Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Site Characteristics and Soil Analyses
2.2. Experimental Design and Agronomic Management
2.3. Clover Seed Treatment
2.4. Clover Crop Management
2.5. Clover and Rhizobium Nodule Assessments
2.6. Wheat Varieties Used
- Greina, a short-straw winter wheat variety developed for the conventional farming sector by Agroscope/DSP as part of the Swiss national breeding programme,
- Wenga and Pollux, two long-straw winter wheat varieties from an organic farming focused breeding programme developed by Peter Kunz for Sativa (Reinau, Switzerland),
- Paragon and Monsun two short-straw spring wheat varieties developed by CPB-Twyford/KWS UK Ltd. (Roysten, UK) and Lochow Petkus (Bergen, Germany), respectively, for intensive conventional farming systems
- Fasan and Zebra, two long-straw spring wheat varieties developed for high baking quality bread wheat production by Lochow Petkus and Svalöf Weibull AB/Lantmännen Seed (Malmö, Sweden (Sweden) respectively.
2.7. Wheat Crop Assessments
2.8. Statistical Analysis
3. Results
3.1. Effect of Clover Management (Rhizobium Seed Inoculation and Greenwaste Compost Amendments) on Clover Nodulation and Performance Parameters
3.2. Effect of Clover Management (Rhizobium Seed Inoculation and Greenwaste Compost and Variety Choice on Grain Yield and Quality of Following Wheat Crops)
3.2.1. Winter Wheat Performance
3.2.2. Spring Wheat Performance
4. Discussion
4.1. Yield and Processing Quality
- changes to the management of clover leys (i.e., use of Rhizobium inocula, application of high C:N-ratio greenwaste compost)
- use of winter-wheat varieties developed for lower-input conventional (Greina) or organic (Pollux, Wenga) production systems in Switzerland or
- use of spring wheat varieties developed in both the UK and Europe
4.2. Nutritional Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Iversen, P.O.; Bernhoft, A.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs. T. spelta), farming system (organic vs. conventional) and flour type (wholegrain vs. white) on composition of wheat flour; results of a retail survey in the UK and Germany—1. mycotoxin content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs. T. spelta), farming system (organic vs. conventional) and flour type (wholegrain vs. white) on composition of wheat flour—Results of a retail survey in the UK and Germany—2. Antioxidant activity, and phenolic and mineral content. Food Chem. X 2020, 6, 100091. [Google Scholar]
- Wang, J.; Hasanalieva, G.; Wood, L.; Anagnostopoulos, C.; Ampadogiannis, G.; Bempelou, E.; Kiousi, M.; Markellou, E.; Iversen, P.O.; Seal, C.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—3. Pesticide residue content. Food Chem. X 2020, 6, 100089. [Google Scholar] [CrossRef] [PubMed]
- Baranski, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, H.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analysis. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields in organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.; Volakakis, N.; Cakmak, I.; Ozturk, L. The effect of organic and conventional crop production systems on the yield and quality of wheat (Triticum aestivum) grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Barański, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crops Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Dubois, J.B.; Fossati, A. Influence of nitrogen uptake and partitioning efficiency on grain yield and grain protein concentration of twelve winter wheat genotypes (Triticum aestivum L.). Z. Pflanzenzücht. 1981, 86, 41–49. [Google Scholar]
- Taylor, B.; Younie, D.; Matheson, S.; Coutts, M.; Mayer, C.; Watson, C.; Walker, R. Output and sustainability of organic ley/arable crop rotations at two sites in northern Scotland. J. Agric. Sci. 2006, 144, 435–447. [Google Scholar] [CrossRef]
- Huss-Danell, K.; Chaia, E.; Carlsson, G. N-2 fixation and nitrogen allocation to above and below ground plant parts in red clover-grasslands. Plant Soil 2007, 299, 215–226. [Google Scholar] [CrossRef]
- Koehler-Cole, K.; Brandle, J.R.; Francis, C.A.; Shapiro, C.A.; Blankenship, E.E.; Baenziger, P.S. Clover green manure productivity and weed suppression in an organic grain rotation. Renew. Agric. Food Syst. 2017, 32, 474–483. [Google Scholar] [CrossRef]
- Eyre, M.D.; Critchley, C.N.R.; Leifert, C.; Wilcockson, S.J. Crop sequence, crop protection and fertility management effects on weed cover in an organic/conventional farm management trial. Eur. J. Agron. 2011, 59, 4715–4724. [Google Scholar] [CrossRef]
- Millington, S.; Stopes, C.; Woodward, L. Rotational design and the limits of organic systems--the stockless organic farm? In Crop Protection in Organic and Low-Input Agriculture; Unwin, R., Ed.; British Crop Protection Council: Cambridge, UK, 1990; pp. 163–173. [Google Scholar]
- Aulakh, M.S.; Rennie, D.A.; Paul, E.A. Gaseous nitrogen losses from cropped and summer-fallowed soils. Can. J. Soil Sci. 1982, 62, 187–196. [Google Scholar] [CrossRef]
- Aulakh, M.; Rennie, D.; Paul, E.A. Field studies on gaseous nitrogen losses from soils under continuous wheat versus a wheat-fallow rotation. Plant Soil 1983, 75, 15–27. [Google Scholar] [CrossRef]
- Brozyna, M.A.; Petersen, S.O.; Chirinda, N.C.; Olesen, J.E. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation. Agric. Ecosyst. Environ. 2013, 181, 115–126. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.J.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Kebede, E. Competency of Rhizobial Inoculation in Sustainable Agricultural Production and Biocontrol of Plant Diseases. Front. Sustain. Food Syst. 2021, 5, 728014. [Google Scholar] [CrossRef]
- Grossman, J.; Legume Inoculation for Organic Farming Systems. E-Organic Website Article. Available online: https://eorganic.org/node/4439 (accessed on 17 February 2022).
- Murray, J.D.; Cheng-Wu, L.; Yi, C.; Miller, A.J. Nitrogen sensing in legumes. J. Exp. Bot. 2017, 68, 1919–1926. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, C.; Wang, X.; Hai, L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresour. Technol. 2020, 297, 122410. [Google Scholar] [CrossRef]
- Mittler, S. Ökovariabilität von Winterweizen unter Standortbedingungen Nordostdeutschlands. Ph.D. Thesis, Humboldt-Universität, Berlin, Germany, 2000. [Google Scholar]
- Cooper, J.; Sanderson, R.; Cakmak, I.; Ozturk, L.; Shotton, P.; Carmichael, A.; Sadrabadi Haghighi, R.; Tetard-Jones, C.; Volakakis, N.; Eyre, M.; et al. Effect of organic and conventional crop rotation, fertilization and crop protection practices on metal contents in wheat (Triticum aestivum). J. Agric. Food Chem. 2011, 59, 4715–4724. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2012; Available online: http://www.R-project.org/ (accessed on 17 February 2022).
- Yara. How to Increase Wheat Protein Content. 2022. Available online: https://www.yara.co.uk/crop-nutrition/wheat/increasing-wheat-protein/ (accessed on 17 February 2022).
- Mamo, M.; Rosen, C.J.; Halbach, T.R.; Moncrief, J.F. Corn Yield and Nitrogen Uptake in Sandy Soils Amended with Municipal Solid Waste Compost. J. Prod. Agric. 1998, 11, 469–475. [Google Scholar] [CrossRef]
- Talgre, L.; Roostalu, H.; Mäeorg, E.; Lauringson, E. Nitrogen and carbon release during decomposition of roots and shoots of leguminous green manure crops. Agron. Res. 2017, 15, 594–601. [Google Scholar]
- Reichel, R.; Wei, J.; Islam, M.S.; Schmid, C.; Wissel, H.; Schröder, P.; Schloter, M.; Brüggemann, N. Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. Front. Plant Sci. 2018, 9, 00900. [Google Scholar] [CrossRef]
- Stotter, M.; Wichern, F.; Pude, R.; Hamer, M. Nitrogen Immobilisation and Microbial Biomass Build-Up Induced by Miscanthus x giganteus L. Based Fertilisers. Agronomy 2021, 11, 1386. [Google Scholar] [CrossRef]
- Francis, G.; Haynes, R.; Williams, P. Effects of the timing of ploughing-in temporary leguminous pastures and two winter cover crops on nitrogen mineralization, nitrate leaching and spring wheat growth. J. Agric. Sci. 1995, 124, 1–9. [Google Scholar] [CrossRef]
- Granstedt, A.; Baeckström, G.L. Studies of the preceding crop effect of ley in ecological agriculture. Am. J. Alternative Agric. 2000, 15, 68–78. [Google Scholar] [CrossRef]
- Frøseth, R.B.; Thorup-Kristensen, K.; Hansen, S.; Azzaroli Bleken, M. High N relative to C mineralization of clover leaves at low temperatures in two contrasting soils. Geoderma 2022, 406, 115483. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. CRC Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Lampi, A.M.; Tanja Nurmi, T.; Ollilainen, V.; Piironen, V. Tocopherols and Tocotrienols in Wheat Genotypes in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9716–9721. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Sharma, A.; Vats, S.; Tiwari, V.; Kumari, A.; Mishra, V.; Krishania, M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021, 8, 586815. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulou, T.; Kizis, D.; Kotopoulis, D.; Papadakis, I.E.; Anagnostopoulos, C.; Baira, E.; Termentzi, A.; Vichou, A.-E.; Leifert, C.; Markellou, E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. Plant Physiol. 2022, 188, 576–592. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef]
- Egesel, C.Ö.; Gül, M.K.; Kahrıman, F.; Özer, I.; Mert, F. The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur. Food Res. Technol. 2008, 227, 871–880. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Falk, J. New insights into the function of tocopherols in plants. Planta 2004, 218, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Alegre, L. The function of tocopherols and tocotrienols in Plants. CRC Crit. Rev. Plant Sci. 2010, 21, 31–57. [Google Scholar] [CrossRef]
- Tung, Y.H.; Ng, L.T. Effects of nitrogen fertilization rate on tocopherols, tocotrienols and γ-oryzanol contents and enzymatic antioxidant activities in rice grains. Physiol. Mol. Biol. Plants 2019, 25, 189–195. [Google Scholar] [CrossRef]
- Verardo, V.; Riciputi, Y.; Sorrenti, G.; Ornaghi, P.; Marangoni, B.; Caboni, M.F. Effect of nitrogen fertilisation rates on the content of fatty acids, sterols, tocopherols and phenolic compounds, and on the oxidative stability of walnuts. Lebensm. Wiss. Technol. 2013, 50, 732–738. [Google Scholar] [CrossRef]
- Mène-Saffrané, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2017, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Larsson, H.; Olsson, M.E.; Kuktaite, R.; Grausgruber, H.; Johansson, E. Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chem. 2012, 132, 1789–1795. [Google Scholar] [CrossRef]
Field/Block Number | ||||
---|---|---|---|---|
Parameter Assessed | 1 | 2 | 3 | 4 |
pH (H2O) | 6.0 | 6.3 | 6.7 | 6.9 |
N (kg/ha) | 92 | 93 | 112 | 106 |
S (ppm) | 10 | 9 | 12 | 16 |
P (kg/ha) | 97 | 147 | 164 | 196 |
K (kg/ha) | 133 | 175 | 250 | 557 |
Ca (kg/ha) | 4879 | 5396 | 5505 | 4871 |
Mg (kg/ha) | 628 | 776 | 679 | 948 |
Ca:Mg ratio | 64 | 66 | 72 | 63 |
Na (kg/ha) | 75 | 83 | 72 | 56 |
Fe (ppm) | 533 | 665 | 722 | 908 |
Mn (ppm) | 64 | 83 | 61 | 87 |
Cu (ppm) | 1.7 | 2.0 | 1.9 | 1.3 |
Zn (ppm) | 7.4 | 8.0 | 7.4 | 7.2 |
B (ppm) | 0.50 | 0.53 | 0.80 | 1.08 |
Mo (ppm) | 1.36 | 1.84 | 1.60 | 1.72 |
Dry Matter | 40 | % |
Conductivity 1:6 | 812 | uS cm |
Total Nitrogen | 1.54 | % ww |
Total Carbon | 20.3 | % ww |
C:N ratio | 13:1 | |
Nitrate Nitrogen | 159 | mg/kg |
Ammonium Nitrogen | 126 | mg/kg |
Total Phosphorus (P) | 2583 | mg/kg |
Total Potassium (K) | 5850 | mg/kg |
Total Copper (Cu) | 23.1 | mg/kg |
Total Zinc (Zn) | 143 | mg/kg |
pH | 7.8 |
Winter Wheat Varieties | Spring Wheat Varieties | |
---|---|---|
Soil incorporation of clover ley | 28 October 2004 | 28 October 2005 |
Planting of wheat crops | 28 October 2004 | 09 March 2005 |
Soil Analysis | 19 January 2005 | 19 January 2005 |
Weeding 1 | 04 April 2005 | 25 May 2005 |
Weeding 2 | 03 June 2005 | |
Chlorophyll SPAD | 27 June 2005 | 27 June 2005 |
Harvest | 17 August 2005 | 07 September 2005 |
Factor | Clover Establishment (plants/m2) | Nodulation (No/plant) | % Active Nodules | Mean Nodule Volume (mm3) |
---|---|---|---|---|
Rhizobium seed inoculation | ||||
with | 7.7 ± 0.1 | 149.1 ± 0.2 | 0.7 ± 0.08 | 3.9 ± 0.2 |
Without | 6.2 ± 0.1 | 115.3 ± 0.1 | 0.73 ± 0.1 | 2.5 ± 0.1 |
1-factor ANOVA-results | ||||
Main effect (p-value) | 0.0217 | 0.0319 | NS | 0.0012 |
NS, not significant |
Factors | Mean Root Fresh Weight (g) | Nodulation (No/plant) | Mean Nodule Volume (mm3) |
---|---|---|---|
Rhizobium seed inoculation | |||
with | 32 ± 3 | 393 ± 31 | 1.1 ± 0.5 |
without | 38 ± 6 | 356 ± 20 | 1.1 ± 0.3 |
Greenwaste compost application | |||
With | 38 ± 5 | 333 ± 61 | 1.1 ± 0.3 |
Without | 33 ± 2 | 417 ± 35 | 1.1 ± 0.5 |
2-factor ANOVA-results (p-values) | |||
Main effects | |||
Rhizobium seed inoculation (RI) | NS | NS | NS |
Greenwaste compost application (GA) | NS | NS | NS |
Interaction(RI ✕ GA) | NS | NS | NS |
NS, not significant |
Factors | Leaf Chlorophyll at GS55 (SPAD) | Tillers at Harvest (ears/m2) | Grain Yield (t/ha) |
---|---|---|---|
Rhizobium seed inoculation 1 | |||
with | 44 ± 1 | 302 ± 15 | 6.3 ± 0.2 |
without | 43 ± 1 | 268 ± 18 | 5.6 ± 0.4 |
Greenwaste compost application 2 | |||
With | 44 ± 1 | 297 ± 17 | 6.1 ± 0.4 |
Without | 43 ± 1 | 276 ± 17 | 5.8 ± 0.2 |
Variety choice | |||
Greina | 41 ± 2 b | 319 ± 25 a | 5.8 ± 0.5 ab |
Pollux | 42 ± 1 b | 305 ± 14 a | 6.4 ± 0.2 a |
Wenga | 49 ± 1 a | 232 ± 15 b | 5.7 ± 0.3 b |
3-factor ANOVA-results (p-values) | |||
Main effects | |||
Rhizobium seed inoculation | 0.0329 | 0.0073 | NS |
Greenwaste compost application (GA) | 0.0460 | NS | NS |
Variety choice | T | 0.0099 | <0.0001 |
Interactions | 3-factor ANOVA detected no significant interactions |
Factors | Protein (%) | Hagberg Falling Number | Specific Weight (kg/hl) | Grain Hardness (Ha) |
---|---|---|---|---|
Rhizobium seed inoculation 1 | ||||
with | 11.7 ± 0.2 | 309 ± 11 | 82.1 ± 0.7 | 59.0 ± 2.5 |
without | 12.5 ± 0.2 | 324 ± 12 | 80.5 ± 0.6 | 69.0 ± 2.0 |
Greenwaste compost application 2 | ||||
With | 12.4 ± 0.2 | 318 ± 13 | 81.3 ± 0.8 | 65.4 ± 2.9 |
Without | 11.8 ± 0.2 | 315 ± 11 | 81.4 ± 0.6 | 62.4 ± 2.2 |
Variety choice | ||||
Greina | 11.9 ± 0.3 | 313 ± 17 | 81.9 ± 1.0 | 63.5 ± 3.7 |
Pollux | 12.3 ± 0.2 | 320 ± 13 | 81.1 ± 0.8 | 64.3 ± 3.0 |
Wenga | 12.1 ± 0.3 | 316 ± 13 | 81.0 ± 0.7 | 63.7 ± 2.7 |
3-factor ANOVA-results (p-values) | ||||
Main effects | ||||
Rhizobium seed inoculation (RI) | 0.0179 | NS | NS | NS |
Greenwaste compost application (GA) | 0.0140 | NS | NS | NS |
Variety choice (VC) | NS | NS | NS | NS |
Interactions 3 | ||||
GA ✕ VC | NS | NS | 0.0052 | NS |
Vitamin E (Tocopherol/Tocotrienol) Isomers Monitored | ||||
---|---|---|---|---|
Factor | α-Tocopherol | α-Tocotrienol | β-Tocopherol | β-Tocotrienol |
Rhizobium seed inoculation 1 | ||||
with | 12.1 ± 0.3 | 2.7 ± 0.1 | 6.2±0.2 | 21.5 ± 0.8 |
without | 12.6 ± 0.3 | 2.9 ± 0.2 | 6.3±0.2 | 21.9 ± 0.8 |
Greenwaste compost application 2 | ||||
With | 12.4 ± 0.3 | 2.8 ± 0.1 | 6.2±0.2 | 21.5 ± 0.9 |
Without | 12.3 ± 0.3 | 2.9 ± 0.1 | 6.3±0.2 | 21.9 ± 0.7 |
Variety choice | ||||
Greina | 11.5 ± 0.3 b | 2.6 ± 0.1 b | 6.9±0.2 a | 17.9 ± 0.5 c |
Pollux | 13.0 ± 0.3 a | 2.8 ± 0.1 b | 6.2±0.2 b | 22.4 ± 0.5 b |
Wenga | 12.5 ± 0.4 ab | 3.0 ± 0.1 a | 5.7±0.3 b | 24.7 ± 0.9 a |
3-factor ANOVA-results (p-values) | ||||
Main effects | ||||
Rhizobium seed inoculation | NS | NS | NS | NS |
Greenwaste compost application | NS | NS | NS | NS |
Variety choice | 0.0299 | 0.0159 | 0.0009 | <0.0001 |
Interactions | 3-factor ANOVA detected no significant interactions |
Factors | Leaf Chlorophyll at GS37 (SPAD) | Tillers at Harvest (ears/m2) | Grain Yield (t/ha) |
---|---|---|---|
Rhizobium seed inoculation 1 | |||
with | 45.6 ± 0.5 | 368 ± 12 | 7.0 ± 0.2 |
without | 47.0 ± 0.5 | 339 ± 10 | 6.8 ± 0.2 |
Greenwaste compost application 2 | |||
With | 46.1 ± 0.5 | 352 ± 13 | 6.9 ± 0.2 |
Without | 46.5 ± 0.5 | 356 ± 9 | 6.9 ± 0.1 |
Variety choice | |||
Paragon (short straw) | 47.4 ± 0.6 a | 388 ± 16 a | 5.7 ± 0.1 c |
Monsun (short straw) | 47.6 ± 0.6 a | 355 ± 12 a | 6.9 ± 0.2 b |
Fasan (long straw) | 45.0 ± 0.6 b | 355 ± 17 a | 7.0 ± 0.3 b |
Zebra (long straw) | 45.3 ± 0.7 b | 317 ± 13 b | 8.0 ± 0.3 a |
3-factor ANOVA-results (p-values) | |||
Main effects | |||
Rhizobium seed inoculation | T | NS | NS |
Greenwaste compost application | NS | NS | NS |
Variety choice | <0.0001 | 0.0083 | 0.0008 |
Interactions | 3-factor ANOVA detected no significant interactions |
Factors | Protein (%) | Hagberg Falling Number | Specific Weight (kg/hl) | Grain Hardness (Ha) |
---|---|---|---|---|
Rhizobium seed inoculation 1 | ||||
with | 11.8 ± 0.1 | 354 ± 5 | 79.7 ± 0.4 | 68 ± 2 |
without | 11.8 ± 0.1 | 361 ± 5 | 79.7 ± 0.5 | 67 ± 2 |
Greenwaste compost application 2 | ||||
With | 11.9 ± 0.1 | 361 ± 5 | 79.7 ± 0.5 | 69 ± 2 |
Without | 11.7 ± 0.1 | 354 ± 6 | 79.7 ± 0.4 | 66 ± 2 |
Variety choice | ||||
Paragon (short straw) | 12.0 ± 0.2 ab | 330 ± 5 b | 78.1 ± 0.4 c | 57 ± 2 c |
Monsun (short straw) | 12.1 ± 0.2 a | 371 ± 7 a | 77.9 ± 0.5 c | 73 ± 3 a |
Fasan (long straw) | 11.7 ± 0.2 bc | 368 ± 4 a | 80.8 ± 0.3 b | 68 ± 2 b |
Zebra (long straw) | 11.4 ± 0.2 c | 362 ± 8 a | 82.1 ± 0.6 a | 72 ± 2 a |
3-factor ANOVA-results (p-values) | ||||
Main effects | ||||
Rhizobium seed inoculation (RI) | NS | NS | NS | NS |
Greenwaste compost application (GA) | NS | NS | NS | NS |
Variety choice (VC) | 0.0040 | <0.0001 | <0.0001 | <0.0001 |
Interactions 3 | ||||
RI ✕ GA | NS | NS | NS | 0.0253 |
RI ✕ VC | 0.0427 | NS | NS | NS |
Factor 2 | Factor 1 | |
---|---|---|
Compost application | Rhizobium inoculation of clover seed | |
to clover swards | without | With |
Without | 68.1 ± 3.0 A a | 64.7 ± 2.6 A b |
With | 65.5 ± 3.0 B a | 71.7 ± 2.4 A a |
Factor 1 | ||
---|---|---|
Factor 2 | Rhizobium Inoculation of Clover Seed | |
Variety | Without | With |
Fasan | 12.0 ± 0.3 A a | 11.3 ± 0.2 B b |
Monsun | 12.0 ± 0.3 A a | 12.2 ± 0.3 A a |
Paragon | 11.9 ± 0.2 A ab | 12.0 ± 0.2 A a |
Zebra | 11.2 ± 0.2 A b | 11.6 ± 0.2 A b |
Factor | Vitamin E (Tocopherol/Tocotrienol) Isomers Monitored | |||
---|---|---|---|---|
α-Tocopherol | α-Tocotrienol | β-Tocopherol | β-Tocotrienol | |
Rhizobium seed inoculation 1 | ||||
with | 11.6 ± 0.5 | 2.6 ± 0.2 | 4.1 ± 0.21 | 19.0 ± 0.9 |
without | 11.6 ± 0.5 | 2.9 ± 0.3 | 4.3 ± 0.21 | 18.7 ± 0.8 |
Greenwaste compost application 2 | ||||
With | 11.9 ± 0.5 | 2.6 ± 0.1 | 4.2 ± 0.21 | 18.5 ± 0.8 |
Without | 11.3 ± 0.6 | 2.9 ± 0.3 | 4.2 ± 0.21 | 19.3 ± 0.8 |
Variety choice | ||||
Paragon | 12.8 ± 1.2 a | 2.4 ± 0.2 bc | 5.1 ± 0.2 a | 22.36 ± 1.2 a |
Monsun | 10.7 ± 0.5 b | 3.7 ± 0.5 a | 3.0 ± 0.2 c | 18.33 ± 1.1 b |
Fasan | 10.2 ± 0.2 b | 2.0 ± 0.1 c | 3.5 ± 0.1 b | 14.82 ± 0.5 c |
Zebra | 12.7 ± 0.4 a | 2.9 ± 0.2 b | 5.1 ± 0.2 a | 19.92 ± 0.7 b |
3-factor ANOVA-results (p-values) | ||||
Main effects | ||||
Rhizobium seed inoculation (RI) | NS | NS | NS | NS |
Greenwaste compost application (GA) | NS | NS | NS | NS |
Variety choice (VC) | 0.0199 | 0.0026 | <0.0001 | <0.0001 |
Interactions | 3-factor ANOVA detected no significant interactions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkinson, A.; Wilkinson, J.N.; Shotton, P.; Eyre, M.; Hasanaliyeva, G.; Bilsborrow, P.; Leifert, C.; Rempelos, L. Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study. Agronomy 2022, 12, 2085. https://doi.org/10.3390/agronomy12092085
Wilkinson A, Wilkinson JN, Shotton P, Eyre M, Hasanaliyeva G, Bilsborrow P, Leifert C, Rempelos L. Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study. Agronomy. 2022; 12(9):2085. https://doi.org/10.3390/agronomy12092085
Chicago/Turabian StyleWilkinson, Andrew, John N. Wilkinson, Peter Shotton, Mick Eyre, Gultakin Hasanaliyeva, Paul Bilsborrow, Carlo Leifert, and Leonidas Rempelos. 2022. "Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study" Agronomy 12, no. 9: 2085. https://doi.org/10.3390/agronomy12092085
APA StyleWilkinson, A., Wilkinson, J. N., Shotton, P., Eyre, M., Hasanaliyeva, G., Bilsborrow, P., Leifert, C., & Rempelos, L. (2022). Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study. Agronomy, 12(9), 2085. https://doi.org/10.3390/agronomy12092085