D. Agaricus subrufescens: A review. Saudi J. Biol. Sci. 2012, 19, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Giménez, A.; Pardo, J.E.; Dias, E.S.; Rinker, D.L.; Caitano, C.E.C.; Zied, D.C. Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens. Sci. Rep. 2020, 10, 8154. [Google Scholar] [CrossRef] [PubMed]
- Zied, D.C.; Vieira Junior, W.G.; Soares, D.M.M.; Stevani, C.V.; Dias, E.S.; Iossi, M.R.; Pardo-Giménez, A. Overview of four Agaricus subrufescens strains used in the last 15 years in Brazil and other countries and current potential materials for the future. Mycol. Prog. 2021, 20, 953–966. [Google Scholar] [CrossRef]
- Wang, J.T.; Wang, Q.; Han, J.R. Yield, polysaccharides content and antioxidant properties of the mushroom Agaricus subrufescens produced on different substrates based on selected agricultural wastes. Sci. Hortic. 2013, 157, 84–89. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Jasinska, A.; Wojciechowska, E.; Mleczek, M.; Hanc, A.; Niedzielski, P. Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. J. Environ. Manag. 2019, 245, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.X.; Zied, D.C.; Martos, E.T.; de Souza, R.J.; Da Silva, R.; Dias, E.S. Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. Int. J. Recycl. Org. Waste Agric. 2015, 4, 211–218. [Google Scholar] [CrossRef]
- Bandara, A.R.; Lian, C.K.; Xu, J.; Mortimer, P.E. Mushroom as a means of sustainable rural development in the Chin State, Myanmar. Circ. Agric. Syst. 2021, 1, 4. [Google Scholar] [CrossRef]
- Druart, C.; Millet, M.; Scheifler, R.; Delhomme, O.; De Vaufleury, A. Glyphosate and glufosinate-based herbicides: Fate in soil, transfer to, and effects on land snails. J. Soils Sediments 2011, 11, 1373–1384. [Google Scholar] [CrossRef]
- Shi, X.; Gu, A.; Ji, G.; Li, Y.; Di, J.; Jin, J.; Hu, F.; Long, Y.; Xia, Y.; Lu, C.; et al. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 2011, 85, 1010–1016. [Google Scholar] [CrossRef]
- Feat-Vetel, J.; Larrigaldie, V.; Meyer-Dilhet, G.; Herzine, A.; Mougin, C.; Laugeray, A.; Gefflaut, T.; Richard, O.; Quesniaux, V.; Montécot-Dubourg, C.; et al. Multiple effects of the herbicide glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018, 69, 152–163. [Google Scholar] [CrossRef]
- Ullah, S.; Zuberi, A.; Alagawany, M.; Farag, M.R.; Dadar, M.; Karthik, K.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. J. Environ. Manag. 2018, 206, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Bexfield, L.M.; Belitz, K.; Lindsey, B.D.; Toccalino, P.L.; Nowell, L.H. Pesticides and pesticide degradates in groundwater used for public supply across the United States: Occurrence and human-health context. Environ. Sci. Technol. 2020, 55, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M.; Bilal, R.M.; Gewida, A.G.A.; Dhama, K.; Abdel-Latif, H.M.R.; Amer, M.S.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Binnaser, Y.S.; et al. An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Mortimer, P.E.; Karunarathna, S.C.; Raspé, O.; Promputtha, I.; Yan, K.; Xu, J.; Hyde, K.D. A new species of Panaeolus (Agaricales, Basidiomycota) from Yunnan, Southwest China. Phytotaxa 2020, 434, 22–34. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, J.; Cheng, Z.; Zhai, W.; Liu, D.; Zhou, Z.; Wang, P. The influence of oxytetracycline on the degradation and enantioselectivity of the chiral pesticide beta-cypermethrin in soil. Environ. Pollut. 2019, 255, 113215. [Google Scholar] [CrossRef]
- Hu, Y.; Kakumyan, P.; Bandara, A.R.; Mortimer, P.E. The nutrition, cultivation and biotechnology of Stropharia rugosoannulata. Fungal Biotec 2021, 1, 13–25. [Google Scholar] [CrossRef]
- Wilk, M.B. The randomization analysis of a generalized randomized block design. Biometrika 1955, 42, 70–79. [Google Scholar] [CrossRef]
- Scherger, L.E.; Valdes-Abellan, J.; Zanello, V.; Lexow, C. Projecting climate change effect on soil water fluxes and urea fertilizer fate in the semiarid pampas of Argentina. Earth Syst. Environ. 2022, 6, 745–758. [Google Scholar] [CrossRef]
- Valipour, M. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 2017, 7, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Latimer Junior, G.W. Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Bandara, A.R.; Karunarathna, S.C.; Mortimer, P.E.; Hyde, K.D.; Khan, S.; Kakumyan, P.; Xu, J. First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol. Prog. 2017, 16, 1029–1039. [Google Scholar] [CrossRef]
- Robertson, G.P.; Sollins, P.; Ellis, B.G.; Lajtha, K. Exchangeable ions, pH, and cation exchange capacity. In Standard Soil Methods for Long-Term Ecological Research, 1st ed.; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., Eds.; Oxford University Press: New York, NY, USA, 1999; Volume 2, pp. 106–114. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3: Chemical Methods, 1st ed.; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 14, pp. 961–1010. [Google Scholar]
- Bremner, J.M. Nitrogen—Total. In Methods of Soil Analysis, Part 3: Chemical Methods, 1st ed.; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 14, pp. 1085–1121. [Google Scholar]
- Mulvaney, R.L.; Khan, S.A.; Stevens, W.B.; Mulvaney, C.S. Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water. Biol. Fertil. Soils. 1997, 24, 413–420. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, C.; Fu, D.; Wu, X.; Yan, K.; Fernando, E.; Karunarathna, S.C.; Promputtha, I.; Mortimer, P.E.; Xu, J. Structure of bacterial communities in phosphorus-enriched rhizosphere soils. Appl. Sci. 2020, 10, 6387. [Google Scholar] [CrossRef]
- Wilcox, L.V. Determination of potassium. Ind. Eng. Chem. Anal. Ed. 1937, 9, 136–138. [Google Scholar] [CrossRef]
- Carazo-Rojas, E.; Pérez-Rojas, G.; Pérez-Villanueva, M.; Chinchilla-Soto, C.; Chin-Pampillo, J.S.; Aguilar-Mora, P.; Alpízar-Marín, M.; Masís-Mora, M.; Rodríguez-Rodríguez, C.E.; Vryzas, Z. Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ. Pollut. 2018, 241, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Lei, L.; Chen, X.; Men, J.; Sun, Y.; Guo, Y.; Yang, L.; Wang, Q.; Han, J.; Zhou, B. Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. Environ. Pollut. 2022, 296, 118742. [Google Scholar] [CrossRef] [PubMed]
- Barthod, J.; Rumpel, C.; Dignac, M.F. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Thongbai, B.; Wittstein, K.; Richter, C.; Miller, S.L.; Hyde, K.D.; Thongklang, N.; Klomklung, N.; Chukeatirote, E.; Stadler, M. Successful cultivation of a valuable wild strain of Lepista sordida from Thailand. Mycol. Prog. 2017, 16, 311–323. [Google Scholar] [CrossRef]
- Wang, Q.; Juan, J.; Xiao, T.; Zhang, J.; Chen, H.; Song, X.; Chen, M.; Huang, J. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Appl. Microbiol. Biotechnol. 2021, 105, 3811–3823. [Google Scholar] [CrossRef]
- Silva, C.D.O.G.; Cunha, J.R.B.; Conceição, A.A.; Almeida, E.G.; Zied, D.C.; Junior, W.G.V.; Dias, E.S.; Isikhuemhen, O.S.; Abdelnur, P.V.; de Siqueira, F.G. Outdoor versus indoor cultivation: Effects on the metabolite profile of Agaricus subrufescens strains analyzed by untargeted metabolomics. Food Chem. 2022, 374, 131740. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Zhang, P.; Yu, F.; Perez-Moreno, J. Macrofungi cultivation in shady forest areas significantly increases microbiome diversity, abundance and functional capacity in soil furrows. J. Fungi 2021, 7, 775. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Schmieder, S.S.; Stanley, C.E.; Rzepiela, A.; van Swaay, D.; Sabotič, J.; Nørrelykke, S.F.; DeMello, A.J.; Aebi, M.; Künzler, M. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr. Biol. 2019, 29, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Shen, G.; Huang, Y.; Luo, J.; Zhu, L.; Qi, S.; Li, Y.; Wang, C.; Li, X. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish. Environ. Pollut. 2017, 229, 312–320. [Google Scholar] [CrossRef]
- Qu, Y.; Xiao, D.; Liu, J.; Chen, Z.; Song, L.; Desneux, N.; Benelli, G.; Gao, X.; Song, D. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 2017, 26, 1002–1009. [Google Scholar] [CrossRef]
- Babalola, O.O.; Truter, J.C.; Van Wyk, J.H. Lethal and Teratogenic Impacts of imazapyr, diquat dibromide, and glufosinate ammonium herbicide formulations using frog embryo teratogenesis assay-xenopus (FETAX). Arch. Environ. Contam Toxicol. 2021, 80, 708–716. [Google Scholar] [CrossRef]
- Han, L.; Kong, X.; Xu, M.; Nie, J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. Environ. Pollut. 2021, 287, 117660. [Google Scholar] [CrossRef]
- Hu, K.; Deng, W.; Zhu, Y.; Yao, K.; Li, J.; Liu, A.; Ao, X.; Zou, L.; Zhou, K.; He, L.; et al. Simultaneous degradation of β-cypermethrin and 3-phenoxybenzoic acid by Eurotium cristatum ET1, a novel “golden flower fungus” strain isolated from Fu Brick Tea. MicrobiologyOpen 2019, 8, e00776. [Google Scholar] [CrossRef]
- Deng, W.; Lin, D.; Yao, K.; Yuan, H.; Wang, Z.; Li, J.; Zou, L.; Han, X.; Zhou, K.; He, L.; et al. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl. Microbiol. Biotechnol. 2015, 99, 8187–8198. [Google Scholar] [CrossRef]
- Chen, S.; Hu, M.; Liu, J.; Zhong, G.; Yang, L.; Rizwan-ul-Haq, M.; Han, H. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J. Hazard. Mater. 2011, 187, 433–440. [Google Scholar] [CrossRef]
- Tang, J.; Liu, B.; Chen, T.T.; Yao, K.; Zeng, L.; Zeng, C.Y.; Zhang, Q. Screening of a beta-cypermethrin-degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway. Biodegradation 2018, 29, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Geng, P.; Xiao, Y.; Hu, M. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl. Microbiol. Biotechnol. 2012, 94, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Huang, Y.; Zhang, W.; Sharma, A.; Chen, S. Enhanced cypermethrin degradation kinetics and metabolic pathway in Bacillus thuringiensis strain SG4. Microorganisms 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, B.; Picazo, C.; Orozco, H.; Matallana, E.; Aranda, A. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation. Sci. Rep. 2017, 7, 12414. [Google Scholar] [CrossRef] [Green Version]
Treatment Name | Basic Protocol | Abbreviation |
---|---|---|
Sterilized soil | 15 cm of autoclaved (121 °C for 2 h) soil laid over grids | SS |
Soil | 15 cm of incubation soil laid over grids | S |
Soil and compost | 15 cm of incubation soil laid over grids and covered by 12 kg of compost | SC |
Soil, compost and Agaricus subrufescens | 15 cm of incubation soil laid over grids and covered by 12 kg of compost, followed by inoculating 2 containers of solid A. subrufescens spawn in the compost | SCA |
Parameter | Soil | Compost |
---|---|---|
pH value | 6.77 ± 0.33 | 7.52 ± 0.31 |
Water content | 20.77 ± 1.20% | 53.57 ± 1.38% |
Organic matter | 5.44 ± 2.74 g/kg | 70.45 ± 3.88% |
Total nitrogen | 0.54 ± 0.14 g/kg | 1.34 ± 0.08% |
Total phosphorus | 0.71 ± 0.03 g/kg | 0.39 ± 0.03% |
Total potassium | 4.91 ± 0.16 g/kg | 1.32 ± 0.02% |
Available nitrogen | 25.95 ± 1.14 mg/kg | nd |
Available phosphorus | 3.25 ± 1.02 mg/kg | nd |
Available potassium | 53.45 ± 14.68 mg/kg | nd |
Parameter | Agaricus subrufescens Yield and Nutrition |
---|---|
Number of basidiocarps | 21.90 ± 9.70 |
Fresh weight (g) | 1002.90 ± 488.60 |
Dry weight (g) | 177.40 ± 82.80 |
Biological efficiency (%) | 20.10 ± 10.70 |
Ash (%) | 7.73 ± 0.31 |
Crude fat (%) | 1.33 ± 0.29 |
Crude fiber (%) | 5.60 ± 1.82 |
Crude protein (%) | 31.53 ± 0.91 |
Carbohydrates (%) | 53.80 ± 2.25 |
Energy (kcal/100 g) | 353.33 ± 9.06 |
Mycelial Growth in MEB Media with Different Concentrations of Pesticides v/v | Beta-Cypermethrin (C22H19Cl2NO3) | Glufosinate Ammonium (C5H15N2O4P) |
---|---|---|
0% | **** (nd) | **** (nd) |
0.005% | *** (nd) | *** (nd) |
0.01% | *** (nd) | ** (63.15 μg/g) |
0.05% | *** (nd) | – (nd) |
0.1% | ** (24.71 μg/mL) | – (nd) |
0.4% | – (nd) | – (nd) |
0.8% | – (nd) | – (nd) |
1% | – (nd) | – (nd) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Bandara, A.R.; Xu, J.; Kakumyan, P.; Hyde, K.D.; Mortimer, P.E. The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils. Agronomy 2022, 12, 2034. https://doi.org/10.3390/agronomy12092034
Hu Y, Bandara AR, Xu J, Kakumyan P, Hyde KD, Mortimer PE. The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils. Agronomy. 2022; 12(9):2034. https://doi.org/10.3390/agronomy12092034
Chicago/Turabian StyleHu, Yuwei, Asanka R. Bandara, Jianchu Xu, Pattana Kakumyan, Kevin D. Hyde, and Peter E. Mortimer. 2022. "The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils" Agronomy 12, no. 9: 2034. https://doi.org/10.3390/agronomy12092034
APA StyleHu, Y., Bandara, A. R., Xu, J., Kakumyan, P., Hyde, K. D., & Mortimer, P. E. (2022). The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils. Agronomy, 12(9), 2034. https://doi.org/10.3390/agronomy12092034