Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index
Abstract
:1. Introduction
2. Materials and Methods
- Pr–seasonal sum of precipitation;
- μ–average value of the normalized series of precipitation sums;
- σ–mean standard deviation of the normalized series of precipitation sums.
- yt–actual value;
- Yt–forecast value.
3. Results
3.1. SPI-3 Index–Spatial and Temporal Distribution
3.2. AAMDr Index–Temporal Distribution
3.3. Dependence of AAMDr on SPI-3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Łupikasza, E. The climatology of air-mass and frontal extreme precipitation. In Study of Meteorological Data in Europe, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; p. 313. [Google Scholar] [CrossRef]
- Niedźwiedź, T.; Łupikasza, E. Atmospheric circulation in the investigations of the Polish climatologists. Przegl. Geofiz. 2019, 64, 107–166. [Google Scholar] [CrossRef]
- Bartoszek, K.; Baranowska, A.; Kukla, Ł.; Skowera, B.; Węgrzyn, A. Spatiotemporal assessment and meteorological determinants of atmospheric drought in agricultural areas of East-Central Poland. Agronomy 2021, 11, 2405. [Google Scholar] [CrossRef]
- King, M.P.; Yu, E.; Sillmann, J. Impact of strong and extreme El Niños on European hydroclimate. Tellus A: Dyn. Meteorol. Oceanogr. 2020, 72, 1, 1–10. [Google Scholar] [CrossRef]
- Nguyen, P.-L.; Min, S.-K.; Kim, Y.-H. Combined impacts of the El Niño-Southern Oscillation and Pacific Decadal Oscillation on global droughts assessed using the standardized precipitation evapotranspiration index. Int. J. Climatol. 2021, 41, E1645–E1662. [Google Scholar] [CrossRef]
- Przybylak, R.; Maszewski, R. Atmospheric circulation variability in the Bydgosko-Toruński Region in the period 1881–2005. Acta Agrophys. 2009, 171, 427–447. (In Polish) [Google Scholar]
- Piotrowski, P. Circular conditions of spring droughts in Poland. In The Climate of Poland against the Background of the Climate of Europe. Thermal and Rainfall Conditions, 1st ed.; Bednarz, E., Ed.; Bogucki Wydaw. Nauk.: Poznań, Poland, 2010; pp. 147–158. (In Polish) [Google Scholar]
- Lorenc, H.; Gąsiorowska, E.; Laskowska, A.; Strzelczak, A.; Żórawska, K. Initial assessment of the drought in 2000. In Present and Future Requirements for Agrometeorological Information, Proceedings of the International Conference, Poznań-Sielinko, Poland, 11–15 September 2000; IMGW: Warszawa, Poland, 2000; pp. 14–27. [Google Scholar]
- Niedzielski, T. Is there any teleconnection between surface hydrology in Poland and El Niño/Southern Oscillation? Pure Appl. Geophys. 2011, 168, 871–886. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- EEA. Meteorological and Hydrological Droughts in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/river-flow-drought-3/assessment (accessed on 20 August 2022).
- Song, X.; Song, Y.; Chen, Y. Secular trend of global drought since 1950. Environ. Res. Lett. 2020, 15, 094073. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Variability and trends in global drought. Earth Space Sci. 2015, 2, 223–228. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth As-sessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://report.ipcc.ch/ar6wg1/pdf/IPCC_AR6_WGI_SPM.pdf (accessed on 15 June 2022).
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. npj Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts–Past Trends and Future Projections; EUR 27748 EN; Publications Office of the European Union: Luxembourg, 2016; p. 134. [Google Scholar] [CrossRef]
- van der Velde, M.; Baruth, B.; Bussay, A.; Ceglar, A.; Condado, S.G.; Karetsos, S.; Lecerf, R.; Lopez, R.; Maiorano, A.; Nisini, L.; et al. In-season performance of European Union wheat forecasts during extreme impacts. Sci. Rep. 2018, 8, 15420. [Google Scholar] [CrossRef] [PubMed]
- Eludoyin, A.O.; Eludoyin, O.M.; Eslamian, S. Drought Mitigation Practices. In Handbook of Drought and Water Scarcity: Management of Drought and Water Scarcity, 1st ed.; Eslamian, S., Eslamian, F.A., Eds.; CRC: Boca Raton, FL, USA, 2018; Chapter 19; Volume 3, pp. 393–404. [Google Scholar]
- Hamdy, A.; Trisorio-Liuzzi, G. Drought planning and drought mitigation measures in the Mediterranean region. Options Méditerranéennes 2009, 80, 235–239. [Google Scholar]
- Łabędzki, L. Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E. Precipitation variability, trends and regions in Poland: Temporal and spatial distribution in the years 1951–2018. Acta Geogr. Slov. 2021, 61, 41–71. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E. Spring precipitation deficiency in Poland and its temporal and spatial variability in the context of agricultural needs. Agronomy 2022, 12, 158. [Google Scholar] [CrossRef]
- Hlavinka, P.; Trnka, M.; Semeradova, D.; Dubrovský, M.; Žalud, Z.; Možný, M. Effect of drought on yield variability of key crops in Czech Republic. Agric. For. Meteorol. 2009, 149, 431–442. [Google Scholar] [CrossRef]
- Kalbarczyk, R. Temporal and spatial diversity of the occurrence of atmospheric drought in Poland (1966-2005) and its effect on yield of pickling cucumber (Cucumis sativus L.). Span. J. Agric. Res. 2010, 8, 1147–1162. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E.; Raszka, B. Risk to onion (Allium cepa L.) field cultivation in Poland from precipitation deficiency. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 214–218. [Google Scholar] [CrossRef]
- Kuśmierek-Tomaszewska, R.; Żarski, J.; Dudek, S. Assessment of irrigation needs in sugar beet (Beta vulgaris L.) in temperate climate of Kujawsko-Pomorskie region (Poland). Agronomy 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Machula, S. Influence of climate changes on the state of water resources in Poland and their usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Sawicka, B.; Barbaś, P.; Pszczółkowski, P.; Skiba, D.; Yeganehpoor, F.; Krochmal-Marczak, B. Climate changes in southeastern Poland and food security. Climate 2022, 10, 57. [Google Scholar] [CrossRef]
- Łabędzki, L. Categorical forecast of precipitation anomaly using the Standardized Precipitation Index SPI. Water 2017, 9, 8. [Google Scholar] [CrossRef]
- Agricultural Drought Monitoring System. Available online: https://susza.iung.pulawy.pl/en/index/ (accessed on 20 August 2022).
- The act on insurance of agricultural crops and livestock. J. Laws 2019, 477. Available online: https://eli.sejm.gov.pl/eli/DU/2019/477/ogl (accessed on 20 August 2022). (In Polish).
- Łabędzki, L.; Bąk, B. Indicator-based monitoring and forecasting water deficit and surplus in agriculture in Poland. Ann. Wars. Univ. Life Sci. 2015, 47, 355–369. [Google Scholar] [CrossRef]
- Hänsel, S. Changes in the characteristics of dry and wet periods in Europe (1851–2015). Atmosphere 2020, 11, 1080. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Salimi, H.; Asadi, E.; Darbandi, S. Meteorological and hydrological drought monitoring using several drought indices. Appl. Water Sci. 2021, 11, 11. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the Ninth Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; American Meteorological Society: Boston, MA, USA, 1995; pp. 233–236. [Google Scholar]
- Svoboda, M.D.; Fuchs, B.A.; Poulsen, C.C.; Nothwehr, J.R. The drought risk atlas: Enhancing decision support for drought risk management in the United States. J. Hydrol. 2015, 526, 274–286. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Leasor, Z.T.; Quiring, S.M.; Svoboda, M.D. Utilizing objective drought severity thresholds to improve drought monitoring. J. Appl. Meteorol. Clim. 2020, 59, 455–475. Available online: https://digitalcommons.unl.edu/droughtfacpub/171 (accessed on 20 August 2022). [CrossRef]
- Caloiero, T.; Caroletti, G.N.; Coscarelli, R. IMERG-based meteorological drought analysis over Italy. Climate 2021, 9, 65. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J. Mediterranean-scale drought: Regional datasets for exceptional meteorological drought events during 1975–2019. Atmosphere 2021, 12, 941. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D.A. Standardized Precipitation Index User Guide; WMO-No. 1090; World Meteorological Organization: Geneva, Switzerland, 2012; p. 24. [Google Scholar]
- Cammalleri, C.; Spinoni, J.; Barbosa, P.; Toreti, A.; Vogt, J.V. The effects of non-stationarity on SPI for operational drought monitoring in Europe. Int. J. Clim. 2021, 42, 3418–3430. [Google Scholar] [CrossRef]
- Kömüşcü, A.U. Homogeneity analysis of long-term monthly precipitation data of Turkey. Fresenius Environ. Bull. 2010, 19, 1220–1230. [Google Scholar]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in atmospheric precipitation in Poland in the years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Reinermann, S.; Gessner, U.; Asam, S.; Kuenzer, C.; Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite Earth observation time series and crop yield statistics. Remote Sens. 2019, 11, 1783. [Google Scholar] [CrossRef]
- Jiménez-Donaire, M.; Tarquis, A.; Giráldez, V. Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain. Nat. Hazards Earth Syst. Sci. 2020, 20, 21–33. [Google Scholar] [CrossRef]
- Oleksiak, T.; Spyroglou, I.; Pacoń, D.; Matysik, P.; Pernisová, M.; Rybka, K. Effect of drought on wheat production in Poland between 1961 and 2019. Crop Sci. 2022, 62, 728–743. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Yücel, A.; Kocięcka, J.; Atilgan, A.; Marković, M.; Liberacki, D. Analysis of SPI as a drought indicator during the maize growing period in the Çukurova Region (Turkey). Sustainability 2022, 14, 3697. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Li, Z.; Zhou, Y.; Huang, H. Quantitative assessment of agricultural drought risk in Southeast Gansu Province, Northwest China. Sustainability 2019, 11, 5533. [Google Scholar] [CrossRef]
- Ihinegbul, C.; Ogunwumi, T. Multi-criteria modelling of drought: A study of Brandenburg Federal State, Germany. Model. Earth Syst. Environ. 2021, 8, 2035–2049. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Reig, F.; Beguería, S.; Tomas-Burguera, M.; Latorre, B.; Peña-Angulo, D.; Noguera, I.; Rabanaque, I.; Luna, Y.; et al. A near real-time drought monitoring system for Spain using automatic weather station network. Atmos. Res. 2022, 271, 106095. [Google Scholar] [CrossRef]
- Przybylak, R.; Oliński, P.; Koprowski, M.; Filipiak, J.; Pospieszyńska, A.; Chorążyczewski, W.; Puchałka, R.; Dąbrowski, H.P. Droughts in the area of Poland in recent centuries in the light of multi-proxy data. Clim. Past 2020, 16, 627–661. [Google Scholar] [CrossRef]
- Araźny, A.; Bartczak, A.; Maszewski, R.; Krzemiński, M. The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954–2018. Theor. Appl. Clim. 2021, 146, 1079–1095. [Google Scholar] [CrossRef]
- Bąk, B.; Kubiak-Wójcicka, K. Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015. J. Water Land Dev. 2016, 32, 3–12. [Google Scholar] [CrossRef]
- Szyga-Pluta, K. Variability of drought occurrence during growing season in Poland in years 1966–2015. Przegl. Geofiz. 2018, 63, 51–67. (In Polish) [Google Scholar]
- Baryła, A.; Hewelke, E.; Stańczyk, T.; Ptach, W. Relative precipitation indexes in the Puczniew area. Sci. Rev. Eng. Env. Sci. 2016, 72, 156–166. (In Polish) [Google Scholar]
- Radzka, E. The Assessment of atmospheric drought during vegetation season (according to standardized precipitation index SPI) in central-eastern Poland. J. Ecol. Eng. 2015, 16, 87–91. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B. Differentiation of the atmospheric drought index SPI in the vegetation period in Poland. Woda-Śr.-Obsz. Wiej. 2004, 4, 111–122. (In Polish) [Google Scholar]
- Żmudzka, E. Contemporary Changes of climate of Poland. Acta Agrophys. 2009, 13, 555–568. (In Polish) [Google Scholar]
- Szwed, M.; Pińskwar, I.; Kundzewicz, Z.W.; Graczyk, D.; Mezghani, A. Changes of snow cover in Poland. Acta Geophys. 2017, 65, 65–76. [Google Scholar] [CrossRef]
- Karamuz, E.; Romanowicz, R.J. Temperature changes and their impact on drought conditions in winter and spring in the Vistula Basin. Water 2021, 13, 1973. [Google Scholar] [CrossRef]
- Wartalska, K.; Kotowski, A. Model hyetographs of short-term rainfall for Wrocław in the perspective of 2050. Atmosphere 2020, 11, 663. [Google Scholar] [CrossRef]
- The Common Agricultural Policy at a Glance. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en#title (accessed on 20 August 2022).
Class | Symbol | SPI-3 |
---|---|---|
Extreme drought | Ed | ≤−2.0 |
Severe drought | Vd | [−1.5; −2.0) |
Moderate drought | Md | [−1.0; −1.5) |
Season | Intensification of Meteorological Drought | Characteristics | |||
---|---|---|---|---|---|
(%) | sd (%) | Max (%) | r for a Linear Trend | ||
Spring | ed | 2.1 | 6.0 | 34.6 | –0.297 ** |
vd | 4.7 | 7.7 | 38.7 | –0.247 ** | |
md | 12.1 | 13.7 | 57.0 | –0.067 | |
MDr (ed + vd + md) | 18.9 | 23.3 | 83.8 | –0.198 | |
Summer | ed | 1.1 | 4.0 | 26.4 | 0.137 |
vd | 3.4 | 8.9 | 42.1 | 0.115 | |
md | 6.6 | 10.3 | 37.7 | 0.024 | |
MDr (ed + vd + md) | 11.1 | 21.2 | 93.4 | 0.085 | |
Autumn | ed | 3.9 | 13.9 | 76.7 | –0.111 |
vd | 4.2 | 9.7 | 50.1 | –0.088 | |
md | 7.7 | 11.6 | 57.0 | –0.182 | |
MDr (ed + vd + md) | 15.8 | 27.6 | 99.5 | –0.228 * |
Spring | ||||||
SPI-3 | N | R2 | F | t | MAE | α |
–2.2 ÷ 2.4 | 70 | 0.686 | 149.1 | –12.2 | 10.4 | 0.01 |
–2.2 ÷ 1.5 | 66 | 0.773 | 218.0 | –14.8 | 9.6 | 0.01 |
–2.2 ÷ 1.0 | 64 | 0.800 | 248.7 | –15.7 | 9.0 | 0.01 |
–2.2 ÷ 0.5 | 55 | 0.852 | 304.8 | –17.5 | 7.8 | 0.01 |
–2.2 ÷ –0.0 | 43 | 0.875 | 287.2 | –16.9 | 6.6 | 0.01 |
–2.2 ÷ –0.5 | 32 | 0.849 | 169.2 | –13.0 | 7.1 | 0.01 |
Summer | ||||||
SPI-3 | N | R2 | F | t | MAE | α |
–2.4 ÷ 1.9 | 70 | 0.645 | 123.8 | –11.1 | 10.1 | 0.01 |
–2.4 ÷ 1.5 | 68 | 0.682 | 141.4 | –11.9 | 9.8 | 0.01 |
–2.4 ÷ 1.0 | 59 | 0.769 | 190.5 | –13.8 | 8.6 | 0.01 |
–2.4 ÷ 0.5 | 52 | 0.814 | 219.4 | –14.8 | 8.1 | 0.01 |
–2.4 ÷ –0.0 | 30 | 0.921 | 329.6 | –18.2 | 5.5 | 0.01 |
–2.4 ÷ –0.5 | 15 | 0.902 | 119.0 | –10.9 | 7.6 | 0.01 |
Autumn | ||||||
SPI-3 | N | R2 | F | t | MAE | α |
–3.2 ÷ 2.5 | 70 | 0.666 | 136.0 | –11.7 | 12.5 | 0.01 |
–3.2 ÷ 1.5 | 67 | 0.758 | 203.8 | –14.3 | 11.7 | 0.01 |
–3.2 ÷ 1.0 | 64 | 0.781 | 221.6 | –14.9 | 11.4 | 0.01 |
–3.2 ÷ 0.5 | 50 | 0.858 | 290.4 | –17.0 | 9.7 | 0.01 |
–3.2 ÷ –0.0 | 39 | 0.899 | 332.7 | –18.2 | 8.2 | 0.01 |
–3.2 ÷ –0.5 | 27 | 0.886 | 191.4 | –13.9 | 9.2 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalbarczyk, R.; Kalbarczyk, E. Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index. Agronomy 2022, 12, 2035. https://doi.org/10.3390/agronomy12092035
Kalbarczyk R, Kalbarczyk E. Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index. Agronomy. 2022; 12(9):2035. https://doi.org/10.3390/agronomy12092035
Chicago/Turabian StyleKalbarczyk, Robert, and Eliza Kalbarczyk. 2022. "Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index" Agronomy 12, no. 9: 2035. https://doi.org/10.3390/agronomy12092035
APA StyleKalbarczyk, R., & Kalbarczyk, E. (2022). Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index. Agronomy, 12(9), 2035. https://doi.org/10.3390/agronomy12092035