Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Area
2.2. Yield Records and Fruit Sampling
2.3. Fruit Processing, Determination of Water and Oil Content
2.4. Oil Quality Parameters
2.5. Fatty Acid Profile Analyses
2.6. Statistical Analyses
3. Results
3.1. Olive Fruit and Oil Yield
3.2. Oil Acidity and Peroxide Value
4. Discussion
4.1. Crop Yield
4.2. Oil Acidity and Peroxide Value
4.3. Fatty Acid Profiles
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madžarić, S.; Al Bitar, L.; Bteich, M.R.; Pugliese, P. Mediterranean Organic Agriculture Network—Report 2019. Available online: https://moan.iamb.it/wp-content/uploads/2021/10/Mediterranean-Organic-Agriculture-Network-Report-2019.pdf (accessed on 28 April 2022).
- Porter, W.P.; Green, S.M.; Debbink, N.L.; Carlson, I. Groundwater pesticides—Interactive effects of low concentrations of carbamates aldicarb and methomyl and the triazine metribuzin on thyroxine and somatrophin levels in white rats. J. Toxicol. Environ. Health Part A 1993, 40, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–264. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnstrom, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Pysek, P.; Jarosik, V.; Kropac, Z.; Chytry, M.; Wild, J.; Tichy, L. Effects of abiotic factors on species richness and cover in Central European weed communities. Agric. Ecosyst. Environ. 2005, 109, 1–8. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnstrom, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef]
- Dubois, D.; Gunst, L.; Fried, P.M.; Stauffer, W.; Spiess, E.; Alfoldi, T.; Fliessbach, A.; Frei, R.; Niggli, U. DOC-trial: Yields and energy use efficiency. Agrarforschung 1999, 6, 293–296. [Google Scholar]
- Cormack, W.F. Energy Use in Organic Farming Systems—Final Report of Defra Project OF0182. 2000. Available online: https://orgprints.org/id/eprint/8169/ (accessed on 28 April 2022).
- Bos, J.F.F.P.; de Haan, J.; Sukkel, W.; Schils, R.L.M. Energy use and greenhouse gas emissions in organic and conventional farming systems in the Netherlands. NJAS—Wagen. J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.N.; Ball, A.S.; Li, X.Y.; Ravindranath, N.H. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India. Philos. Trans. R. Soc. A 2002, 360, 1741–1761. [Google Scholar] [CrossRef] [PubMed]
- Squalli, J.; Adamkiewicz, G. Organic farming and greenhouse gas emissions: A longitudinal U.S. state-level study. J. Clean. Prod. 2018, 192, 30–42. [Google Scholar] [CrossRef]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.-M.; Mayer, J.; van der Heijden, M.G.A.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- Maffia, A.; Pergola, M.; Palese, A.M.; Celano, G. Environmental Impact Assessment of Organic vs. Integrated Olive-Oil Systems in Mediterranean Context. Agronomy 2020, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Stolz, H.; Stolze, M.; Hamm, U.; Janssen, M.; Ruto, E. Consumer attitudes towards organic versus conventional food with specific quality attributes. NJAS—Wagen. J. Life Sci. 2011, 58, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Joshi, Y.; Rahman, Z. Factors Affecting Green Purchase Behaviour and Future Research Directions. Int. Strateg. Manag. Rev. 2015, 3, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Baranski, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, H.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analysis. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Rempelos, L.; Wang, J.; Baranski, M.; Watson, A.; Volakakis, N.; Hoppe, H.-W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2021, 115, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Leifert, C. Organic Farming Provides a Blueprint to Improve Food Quality, Safety and Security. Agronomy 2022, 12, 631. [Google Scholar] [CrossRef]
- López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of Organic and Conventional Growing Systems on the Phenolic Profile of Extra-Virgin Olive Oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, H.; Maneas, G.; Salguero Engström, A. A Comparison between Organic and Conventional Olive Farming in Messenia, Greece. Horticulturae 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, F.; Arnaud, T.; Parra Lopez Albi, M.A. Influence of ecological cultivation on virgin olive oil quality. J. Am. Oil Chem. Soc. 1999, 76, 617–621. [Google Scholar] [CrossRef]
- Parra Lopez, C.; Calatrava Requena, J. Factors related to the adoption of organic farming in Spanish olive orchards. Span. J. Agric. Res. 2005, 3, 5–16. [Google Scholar]
- Samman, S.; Chow, J.W.Y.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of edible oils derived from certified organic and conventional agricultural methods. Food Chem. 2008, 109, 670–674. [Google Scholar] [CrossRef]
- Lentza-Rizos, C.; Avramides, E.J. Pesticide residues in olive oil. Rev. Environ. Contam. Toxicol. 1995, 141, 111–134. [Google Scholar]
- Tsatsakis, A.M.; Tsakiris, I.N.; Tzatzarakis, M.N.; Agourakis, Z.B.; Tutudaki, M.; Alegakis, A.K. Three-year study of fenthion and dimethoate pesticides in olive oil from organic and conventional cultivation. Food Addit. Contam. 2003, 20, 553–559. [Google Scholar] [CrossRef]
- Dolgun, O.; Ozkan, G.; Erbay, B. Comparison of Olive Oils Derived from Certified Organic and Conventional Agricultural Methods. Asian J. Chem. 2010, 22, 2339–2348. Available online: https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=22_3_92 (accessed on 6 June 2022).
- Neuenschwander, P.; Michelakis, S. Infestation of Dacus oleae (Gmel.) (Diptera, Tephritidae) at harvest time and its influence on yield and quality of olive oil in Crete. Z. Angew. Entomol. 1978, 86, 420–433. [Google Scholar] [CrossRef]
- Volakakis, N. Development of Strategies to Improve the Quality and Productivity of Organic and ‘Low Input’ Olive Production Systems in Semi-Arid Mediterranean Regions. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2010. [Google Scholar]
- Tzouvelekas, V.; Pantzios, C.J.; Fotopoulos, C. Technical efficiency of alternative farming systems: The case of Greek organic and conventional olive-growing farms. Food Policy 2001, 26, 549–569. [Google Scholar] [CrossRef]
- Kabourakis, E. Code of practices for ecological olive production systems. Olivae 1999, 77, 46–55. [Google Scholar]
- Daher, E.; Cinosi, N.; Chierici, E.; Rondoni, G.; Famiani, F.; Conti, E. Field and Laboratory Efficacy of Low-Impact Commercial Products in Preventing Olive Fruit Fly, Bactrocera oleae, Infestation. Insects 2022, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Broumas, T.; Haniotakis, G.; Liaropoulos, C.; Tomazou, T.; Ragoussis, N. The efficacy of an improved form of the mass-trapping method, for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): Pilot-scale feasibility studies. J. Appl. Entomol. 2002, 126, 217–223. [Google Scholar] [CrossRef]
- Noce, M.E.; Belfiore, T.; Scalercio, S.; Vizzarri, V.; Iannotta, N. Efficacy of new mass-trapping devices against Bactrocera oleae (Diptera tephritidae) for minimizing pesticide input in agroecosystems. J. Environ. Sci. Health B 2009, 44, 442–448. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields in organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Wilbois, K.-P.; Schmidt, J.E. Reframing the Debate Surrounding the Yield Gap between Organic and Conventional Farming. Agronomy 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Schram, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Vassiliou, A. Farm Structure Optimisation of, and the Impact of Widespread Conversion to Ecological Olive Production Systems. Ph.D. Thesis, Institute of Rural Studies, University of Wales, Aberystwyth, UK, 2000. [Google Scholar]
- Gkisakis, V.D.; Volakakis, N.G.; Kosmas, E.; Kabourakis, E.M. Developing a decision support tool for evaluating the environmental performance of olive production in terms of energy use and greenhouse gas emissions. Sustain. Prod. Consum. 2020, 24, 156–168. [Google Scholar] [CrossRef]
- EU. Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Off. J. Eur. Communities 2007, L 189, 1–22. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=EN (accessed on 28 April 2022).
- Association of Analytical Chemists. Standard Official Methods of Analysis of the Association of Analytical Chemists, 14th ed.; Williams, S.W., Ed.; AOAC: Washington, DC, USA, 1984. [Google Scholar]
- EU Commission Regulation. Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Communities 1991, L 248, 1–83. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991R2568&from=EN (accessed on 28 April 2022).
- Kiritsakis, A. Olive Oil; American Oil Chemists’ Society: Champaign, IL, USA, 1991; pp. 137–139. [Google Scholar]
- Kiritsakis, A.; Dugan, L.R. Studies in photooxidation of olive oil. J. Am. Oil Chem. Soc. 1985, 62, 892–896. [Google Scholar] [CrossRef]
- Kiritsakis, A.; Keceli, M.T.; Kiritsakis, K. Olive Oil. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons: Toronto, ON, Canada, 2020; pp. 307–344. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P.; Kiritsakis, A. Analysis of Olive Oil Quality. In Olives and Olive Oil as Functional Foods; Kiritsakis, A., Shahidi, F., Eds.; John Wiley and Sons: Toronto, ON, Canada, 2017; pp. 521–531. [Google Scholar]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018; Available online: www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 28 April 2022).
- Kabourakis, E. Prototyping and Dissemination of Ecological Olive Production Systems. A Methodology for Designing and Dissemination of Prototype Ecological Olive Production Systems (EOPS) in Crete. Ph.D. Thesis, Landbouw Universiteit, Wageningen, The Netherlands, 1996. [Google Scholar]
- Kabourakis, E. Learning processes in designing and disseminating ecological olive production systems in Crete. In Cow Up a Tree: Knowing and Learning for Change in Agriculture; Cerf, M., Gibbon, D., Hubert, B., Jiggins, J., Paine, M., Proost, J., Rolling, N., Eds.; Case Studies from Industrialised Countries; INRA Editions: Paris, France, 2000; pp. 97–111. [Google Scholar]
- Economopoulos, A.P.; Haniotakis, G.E.; Michelakis, S. Population studies on the olive fruit fly, Dacus oleae (Gmel.) (Dipt., Tephritidae) in Western Crete. J. Appl. Entomol. 1982, 93, 463–476. [Google Scholar] [CrossRef]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy 2021, 11, 890. [Google Scholar] [CrossRef]
- International Olive Oil Council (IOOC). Trade Standard Applying to Olive Oil and Olive-Pomace Oil, Revised. COI/T.15/NC No 3/Rev. 15. International Olive Council, Madrid, ES. 2019. Available online: www.internationaloliveoil.org/wp-content/uploads/2020/07/Trade-standard-T15-NC3-Rev15-EN.pdf (accessed on 28 April 2022).
Growing Season | ||||
---|---|---|---|---|
Location of Orchards | Production System | 2005/06 1 | 2006/07 | 2007/08 |
Messara Plain | Organic | 4 (0) | 4 (2) | 4 (4) |
Conventional | 4 (0) | 4 (2) | 4 (4) | |
Foothills | Organic | 4 (0) | 4 (2) | 4 (4) |
Conventional | 4 (0) | 4 (2) | 4 (4) | |
Total number of orchards surveyed | 16 (8) | 16 (16) |
Fruit Yield | Oil Yield | ||
---|---|---|---|
Factor | t Olives/ha | kg Oil/ha | |
Year | 2006 | 6.0 ± 1.0 | 1184 ± 190 |
2007 | 4.8 ±0.9 | 983 ± 202 | |
2008 | 5.9 ± 1.0 | 1190 ± 181 | |
Production system | Organic | 5.9 ± 0.8 | 1182 ± 148 |
Conventional | 5.2 ± 0.8 | 1066 ± 160 | |
Location | Plain | 7.3 ± 0.6 | 1426 ± 135 |
Hills | 3.7 ± 0.7 | 803 ± 142 | |
ANOVA results (p-values) | |||
Main effects | |||
Year (Y) | ns | ns | |
BProduction system (PS) | ns | ns | |
Location (L) | 0.0016 | 0.0059 | |
Interactions | |||
Y × PS | ns | ns | |
Y × L | 0.0080 | 0.0101 | |
PS × L | ns | ns | |
Y × PS × L | ns | ns |
Water Content | Oil Content | |||
---|---|---|---|---|
Factor | % of Fresh Weight | % of Fresh Weight | % of Dry Weight | |
Year | 2007 | 48.0 ± 1.5 | 25.3 ± 0.9 | 48.6 ± 0.7 |
2008 | 53.8 ± 1.2 | 20.5 ± 0.7 | 44.4 ± 1.0 | |
Production system | Organic | 49.1 ± 1.4 | 23.9 ± 1.2 | 46.8 ± 1.3 |
Conventional | 52.8 ± 1.8 | 21.9 ± 1.1 | 46.2 ± 1.0 | |
Location | Plain | 49.2 ± 1.1 | 23.8 ± 0.9 | 46.7 ± 1.0 |
Hills | 52.7 ± 1.9 | 22.0 ± 1.4 | 46.4 ± 1.3 | |
ANOVA results (p-values) | ||||
Main effects | ||||
Year (Y) | 0.0018 | 0.0004 | 0.0213 | |
Production system (PS) | 0.0186 | 0.0336 | ns | |
Location (L) | 0.0226 | T | ns | |
Interactions | ||||
Y × PS | ns | ns | ns | |
Y × L | ns | ns | ns | |
PS × L | 0.0290 | 0.0298 | ns | |
Y × PS × L | ns | ns | ns |
Free Acidity | Peroxide Value | ||
---|---|---|---|
Factor | % | Meq O2 kg/Oil | |
Year | 2007 | 0.31 ± 0.02 | 5.32 ± 0.24 |
2008 | 0.40 ± 0.01 | 3.06 ± 0.39 | |
Production system | Organic | 0.37 ± 0.02 | 4.27 ± 0.59 |
Conventional | 0.34 ± 0.02 | 4.11 ± 0.47 | |
Location | Plain | 0.34 ± 0.02 | 3.68 ± 0.49 |
Hills | 0.37 ± 0.02 | 4.71 ± 0.50 | |
Extra virgin classification | <0.8 | <20 | |
ANOVA results (p-values) | |||
Main effects | |||
Year (Y) | <0.0001 | 0.0003 | |
Production system (PS) | 0.0056 | ns | |
Location (L) | 0.0391 | 0.0274 | |
Interactions | |||
Y × PS | ns | ns | |
Y × L | 0.0410 | ns | |
PS × L | T | ns | |
Y × PS × L | ns | ns |
Factor | K270 | K232 | K262 | K268 | K274 | ΔΚ | |
---|---|---|---|---|---|---|---|
Year | 2006/2007 | 0.171 ± 0.008 | 1.729 ± 0.040 | 0.203 ± 0.010 | 0.180 ± 0.009 | 0.163 ± 0.007 | −0.0032 ± 0.0036 |
2007/2008 | 0.206 ± 0.012 | 1.753 ± 0.071 | 0.226 ± 0.016 | 0.196 ± 0.014 | 0.186 ± 0.015 | −0.0103 ± 0.0012 | |
Production system | Organic | 0.198 ± 0.013 | 1.795 ± 0.054 | 0.224 ± 0.014 | 0.198 ± 0.012 | 0.183 ± 0.013 | −0.0062 ± 0.0034 |
Conventional | 0.179 ± 0.011 | 1.686 ± 0.054 | 0.204 ± 0.013 | 0.178 ± 0.011 | 0.165 ± 0.011 | −0.0072 ± 0.0025 | |
Location | Plain | 0.178 ± 0.008 | 1.668 ± 0.041 | 0.207 ± 0.012 | 0.178 ± 0.009 | 0.161 ± 0.009 | −0.0063 ± 0.0035 |
Hills | 0.199 ± 0.015 | 1.814 ± 0.059 | 0.221 ± 0.016 | 0.197 ± 0.013 | 0.188 ± 0.014 | −0.0072 ± 0.0024 | |
Extra virgin classification | <0.22 | <2.5 | <0.22 | <0.01 | |||
ANOVA results (p-values) | |||||||
Main effects | |||||||
Year (Y) | 0.0245 | ns | ns | ns | ns | ns | |
Production system (PS) | ns | ns | ns | ns | ns | ns | |
Location (L) | ns | 0.0418 | ns | ns | T | ns | |
Interactions | |||||||
Y × PS | ns | ns | ns | ns | ns | ns | |
Y × L | T | 0.0290 | ns | ns | T | ns | |
PS × L | ns | ns | ns | ns | ns | ns | |
Y × PS × L | ns | ns | ns | ns | ns | ns |
Fatty Acids | Production | ANOVA Results (p-Value) | |||||
---|---|---|---|---|---|---|---|
System (S) | Location (L) | Main Effects | Interaction | ||||
Organic | Conventional | Plain | Foothills | S | L | S × L | |
SFA | |||||||
Palmitic (C16:0) | 12.1 ± 0.3 | 12.2 ± 0.3 | 11.5 ± 0.1 | 12.7 ± 0.3 | ns | 0.0026 | ns |
Stearic (C18:0) | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.6 ± 0.1 | ns | ns | ns |
Arachidic (C20:0) | 0.44 ± 0.01 | 0.44 ± 0.01 | 0.43 ± 0.01 | 0.45 ± 0.01 | ns | ns | ns |
MUFA | ns | ||||||
Palmitoleic (C16:1c9) | 0.78 ± 0.05 | 0.81 ± 0.05 | 0.71 ± 0.02 | 0.88 ± 0.04 | ns | 0.0056 | ns |
Oleic (C18:1c9) | 76.5 ± 0.9 | 76.5 ± 0.5 | 77.4 ± 0.4 | 75.6 ± 0.7 | ns | T | ns |
Eicosenoic (C20:1c11) | 0.28 ± 0.01 | 0.28 ± 0.01 | 0.28 ± 0.01 | 0.27 ± 0.01 | ns | 0.0255 | ns |
PUFA | |||||||
Linoleic (C18:2c9c12) | 6.3 ± 0.4 | 6.1 ± 0.3 | 6.0 ± 0.3 | 6.4 ± 0.4 | ns | ns | T |
a-linolenic C18:3c5c9c12) | 0.71 ± 0.03 | 0.74 ± 0.02 | 0.72 ± 0.03 | 0.728 ± 0.03 | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volakakis, N.; Kabourakis, E.; Kiritsakis, A.; Rempelos, L.; Leifert, C. Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey. Agronomy 2022, 12, 1484. https://doi.org/10.3390/agronomy12071484
Volakakis N, Kabourakis E, Kiritsakis A, Rempelos L, Leifert C. Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey. Agronomy. 2022; 12(7):1484. https://doi.org/10.3390/agronomy12071484
Chicago/Turabian StyleVolakakis, Nikolaos, Emmanouil Kabourakis, Apostolos Kiritsakis, Leonidas Rempelos, and Carlo Leifert. 2022. "Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey" Agronomy 12, no. 7: 1484. https://doi.org/10.3390/agronomy12071484
APA StyleVolakakis, N., Kabourakis, E., Kiritsakis, A., Rempelos, L., & Leifert, C. (2022). Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey. Agronomy, 12(7), 1484. https://doi.org/10.3390/agronomy12071484