Foliar Applications of Humic Substances Together with Fe/Nano Fe to Increase the Iron Content and Growth Parameters of Spinach (Spinacia oleracea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments
2.2. Characterization of the Nano Ferrihydrite Samples Used in This Study
2.3. Experiment Setup
2.4. Sample Preparation
2.5. SPAD, Chlorophyll a, Chlorophyll b, Total Chlorophyll, and Carotenoid Analysis
2.6. Soil Analysis
2.7. Plant Leaf and Root Nutrient Content Analyses
2.8. Statistical Analysis
3. Results
3.1. Growth Properties and Chlorophyll and Carotenoid Contents
3.2. Leaf and Root Nutrient Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Aciksoz, S.B.; Yazici, A.; Ozturk, L.; Cakmak, I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 2011, 349, 215–225. [Google Scholar] [CrossRef]
- Jin, C.W.; Liu, Y.; Mao, Q.Q.; Wang, Q.; Du, S.T. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chem. 2013, 138, 2188–2194. [Google Scholar] [CrossRef] [PubMed]
- Briat, J.F.; Dubos, C.; Gaymard, F. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Uchida, R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In Plant Nutrient Management in HAWAII’S Soils, Approaches for Tropical and Subtropical Agriculture; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000; pp. 31–55. [Google Scholar]
- Riaz, N.; Guerinot, M.L. All together now: Regulation of the iron deficiency response. J. Exp. Bot. 2021, 72, 2045–2055. [Google Scholar] [CrossRef]
- Şimşek, O.; Çelik, H. Effects of iron fortification on growth and nutrient amounts of spinach (Spinacia oleracea L.). J. Plant Nutr. 2021, 44, 2770–2782. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar]
- Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 1999, 2, 250–253. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Schwab, A.P. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 1982, 5, 821–840. [Google Scholar] [CrossRef]
- Marschner, H.; Römheld, V. Strategies of plants for acquisition of iron. In Iron Nutrition in Soils and Plants; Springer: Dordrecht, The Netherlands, 1995; pp. 375–388. [Google Scholar]
- Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef]
- Askari, M.; Amini, F.; Talebi, S.M.; Shafiei Gavari, M. Effects of Fe-chelate and iron oxide nanoparticles on some of the physiological characteristics of alfalfa (Medicago sativa L.). Environ. Stresses Crop Sci. 2018, 11, 449–458. [Google Scholar]
- Bergmann, W. Nutritional Disorders of Plants: Visual and Analytical Diagnosis (English, French, Spanish); Jena (Germany) Gustav Fischer Verlag: Jena, Germany, 1992. [Google Scholar]
- Rawashdeh, H.M.; Sala, F. Influence of iron foliar fertilization on some growth and physiological parameters of wheat at two growth stages. Rom. Sci. Pap. Ser. A Agron. 2014, 57, 306–309. [Google Scholar]
- Dukpa, P.; Chatterjee, R.; Subba, S.K. Soil and foliar iron fertilization on terrestrial water spinach (Ipomoea reptans) for biofortification. J. Pharmacogn. Phytochem. 2017, 6, 1327–1330. [Google Scholar]
- Tagliavini, M.; Rombolà, A.D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 2001, 15, 71–92. [Google Scholar] [CrossRef]
- Hernández-Apaolaza, L.; Lucena, J.J. Influence of the soil/solution ratio, interaction time, and extractant on the evaluation of iron sorp- tion/desorption by soils. J. Agric. Food Chem. 2011, 59, 2493–2500. [Google Scholar] [CrossRef]
- Wei, Y.; Shohag, M.J.; Yang, X.; Yibin, Z. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. J. Agric. Food Chem. 2012, 60, 11433–11439. [Google Scholar] [CrossRef]
- Alidoust, D.; Isoda, A. Effect of γ-Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiol. Plant 2013, 35, 3365–3375. [Google Scholar] [CrossRef]
- Wang, W.N.; Tarafdar, J.C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 2013, 15, 1417. [Google Scholar] [CrossRef]
- Delfani, M.; Baradarn Firouzabadi, M.; Farrokhi, N.; Makarian, H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 2014, 45, 530–540. [Google Scholar] [CrossRef]
- Bastani, S.; Hajiboland, R.; Khatamian, M.; Saket-Oskoui, M. Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. J. Soil Sci. Plant Nutr. 2018, 18, 524–541. [Google Scholar] [CrossRef]
- Cieschi, M.T.; Polyakov, A.Y.; Lebedev, V.A.; Volkov, D.S.; Pankratov, D.A.; Veligzhanin, A.A.; Perminova, I.V.; Lucena, J.J. Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Front. Plant Sci. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Fernández-Luqueño, F.; Trejo-Téllez, L.I.; López-Valdez, F.; Pampillón-González, L. Growth and development of common bean (Phaseolus vulgaris L.) var. pinto saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl. Ecol. Environ. Res. 2018, 16, 1883–1897. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1994; p. 496. [Google Scholar]
- Cesco, S.; Römheld, V.; Varanini, Z.; Pinton, R. Solubilization of iron by water-extractable humic substances. J. Plant Nutr. Soil Sci. 2000, 163, 285–290. [Google Scholar] [CrossRef]
- Cesco, S.; Nikolic, M.; Römheld, V. Uptake of 59Fe from soluble 59Fe- humate complexes by cucumber and barley plants. Plant Soil 2002, 241, 121–128. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, A.; Sánchez-Andreu, J.; Juárez, M.; Jordá, J.; Bermúdez, D. Improvement of iron uptake in table grape by addition of humic substances. J. Plant Nutr. 2006, 29, 259–272. [Google Scholar] [CrossRef]
- Nikolic, M.; Cesco, S.; Römheld, V.; Varanini, Z.; Pinton, R. Uptake of Iron (59Fe) complexed to water-extractable humic substances by sunflower leaves. J. Plant Nutr. 2007, 26, 2243–2252. [Google Scholar] [CrossRef]
- Yildirim, E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric. Scand. B Soil Plant Sci. 2007, 57, 182–186. [Google Scholar] [CrossRef]
- Sánchez Sánchez, A.; Oliver, M.; Cerdán, M.; Juárez, M.; Sánchez-Andreu, J.J. Influence of humic acids on iron uptake by Fe-deficient tomato plants. Acta Hortic. 2009, 830, 335–344. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; Sellitto, V.M.; Rizzardo, C.; Tomasi, N.; Pinton, R.; Cesco, S. Characteristics of insoluble, high molecular weight iron-humic substances used as plant iron sources. Soil Sci. Soc. Am. J. 2012, 76, 1246–1256. [Google Scholar] [CrossRef]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Hortic. Environ. Biotechnol. 2014, 55, 455–461. [Google Scholar] [CrossRef]
- Shaaban, F.K.; Morsey, M.M.; Mahmoud, T.S.H.M. Influence of spraying yeast extract and humic acid on fruit maturity stage of canino apricot fruits. Int. J. ChemTech Res. 2015, 8, 530–543. [Google Scholar]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 1–10. [Google Scholar]
- Cieschi, M.T.; Lucena, J.J. Leonardite iron humate and synthetic iron. chelate mixtures in Glycine max nutrition. J. Sci. Food Agric. 2021, 101, 4207–4219. [Google Scholar] [CrossRef]
- Nargesi, M.M.; Sedaghathoor, S.; Hashemabadi, D. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi J. Biol. Sci. 2022, 29, 3473–3481. [Google Scholar]
- Zimbovskaya, M.M.; Polyakov, A.Y.; Volkov, D.S.; Kulikova, N.A.; Lebedev, V.A.; Pankratov, D.A.; Konstantinov, A.I.; Parfenova, A.M.; Zhilkibaev, O.T.; Perminova, I.V. Foliar application of humic-stabilized nanoferrihydrite resulted in an increase in the content of iron in wheat leaves. Agronomy 2020, 10, 1891. [Google Scholar]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 2003, 160, 485–492. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar]
- Bremner, J.M. Nitrogen-total. Methods of soil analysis: Part 3. Chem. Methods 1996, 5, 1085–1121. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis: Part 3 Chemical Methods, 2nd ed.; ASA SSSA Publisher Agronomy: Madison, WI, USA, 1996; Volume 3, pp. 417–436. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA SSSA Publisher: Madison, WI, USA, 1982; Volume 2, pp. 199–224. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Organic matter. In Methods of Soil Analysis, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA SSSA Publisher: Madison, WI, USA, 1982; Volume 2, pp. 574–579. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA SSSA Publisher: Madison, WI, USA, 1982; Volume 2, pp. 159–164. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Çelik, H.; Turan, M.A.; Aşık, B.B.; Katkat, A.V. Evaluation of analytical methods for boron determination in maize shoots. Commun. Soil Sci. Plant Anal. 2017, 48, 2573–2581. [Google Scholar]
- Mertens, D. Plants preparation of laboratory sample. In Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC: Gaithersburg, MD, USA, 2005; pp. 1–2. [Google Scholar]
- Mertens, D. Metal in plants and pet foods. In Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC: Gaithersburg, MD, USA, 2005; pp. 3–4. [Google Scholar]
- Zaharieva, T.B.; Gogorcena, Y.; Abadıa, J. Dynamics of metabolic responses to iron deficiency in sugar beet roots. Plant Sci. 2004, 166, 1045–1050. [Google Scholar] [CrossRef]
- Rabhi, M.; Barhoumi, Z.; Ksouri, R.; Abdelly, C.; Gharsalli, M. Interactive effects of salinity and iron deficiency in Medicago ciliaris. Comptes Rendus Biol. 2007, 330, 779–788. [Google Scholar]
- Zocchi, G.; De Nisi, P.; Dell’Orto, M.; Espen, L.; Gallina, P.M. Iron deficiency differently affects metabolic responses in soybean roots. J. Exp. Bot. 2007, 58, 993–1000. [Google Scholar]
- Vasconcelos, M.W.; Grusak, M.A. Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.). Plant Soil 2014, 374, 161–172. [Google Scholar]
- Bacaicoa, E.; García-Mina, J.M. Iron efficiency in different cucumber cultivars: The importance of optimizing the use of foliar iron. J. Am. Soc. Hortic. Sci. 2009, 134, 405–416. [Google Scholar]
- Cerdán, M.; Sánchez-Sánchez, A.; Juárez, M.; Sánchez-Andreu, J.J.; Jordá, J.D.; Bermúdez, D. Partial replacement of Fe (o, o-EDDHA) by humic substances for Fe nutrition and fruit quality of citrus. J. Plant Nut. Soil Sci. 2007, 170, 474–478. [Google Scholar]
- Chen, Y.; Aviad, T. Effects of humic substances on plant growth 1. In Humic Substances in Soil and Crop Sciences: Selected Readings; MacCarthy, P., Clapp, C.E., Malcolm, R.L., Bloom, P.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1990; pp. 161–186. [Google Scholar]
- MacCarthy, P. The Principles of humic substances. Soil Sci. 2001, 166, 738–751. [Google Scholar]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hort. 2015, 196, 15–27. [Google Scholar]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar]
- Turan, M.; Yildirim, E.; Ekinci, M.; Argin, S. Effect of biostimulants on yield and quality of cherry tomatoes grown in fertile and stressed soils. HortScience 2021, 56, 1–10. [Google Scholar]
- Skogerboe, R.K.; Wilson, S.A. Reduction of ionic species by fulvic acid. Anal. Chem. 1981, 53, 228–232. [Google Scholar]
- Struyk, Z.; Sposito, G. Redox properties of standard humic acids. Geoderma 2001, 102, 329–346. [Google Scholar]
- Yildirim, E.; Ekinci, M.; Turan, M.; Ağar, G.; Dursun, A.; Kul, R.; Alim, Z.; Argin, S. Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Sci. Rep. 2021, 11, 8040. [Google Scholar]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 1–25. [Google Scholar]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar]
- Cieschi, M.T.; Caballero-Molada, M.; Menéndez, N.; Naranjo, M.A.; Lucena, J.J. Long-term effect of a leonardite iron humate improving Fe nutrition as revealed in silico, in vivo, and in field experiments. J. Agric. Food Chem. 2017, 65, 6554–6563. [Google Scholar]
- Wang, Y.; Yang, R.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.), Ecotox. Environ. Safe 2019, 167, 10–19. [Google Scholar]
- Khush, G.S.; Lee, S.; Cho, J. Biofortification of crops for reducing malnutrition. Plant Biotechnol. Rep. 2012, 6, 195–202. [Google Scholar]
- Achari, G.A.; Kowshik, M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [PubMed]
- Esitken, A.; Pirlak, L.; Turan, M.; Sahin, F. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. 2006, 110, 324–327. [Google Scholar]
- Pirlak, L.; Turan, M.; Sahin, F.; Esitken, A. Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. J. Sustain. Agric. 2007, 30, 145–155. [Google Scholar]
- Tohidi-Moghadam, H.R.; Hadi, H. Response of corn to foliar application of plant growth promoting rhizobacteria and co-inoculation of seed with biofertilizers. Crop. Res. 2012, 13, 877–883. [Google Scholar]
- Puente, M.L.; Zawoznik, M.; de Sabando, M.L.; Perez, G.; Gualpa, J.L.; Carletti, S.M.; Cassán, F.D. Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis 2019, 77, 41–47. [Google Scholar]
- Yagmur, B.; Gunes, A. Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanzen 2021, 73, 219–228. [Google Scholar]
Treatment | Biostimulant | Iron Type | Content and Physical Properties of Biostimulants and Nano Iron |
---|---|---|---|
1 | Fulvagra® (Humintech GmbH) * (Fulvic acid-based) | FeSO4·7H2O | Content % dry wt: 23–25, Fulvic acid: 17%, Humic acid: 1.0%, Organic substance: 20–21% Microorganisms (1 × 109 cfu∙mL−1): Azospirillum brasilence spp., Bacillus pumulis, Bacillus megaterium, Bacillus subtilis pH: 8–9 |
2 | Fulvagra®WSG (Humintech GmbH) * (Fulvic acid-based) | FeSO4·7H2O | Content (% dry wt): 90–95, Fulvic acid: 63–64%, Humic acid: 9–10.0%, Organic substance: 75–80% pH: 8–9 |
3 | HS300® (Humintech GmbH) * (Humic acid-based) | FeSO4·7H2O | Content (% dry wt): 27–30, Humic acid: 21–22%, Fulvic acid: 5–6%, Organic substance: 28% Particle size of insoluble constituents: <5 µm pH: 4–5 |
4 | Humin Fe® (Humintech GmbH) * (Humic acid-based) | FeSO4·7H2O | Content (% dry wt): Potassium humates: 80–85%, Potassium as K2O: 10–12%, Total organic nitrogen: 1.0%, Others: 2.0% Particle size of insoluble constituents: <100 µm pH: 9–10 |
5 | Liqhumus® (Humintech GmbH) * (Humic acid-based) | FeSO4·7H2O | Content (% dry wt): 22–23, Humic substance: 18–20%, Potassium as K2O: 2.5–3.0%, Total organic nitrogen: 1.0% Particle size of insoluble constituents: <100 µm pH: 9–10 |
6 | FA-50 (LMSU) ** (Fulvic acid-based) | Nanoferrihydrite ** | Content (% dry wt): 88–89, Fulvic acid: 33.0–33.5%, Maltodextrin: 33.0–33.5% Organic substance: 66.0–67.0%, Ash content: 5.0%, Iron: 17.0% pH: 9–10 |
7 | FA-75 (LMSU) ** (Fulvic acid-based) | Nanoferrihydrite ** | Content (% dry wt): 88–89, Fulvic acid: 50%, Maltodextrin: 16.6–17.6% Organic substance: 66.6–67.6%, Ash content: 5.0%, pH: 9–10 |
8 | FA-100 (LMSU) ** (Fulvic acid-based) | Nanoferrihydrite ** | Content (% dry wt): 88–90, Fulvic acid: 67.5–69.5%, Organic substance: 67.5–69.5%, Ash content: 5.0%, pH: 9–10 |
9 | Nano Iron (LMSU) ** (Humic acid-based) | Nanoferrihydrite ** | Content (% dry wt): 88–90, Humic acid: 73–75%, Organic substance: 73–75%, Ash content: 5.0%, pH: 9–10 |
Control | -- | -- |
pH | EC (µS cm−1) | OM | N (%) | P (mg kg−1) | K (mg kg−1) | Ca (mg kg−1) |
7.33 | 42.00 | 0.33 | 0.001 | 3.67 | 245.33 | 1552.67 |
Mg (mg kg−1) | Zn (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Cu (mg kg−1) | B (mg kg−1) | Na (mg kg−1) |
44.33 | 0.33 | 1.67 | 1.45 | 1.22 | 0.20 | 10.40 |
Treatments | N (%) | P | K | Ca | Mg | S | Cu | Mn | Zn | B | Active Fe | Total Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf Nutrient Content (mg kg−1) § | ||||||||||||
Control | 3.03 cd | 0.28 bc | 2.45 de | 1.08 e | 0.18 e | 0.30 bc | 12.54 d | 36.30 b–d | 13.52 f | 6.16 de | 1.97 f | 36.39 e |
Fulvagra | 3.80 a | 0.34 e–g | 3.02 b | 1.62 d | 0.34 a–d | 0.29 bc | 21.26 bc | 32.60 c–f | 39.20 bc | 9.81 bc | 37.83 a | 163.09 a |
Fulvagra WSG | 3.64 b | 0.25 g | 2.56 d | 1.12 e | 0.29 cd | 0.27 c | 26.17 b | 29.06 ef | 28.83 de | 10.06 bc | 25.81 b | 115.20 d |
HS-300 | 4.18 a | 0.36 b | 3.69 a | 1.68 cd | 0.39 ab | 0.38 a | 17.25 cd | 41.00 ac | 34.41 cd | 18.14 a | 20.67 d | 126.63 c |
Humin Fe | 3.99 a | 0.42 a | 3.15 b | 1.85 bc | 0.41 a | 0.31 b | 11.28 d | 44.15 a | 27.55 de | 15.78 a | 20.27 d | 124.17 c |
Liqhumus | 3.06 cd | 0.31 c–e | 2.62 cd | 1.78 cd | 0.36 a–c | 0.23 d | 21.33 bc | 35.11 b–e | 31.53 d | 12.16 b | 22.44 c | 137.50 b |
Nano Iron | 2.80 de | 0.30 d–f | 2.18 e | 1.24 e | 0.31 b–d | 0.21 de | 21.99 bc | 31.29 d–f | 45.88 b | 10.72 bc | 23.56 c | 144.32 b |
FA-50 | 2.94 c–e | 0.34 bc | 2.97 b | 2.19 a | 0.30 cd | 0.20 d–f | 28.67 ab | 30.37 d–f | 24.17 e | 12.11 b | 17.36 e | 106.40 d |
FA-75 | 2.66 e | 0.27 fg | 2.91 bc | 2.00 b | 0.26 d | 0.17 f | 35.26 a | 27.80 f | 42.81 b | 5.26 e | 18.43 e | 112.93 d |
FA-100 | 2.76 de | 0.32 b–d | 1.59 f | 1.05 e | 0.29 cd | 0.18 ef | 35.59 a | 30.48 d–f | 54.00 a | 6.54 de | 25.32 b | 155.13 a |
Root Nutrient Content (mg kg−1) § | ||||||||||||
Control | 1.04 de | 0.17 bc | 0.56 de | 0.13 e | 0.07 e | 0.15 bc | 2.86 d | 2.78 b–d | 1.04 f | 1.85 de | 0.16 g | 0.16 e *** |
Fulvagra | 1.43 a | 0.13 e–g | 0.68 b | 0.19 d | 0.12 a–d | 0.14 bc | 4.84 bc | 2.50 c–f | 3.00 bc | 2.94 bc | 9.68 a | 27.60 a |
Fulvagra WSG | 1.33 b | 0.12 g | 0.58 d | 0.14 e | 0.11 cd | 0.13 c | 5.96 b | 2.23 fe | 2.21 de | 3.02 bc | 7.74 b | 19.50 d |
HS-300 | 1.53 a | 0.17 b | 0.84 a | 0.20 cd | 0.14 ab | 0.19 a | 3.92 cd | 3.14 ab | 2.64 cd | 5.44 a | 6.20 c–e | 21.43 c |
Humin Fe | 1.46 a | 0.21 a | 0.72 b | 0.22 bc | 0.15 a | 0.15 b | 2.57 d | 3.38 a | 2.11 de | 4.73 a | 6.08 d–f | 21.01 c |
Liqhumus | 1.12 cd | 0.15 c–e | 0.60 cd | 0.21 cd | 0.13 a–c | 0.11 d | 4.85 bc | 2.69 b–e | 2.42 d | 3.65 b | 6.73 cd | 23.27 b |
Nano Iron | 1.03 de | 0.14 d–f | 0.50 e | 0.15 e | 0.11 b–d | 0.11 de | 5.00 bc | 2.40 d–f | 3.52 b | 3.22 bc | 7.07 bc | 24.43 b |
FA-50 | 1.08 c–e | 0.17 bc | 0.68 b | 0.26 a | 0.11 cd | 0.09 d–f | 6.52 ab | 2.33 d–f | 1.85 e | 3.63 b | 5.21 f | 18.01 d |
FA-75 | 0.97 e | 0.13 fg | 0.67 bc | 0.24 b | 0.09 d | 0.09 d–f | 8.02 a | 2.13 ef | 3.28 b | 1.58 e | 5.53 ef | 19.11 d |
FA-100 | 1.01 de | 0.16 b–d | 0.36 f | 0.13 e | 0.10 cd | 0.09 d–f | 8.10 a | 2.34 d–f | 4.14 a | 1.96 de | 8.93 a | 26.26 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turan, M.; Ekinci, M.; Kul, R.; Kocaman, A.; Argin, S.; Zhirkova, A.M.; Perminova, I.V.; Yildirim, E. Foliar Applications of Humic Substances Together with Fe/Nano Fe to Increase the Iron Content and Growth Parameters of Spinach (Spinacia oleracea L.). Agronomy 2022, 12, 2044. https://doi.org/10.3390/agronomy12092044
Turan M, Ekinci M, Kul R, Kocaman A, Argin S, Zhirkova AM, Perminova IV, Yildirim E. Foliar Applications of Humic Substances Together with Fe/Nano Fe to Increase the Iron Content and Growth Parameters of Spinach (Spinacia oleracea L.). Agronomy. 2022; 12(9):2044. https://doi.org/10.3390/agronomy12092044
Chicago/Turabian StyleTuran, Metin, Melek Ekinci, Raziye Kul, Ayhan Kocaman, Sanem Argin, Anastasia M. Zhirkova, Irina V. Perminova, and Ertan Yildirim. 2022. "Foliar Applications of Humic Substances Together with Fe/Nano Fe to Increase the Iron Content and Growth Parameters of Spinach (Spinacia oleracea L.)" Agronomy 12, no. 9: 2044. https://doi.org/10.3390/agronomy12092044
APA StyleTuran, M., Ekinci, M., Kul, R., Kocaman, A., Argin, S., Zhirkova, A. M., Perminova, I. V., & Yildirim, E. (2022). Foliar Applications of Humic Substances Together with Fe/Nano Fe to Increase the Iron Content and Growth Parameters of Spinach (Spinacia oleracea L.). Agronomy, 12(9), 2044. https://doi.org/10.3390/agronomy12092044