Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review
Abstract
:1. Introduction
2. Methods, Technologies, and Approaches to Monitoring Plant Water Status
2.1. Stomatal Conductance-Based Approach
2.2. Leaf Turgor-Based Approach
2.2.1. Cell Pressure Probe Technique
2.2.2. Leaf Patch Clamp Pressure Probe
2.3. Leaf Thickness
2.3.1. Micrometers
2.3.2. Displacement Transducers
2.4. Leaf Water Content
2.5. Stem Diameter-Based Approach
2.5.1. Dendrometers
Point Dendrometers
Band Dendrometers
2.5.2. Linear Variable Differential Transformers
2.6. Plant Water Potential-Based Approach
2.6.1. Thermocouple Psychrometers
2.6.2. The Scholander Pressure Chamber
2.6.3. Microtensiometer
2.7. Relative Water Content-Based Method
2.8. Sap Flow-Based Approach
2.8.1. Heat Balance Methods
Heat Balance with External Heating, or Stem Heat Balance Method
Heat Balance with Internal Heating, or the Trunk Sector Heat Balance Method
2.8.2. Heat-Pulse Methods
Compensation Heat Pulse method
The Heat Ratio Method
T-Max Method, The Cohen’s Heat-Pulse Method
The Ratio Heat Pulse Method
The Sapflow+ Method
Single Probe Heat Pulse Method
Dual Heat Pulse Method
2.8.3. Continuous Heat
Thermal Dissipation Probe
The Heat Field Deformation Method
3. The Application of Plant-Based Indicators in Irrigation Scheduling
3.1. Stomatal Conductance
3.2. Leaf Turgor
3.3. Stem Diameter
3.4. Leaf Thickness
3.5. Water Potential
3.6. Relative Water Content
3.7. Sap Flow
3.8. Combination of Approaches
4. Overview of Plant-Based Methodologies and Approaches in the Assessment of Water Status in Mediterranean Tree Crops
4.1. Application of Sensors and Methods
4.2. Application Per Crop
4.3. Application Per Country
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Table Representing All Studies over the Last Ten Years on Plant-Based Methodologies and Approaches in the Assessment of Water Status in Mediterranean Tree Crops
Approach | Sensors/Method | Reference | Year | Crop | Country | Scope of Work |
Stomatal conductance (gs) | Porometer | [235] | 2013 | Citrus | Spain | Comparing thermography with Stem Water Potential (SWP) and gs |
Persimmon | ||||||
[109] | 2013 | Cherry | Spain | Evaluation of Maximum Daily Shrinkage (MDS): gs, Leaf Water Potential (LWP), Sap Flow (SF) | ||
[236] | 2017 | Olive | Spain | SF to monitor gs oscillations | ||
[128] | 2012 | Pomegranate | Spain | Plant water relations in response to water stress | ||
[237] | 2022 | Almond | Spain | Physiological responses under semi-arid conditions | ||
Peach | ||||||
[37] | 2019 | Nectarine | South Australia | Combined leaf and water sensing for continuous water stress detection | ||
[191] | 2016 | Grapevine | Portugal | LWP and SF as water stress indicators | ||
[33] | 2017 | Plum | Portugal | Plant Water Status (PWS) indicators for irrigation scheduling | ||
Grapevine | ||||||
[147] | 2021 | Pomegranate | California/USA | Evaluating Trunk Relative Water Content (TRWC) compared to commercial sensors | ||
Nectarine | ||||||
[127] | 2020 | Fig | Tunisia | Recovery from water stress | ||
[238] | 2012 | Olive | Spain | Effect of water stress on water relations | ||
[158] | 2015 | Peach | Iran | Gas exchange under water deficit | ||
Infrared gas ana-lyzer (IRGA) | [239] | 2018 | Loquat | Spain | Gas exchange under water deficit | |
[118] | 2013 | Olive | Spain | LWP and gs response to water stress | ||
[240] | 2017 | Pomegranate | Iran | Responses to water stress | ||
[156] | 2016 | Grapevine | Spain | Cultivars stomatal behavior under water stress | ||
[190] | 2020 | Citrus | Iran | Monitoring feedback mechanism between LWP and gs | ||
[86] | 2021 | Citrus | Israel | Testing effect of drought | ||
[161] | 2012 | Grapevine | California/USA | LWP and gs effect on water use | ||
[241] | 2012 | Grapevine | Portugal | Stomatal response to water deficit | ||
[90] | 2019 | Grapevine | Spain | Comparing porometer to Infrared gas analyzer (IRGA) | ||
[152] | 2016 | Olive | Spain | Relationship between gs and sap flux | ||
[113] | 2017 | Olive | Spain | Effect of water deficit on Trunk Diameter Variation (TDV) and gs | ||
[242] | 2018 | Olive | Spain | Simulating gs based on SF | ||
[189] | 2020 | Olive | Morocco | LWP, gs, and leaf turgor behavior under water deficit | ||
[160] | 2021 | Citrus | Spain | gs as water stress indicator for irrigation scheduling | ||
[243] | 2019 | Peach | Tunisia | Effect of irrigation strategy | ||
[157] | 2021 | Pear | Israel | Stomatal regulation under drought | ||
[244] | 2021 | Grapevine | Italy | Crop water stress index | ||
[35] | 2018 | Cherry | Spain | Plant water indicators (SWP, gs, MDS) for irrigation management | ||
[245] | 2019 | Grapevine | Spain | Water use efficiency at different water status | ||
[36] | 2019 | Grapevine | California/USA | Assessing the most sensitive grapevine plant water stress indicator (MDS, WP, sap flow, gs) | ||
[246] | 2020 | Peach | Spain | Responses to water stress | ||
[247] | 2019 | Cherry | Italy | Water relations (SWP, LWP, gs) affected by rootstock vigor | ||
[92] | 2016 | Olive | Spain | Relationship between gs and leaf turgor under water stress | ||
Almond | ||||||
Grapevine | ||||||
[168] | 2019 | Olive | Spain | Sensitivity of leaf turgor to gs and plant water stress | ||
[248] | 2020 | Nectarine | Spain | Effect of drought on gs | ||
Leaf Turgor | Cell Pressure Probe | - | - | - | - | - |
Cell Pressure Probe LPCPP (ZIM-probe) | [38] | 2017 | Persimmon | Spain | Assessing ZIM-probe for water stress and irrigation scheduling | |
[163] | 2016 | Olive | Spain | Irrigation scheduling from leaf turgor in olive | ||
[162] | 2018 | Olive | Spain | Irrigation scheduling from leaf turgor in olive | ||
[165] | 2016 | Olive | Tunisia | Early water stress detection | ||
[249] | 2012 | Olive | Spain | Theoretical application of leaf turgor pressure Pc | ||
[189] | 2020 | Olive | Morocco | LWP, gs, and leaf turgor behavior under water deficit | ||
[92] | 2016 | Olive | Spain | Relationship between gs and leaf turgor under stress | ||
Almond | ||||||
Grapevine | ||||||
[168] | 2019 | Olive | Spain | Sensitivity of leaf turgor to gs and plant water stress | ||
[164] | 2012 | Olive | Spain | SF and leaf turgor for irrigation scheduling and better understanding of water stress | ||
[188] | 2021 | Olive | Italy | Detecting mild water stress in olive with multiple plant-based continuous sensors | ||
[39] | 2016 | Olive | Italy | Online system based on pressure probes for irrigation scheduling | ||
[37] | 2019 | Nectarine | South Australia | Combined leaf and water sensing for continuous water stress detection | ||
Leaf Thickness (LT) | Micrometer/ Linear Variable Differential Transformers (LVDT) | - | - | - | - | - |
LWP and SWP | Thermocouple Psychrometer | [124] | 2013 | Grapevine | Spain | LWP (comparing water activity meters to Scholander pressure) |
Scholander Pressure Chamber | [235] | 2013 | Citrus | Spain | Comparing thermography with SWP and gs | |
Persimmon | ||||||
[156] | 2016 | Grapevine | Spain | Cultivars stomatal behavior under water stress | ||
[118] | 2013 | Olive | Spain | LWP and gs response to water stress | ||
[86] | 2021 | Citrus | Israel | Test effect of drought | ||
[190] | 2020 | Citrus | Iran | Monitoring feedback mechanism between LWP and gs | ||
[238] | 2012 | Olive | Spain | Effect of water stress on water relations | ||
[250] | 2013 | Almond | Spain | MDS in irrigation scheduling | ||
[117] | 2016 | Pistachio | Spain | SWP for irrigation scheduling | ||
[109] | 2013 | Cherry | Spain | Evaluation of MDS (gs, LWP, SF) | ||
[251] | 2018 | Loquat | Spain | Monitor PWS by SWP to test irrigation effect | ||
[92] | 2016 | Olive | Spain | Relationship between gs and leaf turgor under water stress | ||
Almond | ||||||
Grapevine | ||||||
[35] | 2018 | Cherry | Spain | Plant water indicators (SWP, gs, MDS) for irrigation management | ||
[81] | 2017 | Olive | Spain | SF to monitor gs oscillations | ||
[164] | 2012 | Pomegranate | Spain | Plant water relations in response to water stress | ||
[252] | 2016 | Grapevine | Spain | MDS and SWP for irrigation scheduling | ||
[37] | 2019 | Nectarine | South Australia | Combined leaf and water sensing for continuous water stress detection | ||
[147] | 2021 | Pomegranate | California/USA | Evaluating tree RWC compared to commercial sensors | ||
Nectarine | ||||||
[247] | 2019 | Cherry | Italy | Water relations (SWP, LWP, gs) affected by rootstock vigor | ||
[36] | 2019 | Grapevine | Italy | Assessing the most sensitive grapevine plant water stress indicator (MDS, WP, Sap flow, gs) | ||
[191] | 2016 | Grapevine | Portugal | LWP and SF as water stress indicators | ||
[33] | 2017 | Plum | Portugal | PWS indicators for irrigation scheduling | ||
Grapevine | ||||||
[39] | 2016 | Olive | Italy | Online system based on pressure probes for irrigation scheduling | ||
[253] | 2020 | Grapevine | California/USA | Spatial variability on plant water status | ||
[157] | 2021 | Pear | Israel | Stomatal regulation under drought | ||
[240] | 2017 | Pomegranate | Iran | Responses to water stress | ||
[246] | 2020 | Peach | Spain | Responses to water stress | ||
[195] | 2019 | Cherry | Spain | Effect of irrigation on plant water relations | ||
[254] | 2021 | Citrus | Italy | Adaptation and identification of water stress | ||
[125] | 2019 | Grapevine | Oregon/USA | Re-evaluating pressure chamber for water status | ||
[255] | 2018 | Olive | Spain | Effect of cold on water status (SWP) | ||
[111] | 2019 | Almond | Spain | Limitation of trunk variations in irrigation scheduling (MDS not useful, trunk growth rate more sensitive) | ||
[119] | 2015 | Peach | Spain | Seasonal pattern of SWP | ||
[188] | 2021 | Olive | Italy | Detecting mild water stress in olive with multiple plant-based continuous sensors | ||
[239] | 2018 | Loquat | Spain | Gas exchange under water deficit | ||
[243] | 2019 | Peach | Tunisia | Effect of irrigation strategy | ||
[256] | 2016 | Citrus | Spain | Effect of long-term water deficit | ||
[257] | 2013 | Persimmon | Spain | Effect of water stress on fruit crops | ||
[258] | 2022 | Citrus | Spain | Effect of water stress | ||
[259] | 2013 | Almond | South Australia | Compare SF and water stress (SWP) | ||
[237] | 2022 | Peach | Spain | Physiological responses under semi-arid conditions | ||
Almond | ||||||
Pump up Pressure Chamber | [189] | 2020 | Olive | Morocco | LWP, gs, and leaf turgor behavior under water deficit | |
[194] | 2018 | Chestnut | Portugal | Relating plant and soil water content | ||
[244] | 2021 | Grapevine | Italy | Crop water stress index | ||
Stem Diameter Variation (SDV) | Dendrometer | [147] | 2021 | Pomegranate | California/USA | Evaluating TRWC compared to commercial sensors |
Nectarine | ||||||
[260] | 2013 | Olive | Spain | Assessing water stress from STV and SF | ||
[111] | 2019 | Almond | Spain | Limitation of trunk variations in irrigation scheduling (MDS not useful, trunk growth rate more sensitive) | ||
[81] | 2017 | Olive | Spain | SDV and SF to monitor gs oscillations | ||
[113] | 2017 | Olive | Spain | Effect of water deficit on TDV and gs | ||
[223] | 2015 | Olive | Italy | Usefulness of stress sensors | ||
LVDT | [35] | 2018 | Cherry | Spain | Plant water indicators (SWP, gs, MDS) for irrigation management | |
[195] | 2019 | Cherry | Spain | Effect of irrigation on plant water relations | ||
[261] | 2016 | Nectarine | Spain | Sensitivity of trunk variations to water stress | ||
[36] | 2019 | Grapevine | Italy | Assessing the most sensitive grapevine plant water stress indicator (MDS, Water Potential WP, SF, gs) | ||
[225] | 2020 | Grapevine | Portugal | Combination of SF and TDV to study water status | ||
[262] | 2016 | Peach | Spain | Irrigation scheduling based on MDS | ||
[21] | 2017 | Peach | Spain | Irrigation scheduling based on MDS | ||
[252] | 2016 | Grapevine | Spain | MDS and SWP for irrigation scheduling | ||
[258] | 2022 | Citrus | Spain | Effect of water stress | ||
[105] | 2013 | Avocado | Israel | Patterns of MDV | ||
[250] | 2013 | Almond | Spain | MDS in irrigation scheduling | ||
[109] | 2013 | Cherry | Spain | Evaluation of MDS (gs, LWP, SF) | ||
Relative Water Content (RWC) | Mass Weighing | [37] | 2019 | Nectarine | South Australia | Combined leaf and water sensing for continuous water stress detection |
[240] | 2017 | Pomegranate | Iran | Responses to water stress | ||
[198] | 2019 | Olive | Spain | Irrigation decision support based on RWC | ||
[243] | 2019 | Peach | Tunisia | Effect of irrigation strategy | ||
[128] | 2012 | Pomegranate | Spain | Plant water relations in response to water stress | ||
[127] | 2020 | Fig | Tunisia | Recovery from water stress | ||
[246] | 2020 | Peach | Spain | Responses to water stress | ||
SF—Heat balance | Stem Heat Balance (SHB) | [36] | 2019 | Grapevine | Italy | Assessing the most sensitive grapevine plant water stress indicator (MDS, WP, SF) |
[202] | 2020 | Apple | South Africa | The use of SF techniques to estimate apple tree water use under conditions of water deficit and recovery | ||
Trunk Sector Heat Balance | [109] | 2013 | Cherry | Spain | Evaluation of MDS (gs, LWP, SF) | |
SF—Heat pulse | Compensation Heat Pulse Method (CHPM) | [164] | 2012 | Olive | Spain | SF and leaf turgor for irrigation scheduling and better understanding of water stress |
[81] | 2017 | Olive | Spain | SF to monitor gs oscillations | ||
[263] | 2015 | Olive | Spain | Using SF to estimate net assimilation | ||
[235] | 2013 | Citrus | Spain | SF—heat pulse for plant water stress detection | ||
[242] | 2018 | Olive | Spain | Simulate gs based on SF | ||
[203] | 2021 | Grapevine | Spain | Water needs in vineyards based on SF | ||
[206] | 2018 | Almond | Spain | SF to estimate transpiration | ||
Heat Ratio Method (HRM) | [202] | 2020 | Apple | South Africa | The use of SF techniques to estimate apple tree water use under conditions of water deficit and recovery | |
T-max | [260] | 2013 | Olive | Spain | Assessing water stress from TDV and SF | |
[259] | 2013 | Almond | South Australia | Comparing SF and water stress (SWP) | ||
[226] | 2021 | Grapevine | Italy | Automated monitoring of plant water stress | ||
[254] | 2021 | Citrus | Italy | Adaptation and identification of water stress | ||
TmRatio | - | - | - | - | - | |
Sapflow+ | [264] | 2014 | Olive | Spain | Comparing Sapflow+, T-max, HRM, and CHPM | |
Fig | ||||||
Almond | ||||||
Citrus | ||||||
Single Probe Heat Pulse (SPHP) | [81] | 2017 | Olive | Spain | Presenting, testing, and assessing the potential of SPHP method for monitoring sap velocity | |
Citrus | ||||||
Pear | ||||||
Walnut | ||||||
Almond | ||||||
Dual Heat Pulse | [82] | 2014 | Grapevine | California/USA | New method for SF | |
Continuous SF | Thermal Dissipation Probe | [225] | 2020 | Grapevine | Portugal | Linking SF and trunk diameter measurements to assess water dynamics |
[188] | 2021 | Olive | Italy | Detecting mild water stress in olive with multiple plant-based continuous sensors | ||
[191] | 2016 | Grapevine | Portugal | LWP and SF as water stress indicators | ||
[208] | 2013 | Olive | Italy | SF and eddy covariance for water status assessment | ||
[86] | 2021 | Citrus | Israel | Testing effect of drought | ||
[204] | 2021 | Olive | Greece | Crop water requirements based on SF | ||
[223] | 2015 | Olive | Italy | Usefulness of stress sensors | ||
[207] | 2019 | Grapevine | Italy | Recalibration of thermal dissipation probe | ||
[265] | 2020 | Hazelnut | Italy | Calibrating TDM for better irrigation management | ||
Heat Field Deformation (HFD) | - | - | - | - | - |
Appendix B. Table Representing 83 References Studies over the Last Decade on Plant-Based Methodologies and Approaches in the Assessment of Water Status in Mediterranean Tree Crops
Abdelfattah et al., 2013 | Abrisqueta et al., 2015 | Aissaoui et al., 2016 | Alizadeh et al., 2021 |
Ammar et al., 2020 | Badal et al., 2013 | Ballester et al., 2013 | Ballester et al., 2018 |
Blanco et al., 2019 | Blanco-Cipollone et al., 2017 | Bota et al., 2016 | Cammalleri et al., 2013 |
Centeno et al., 2018 | Cocozza et al., 2015 | Conesa et al., 2016 | Conesa et al., 2020 |
Costa et al., 2012 | Cuevas et al., 2013 | Cuevas et al., 2013 | De la rosa et al., 2016 |
De Oliveira et al., 2021 | Dell’Amico et al., 2012 | Ehrenberger et al., 2012 | El yamani et al., 2020 |
El yamani et al., 2020 | El yamani et al., 2020 | Fuentes et al., 2013 | Fuentes et al., 2013 |
Gasque et al., 2016 | Guizani et al., 2019 | Guizani et al., 2019 | Guizani et al., 2019 |
Hernandez-santana, 2016 | Hernandez-santana et al., 2017 | Hernandez-santana et al., 2018 | Jamshidi et al., 2020 |
Jiménez et al., 2020 | Kokkotos et al., 2021 | Levin, 2019 | López-Bernal et al., 2014 |
López-bernal et al., 2015 | López-bernal et al., 2017 | López-López et al., 2018 | Malheiro et al., 2020 |
Mancha et al., 2021 | Marino et al., 2016 | Marino et al., 2021 | Martinez et al., 2020 |
Martínez-Gimeno, 2017 | Martín-palomo et al., 2019 | Memmi et al., 2015 | Mirás-avalos et al., 2016 |
Morandi et al., 2019 | Mota et al., 2018 | Muchena et al., 2020 | Padilla-Díaz, 2016 |
Pagán et al., 2022 | Pasqualotto et al., 2020 | Paudel et al., 2021 | Pearsall et al., 2014 |
Pourghayoumi et al., 2017 | Puerto et al., 2013 | Rahmati et al., 2015 | Rana et al., 2019 |
Reig et al., 2022 | Rodríguez et al., 2012 | Rodriguez-dominguez et al., 2012 | Rodriguez-dominguez et al., 2016 |
Rodriguez-dominguez et al., 2019 | Romero-trigueros et al., 2021 | Saitta et al., 2021 | Scalisi et al., 2019 |
Shahidian et al., 2016 | Silber et al., 2013 | Stellfeldt et al., 2018 | Toro et al., 2019 |
Torres et al., 2019 | Torres-Ruiz et al., 2013 | Tortosa et al., 2019 | Tuccio et al., 2019 |
Wagner et al., 2021 | William et al., 2012 | Yu et al., 2020 |
Appendix C. World Map Representing the Number of Publications per Counties from 2012 till 2022 of the Application of the Different Sensors and Methodologies for Mediterranean Fruit and Tree Crops
References
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019; Unpublished work. [Google Scholar]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A Global Assessment of the Impact of Climate Change on Water Scarcity. Clim. Change 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-143-2. [Google Scholar]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.; Aznar-Sánchez, J.; Belmonte-Ureña, L.; Román-Sánchez, I. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Montanaro, G.; Dichio, B. Irrigation in Mediterranean Fruit Tree Orchards. In Irrigation Systems and Practices in Challenging Environments; InTech: London, UK, 2012. [Google Scholar]
- Fernández, J. Plant-Based Methods for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- El Jaouhari, N.; Abouabdillah, A.; Bouabid, R.; Bourioug, M.; Aleya, L.; Chaoui, M. Assessment of Sustainable Deficit Irrigation in a Moroccan Apple Orchard as a Climate Change Adaptation Strategy. Sci. Total Environ. 2018, 642, 574–581. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit Irrigation in Tomato: Agronomical and Physio-Biochemical Implications. Sci. Hortic. (Amsterdam). 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, X.; Gao, X.; Siddique, K.H.M. Improving/Maintaining Water-Use Efficiency and Yield of Wheat by Deficit Irrigation: A Global Meta-Analysis. Agric. Water Manag. 2020, 228, 105906. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, M.C.; Domingo, R.; Castel, J.R. Review. Deficit Irrigation in Fruit Trees and Vines in Spain. Spanish J. Agric. Res. 2010, 8, 5. [Google Scholar] [CrossRef]
- Marsal, J.; Casadesus, J.; Lopez, G.; Mata, M.; Bellvert, J.; Girona, J. Sustainability of Regulated Deficit Irrigation in a Mid-Maturing Peach Cultivar. Irrig. Sci. 2016, 34, 201–208. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated Deficit Irrigation for Crop Production under Drought Stress. A Review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Munitz, S.; Netzer, Y.; Schwartz, A. Sustained and Regulated Deficit Irrigation of Field-Grown Merlot Grapevines. Aust. J. Grape Wine Res. 2017, 23, 87–94. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A.A. Quality Attributes of Table Olives as Affected by Regulated Deficit Irrigation. LWT - Food Sci. Technol. 2015, 62, 19–26. [Google Scholar] [CrossRef]
- Galindo, A.; Calín-Sánchez, Á.; Griñán, I.; Rodríguez, P.; Cruz, Z.N.; Girón, I.F.; Corell, M.; Martínez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.A.; et al. Water Stress at the End of the Pomegranate Fruit Ripening Stage Produces Earlier Harvest and Improves Fruit Quality. Sci. Hortic. (Amsterdam). 2017, 226, 68–74. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Response of Navel Lane Late Citrus Trees to Regulated Deficit Irrigation: Yield Components and Fruit Composition. Irrig. Sci. 2013, 31, 333–341. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Maximum Daily Trunk Shrinkage for Estimating Water Needs and Scheduling Regulated Deficit Irrigation in Peach Trees. Irrig. Sci. 2017, 35, 69–82. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of Regulated Deficit Irrigation and Environmental Conditions on Reproductive Response of Sweet Cherry Trees. Plants 2020, 9, 94. [Google Scholar] [CrossRef]
- Egea, G.; Fernández, J.E.; Alcon, F. Financial Assessment of Adopting Irrigation Technology for Plant-Based Regulated Deficit Irrigation Scheduling in Super High-Density Olive Orchards. Agric. Water Manag. 2017, 187, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Stričevič, R.; Čaki, E. Relationships between Available Soil Water and Indicators of Plant Water Status of Sweet Sorghum to Be Applied in Irrigation Scheduling. Irrig. Sci. 1997, 18, 17–21. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, A. Evaluating Water Stress in Irrigated Olives: Correlation of Soil Water Status, Tree Water Status, and Thermal Imagery. Irrig. Sci. 2009, 27, 367–376. [Google Scholar] [CrossRef]
- Schmitz, M.; Sourell, H. Variability in Soil Moisture Measurements. Irrig. Sci. 2000, 19, 147–151. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-Water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. Cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Kramer, P.J. Water Stress and Plant Growth. Ecology 1963, 51, 164–165. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation Scheduling – Comparison of Soil, Plant and Atmosphere Monitoring Approaches. Acta Hortic. 2008, 792, 391–403. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Continuous Measurement of Plant and Soil Water Status for Irrigation Scheduling in Plum. Irrig. Sci. 2004, 23, 93–102. [Google Scholar] [CrossRef]
- Jones, H.G. Monitoring Plant and Soil Water Status: Established and Novel Methods Revisited and Their Relevance to Studies of Drought Tolerance. J. Exp. Bot. 2006, 58, 119–130. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Blanco-Cipollone, F.; Lourenço, S.; Silvestre, J.; Conceição, N.; Moñino, M.; Vivas, A.; Ferreira, M. Plant Water Status Indicators for Irrigation Scheduling Associated with Iso- and Anisohydric Behavior: Vine and Plum Trees. Horticulturae 2017, 3, 47. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of Plants to Water Stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Domingo, R.; Pérez-Pastor, A.; Blaya-Ros, P.J.; Torres-Sánchez, R. Soil and Plant Water Indicators for Deficit Irrigation Management of Field-Grown Sweet Cherry Trees. Agric. Water Manag. 2018, 208, 83–94. [Google Scholar] [CrossRef]
- Tuccio, L.; Lo Piccolo, E.; Battelli, R.; Matteoli, S.; Massai, R.; Scalabrelli, G.; Remorini, D. Physiological Indicators to Assess Water Status in Potted Grapevine (Vitis vinifera L.). Sci. Hortic. (Amsterdam). 2019, 255, 8–13. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.G.; Stefanelli, D.; Lo Bianco, R. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gimeno, M.A.; Castiella, M.; Rüger, S.; Intrigliolo, D.S.; Ballester, C. Evaluating the Usefulness of Continuous Leaf Turgor Pressure Measurements for the Assessment of Persimmon Tree Water Status. Irrig. Sci. 2017, 35, 159–167. [Google Scholar] [CrossRef]
- Marino, G.; Pernice, F.; Marra, F.P.; Caruso, T. Validation of an Online System for the Continuous Monitoring of Tree Water Status for Sustainable Irrigation Managements in Olive (Olea europaea L.). Agric. Water Manag. 2016, 177, 298–307. [Google Scholar] [CrossRef]
- Turner, N.C. Measurement and Influence of Environmental and Plant Factors on Stomatal Conductance in the Field. Agric. For. Meteorol. 1991, 54, 137–154. [Google Scholar] [CrossRef]
- Palta, J.A.; Wyn-Jones, R.G.; Tomos, A.D. Leaf Diffusive Conductance and Top Root Cell Turgor Pressure of Sugarbeet. Plant, Cell Environ. 1987, 10, 735–740. [Google Scholar] [CrossRef]
- Klepper, B.; Browning, V.D.; Taylor, H.M. Stem Diameter in Relation to Plant Water Status. Plant Physiol. 1971, 48, 683–685. [Google Scholar] [CrossRef]
- Huck, M.G.; Klepper, B. Water Relations of Cotton. II. Continuous Estimates of Plant Water Potential from Stem Diameter Measurements. Agron. J. 1977, 69, 593–597. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Cambial Growth, Root Growth, and Reproductive Growth; Academic Press: Cambridge, MA, USA, 1971; ISBN 9780323163149. [Google Scholar]
- Meidner, H. An Instrument for the Continuous Determination of Leaf Thickness Changes in the Field. J. Exp. Bot. 1952, 3, 319–325. [Google Scholar] [CrossRef]
- Choné, X. Stem Water Potential Is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Garnier, E.; Berger, A. Testing Water Potential in Peach Trees as an Indicator of Water Stress. J. Hortic. Sci. 1985, 60, 47–56. [Google Scholar] [CrossRef]
- Weatherley, P.E. Studies in the Water Relations of the Cotton Plant. I. the Field Measurement of Water Deficits in Leaves. New Phytol. 1950, 49, 81–97. [Google Scholar] [CrossRef]
- Simonneau, T.; Habib, R.; Goutouly, J.-P.; Huguet, J.-G. Diurnal Changes in Stem Diameter Depend Upon Variations in Water Content: Direct Evidence in Peach Trees. J. Exp. Bot. 1993, 44, 615–621. [Google Scholar] [CrossRef]
- Marshall, D.C. Measurement of Sap Flow in Conifers by Heat Transport. Plant Physiol. 1958, 33, 385–396. [Google Scholar] [CrossRef]
- Sakuratani, T. A Heat Balance Method for Measuring Water Flux in the Stem of Intact Plants. J. Agric. Meteorol. 1981, 37, 9–17. [Google Scholar] [CrossRef]
- Swanson, R.H.; Whitfield, D.W.A. A Numerical Analysis of Heat Pulse Velocity Theory and Practice. J. Exp. Bot. 1981, 32, 221–239. [Google Scholar] [CrossRef]
- Escalona, J.M.; Flexas, J.; Medrano, H. Drought Effects on Water Flow, Photosynthesis and Growth of Potted Grapevines. Vitis 2002, 41, 57–62. [Google Scholar]
- Chartzoulakis, K.; Patakas, A.; Kofidis, G.; Bosabalidis, A.; Nastou, A. Water Stress Affects Leaf Anatomy, Gas Exchange, Water Relations and Growth of Two Avocado Cultivars. Sci. Hortic. (Amsterdam) 2002, 95, 39–50. [Google Scholar] [CrossRef]
- Cohen, M.; Goldhamer, D.A.; Fereres, E.; Girona, J.; Mata, M. Assessment of Peach Tree Responses to Irrigation Water Ficits by Continuous Monitoring of Trunk Diameter Changes. J. Hortic. Sci. Biotechnol. 2001, 76, 55–60. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global Convergence in the Vulnerability of Forests to Drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Gavloski, J.E.; Ellis, C.R.; Whitfield, G.H. Effect of Restricted Watering on Sap Flow and Growth in Corn (Zea mays L.). Can. J. Plant Sci. 1992, 72, 361–368. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Fatorić, S.; Morén-Alegret, R.; Niven, R.J.; Tan, G. Living with Climate Change Risks: Stakeholders’ Employment and Coastal Relocation in Mediterranean Climate Regions of Australia and Spain. Environ. Syst. Decis. 2017, 37, 276–288. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a Warming World: Assessing Projected Hydro-Climate Changes in California and Other Mediterranean Climate Regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef]
- Tyree, M.T.; Sperry, J.S. Vulnerability of Xylem to Cavitation and Embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 19–36. [Google Scholar] [CrossRef]
- Zimmermann, U.; Steudle, E. Physical Aspects of Water Relations of Plant Cells. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 1979; Volume 6, pp. 45–117. [Google Scholar]
- Hüsken, D.; Steudle, E.; Zimmermann, U. Pressure Probe Technique for Measuring Water Relations of Cells in Higher Plants. Plant Physiol. 1978, 61, 158–163. [Google Scholar] [CrossRef]
- Zimmermann, D.; Reuss, R.; Westhoff, M.; Geßner, P.; Bauer, W.; Bamberg, E.; Bentrup, F.-W.; Zimmermann, U. A Novel, Non-Invasive, Online-Monitoring, Versatile and Easy Plant-Based Probe for Measuring Leaf Water Status. J. Exp. Bot. 2008, 59, 3157–3167. [Google Scholar] [CrossRef]
- Deslauriers, A.; Rossi, S.; Anfodillo, T. Dendrometer and Intra-Annual Tree Growth: What Kind of Information Can Be Inferred? Dendrochronologia 2007, 25, 113–124. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Morin, H.; Saracino, A.; Motta, R.; Borghetti, M. Conifers in Cold Environments Synchronize Maximum Growth Rate of Tree-ring Formation with Day Length. New Phytol. 2006, 170, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bùrquez, A. Leaf Thickness and Water Deficit in Plants: A Tool for Field Studies. J. Exp. Bot. 1987, 38, 109–114. [Google Scholar] [CrossRef]
- Turner, N.C.; Spurway, R.A.; Schulze, E.-D. Comparison of Water Potentials Measured by In Situ Psychrometry and Pressure Chamber in Morphologically Different Species. Plant Physiol. 1984, 74, 316–319. [Google Scholar] [CrossRef]
- McBurney, T. The Relation Between Leaf Thickness and Plant Water Potential. J. Exp. Bot. 1992, 43, 327–335. [Google Scholar] [CrossRef]
- Cecilia, B.; Francesca, A.; Dalila, P.; Carlo, S.; Antonella, G.; Francesco, F.; Marco, R.; Mauro, C. On-Line Monitoring of Plant Water Status: Validation of a Novel Sensor Based on Photon Attenuation of Radiation through the Leaf. Sci. Total Environ. 2022, 817, 152881. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.S.; Knipling, E.B. Isopiestic Technique for Measuring Leaf Water Potentials with a Thermocouple Psychrometer. Natl. Acad. Sci. 1965, 54, 1044–1051. [Google Scholar]
- Scholander, P.F.; Hammel, H.T.; Hemmingsen, E.A.; Bradstreet, E.D. Hydrostatic Pressure and Osmotic Potential in Leaves of Mangroves and Some Other Plants. Proc. Natl. Acad. Sci. 1964, 52, 119–125. [Google Scholar] [CrossRef]
- Goldhamer, D.; Fereres, E. Irrigation Scheduling Protocols Using Continuously Recorded Trunk Diameter Measurements. Irrig. Sci. 2001, 20, 115–125. [Google Scholar] [CrossRef]
- Blanco, V.; Kalcsits, L. Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials. Plants 2021, 10, 2780. [Google Scholar] [CrossRef]
- Pagay, V. Evaluating a Novel Microtensiometer for Continuous Trunk Water Potential Measurements in Field-Grown Irrigated Grapevines. Irrig. Sci. 2022, 40, 45–54. [Google Scholar] [CrossRef]
- Čermák, J.; Kučera, J. The Compensation of Natural Temperature Gradient at the Measuring Point during the Sap Flow Rate Determination in Trees. Biol. Plant. 1981, 23, 469–471. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. Erratum: An Improved Heat Pulse Method to Measure Low and Reverse Rates of Sap Flow in Woody Plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Fuchs, M.; Green, G.C. Improvement of the Heat Pulse Method for Determining Sap Flow in Trees. Plant, Cell Environ. 1981, 4, 391–397. [Google Scholar] [CrossRef]
- Miner, G.L.; Ham, J.M.; Kluitenberg, G.J. A Heat-Pulse Method for Measuring Sap Flow in Corn and Sunflower Using 3D-Printed Sensor Bodies and Low-Cost Electronics. Agric. For. Meteorol. 2017, 246, 86–97. [Google Scholar] [CrossRef]
- Vandegehuchte, M.W.; Steppe, K. Sapflow+: A Four-needle Heat-pulse Sap Flow Sensor Enabling Nonempirical Sap Flux Density and Water Content Measurements. New Phytol. 2012, 196, 306–317. [Google Scholar] [CrossRef]
- López-Bernal, Á.; Testi, L.; Villalobos, F.J. A Single-Probe Heat Pulse Method for Estimating Sap Velocity in Trees. New Phytol. 2017, 216, 321–329. [Google Scholar] [CrossRef]
- Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; Mcelrone, A.J. Evaluating the Potential of a Novel Dual Heat-Pulse Sensor to Measure Volumetric Water Use in Grapevines under a Range of Flow Conditions. Funct. Plant Biol. 2014, 41, 874–883. [Google Scholar] [CrossRef]
- Granier, A. Une Nouvelle Méthode Pour La Mesure Du Flux de Sève Brute Dans Le Tronc Des Arbres. Ann. des Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Nadezhdina, N. Revisiting the Heat Field Deformation (HFD) Method for Measuring Sap Flow. iForest - Biogeosciences For. 2018, 11, 118–130. [Google Scholar] [CrossRef]
- Lavoie-Lamoureux, A.; Sacco, D.; Risse, P.A.; Lovisolo, C. Factors Influencing Stomatal Conductance in Response to Water Availability in Grapevine: A Meta-Analysis. Physiol. Plant. 2017, 159, 468–482. [Google Scholar] [CrossRef]
- Wagner, Y.; Pozner, E.; Bar-On, P.; Ramon, U.; Raveh, E.; Neuhaus, E.; Cohen, S.; Grünzweig, J.; Klein, T. Rapid Stomatal Response in Lemon Saves Trees and Their Fruit Yields under Summer Desiccation, but Fails under Recurring Droughts. Agric. For. Meteorol. 2021, 307, 108487. [Google Scholar] [CrossRef]
- Miranda, M.T.; Da Silva, S.F.; Silveira, N.M.; Pereira, L.; Machado, E.C.; Ribeiro, R.V. Root Osmotic Adjustment and Stomatal Control of Leaf Gas Exchange Are Dependent on Citrus Rootstocks Under Water Deficit. J. Plant Growth Regul. 2021, 40, 11–19. [Google Scholar] [CrossRef]
- Lepaja, L.; Kullaj, E.; Lepaja, K.; Avdiu, V.; Zajmi, A. Effect of Water Stress on Some Physiological Indices in Young Pear Trees. Acta Hortic. 2019, 1253, 71–76. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological Tools for Irrigation Scheduling in Grapevine (Vitis vinifera L.). Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Toro, G.; Flexas, J.; Escalona, J.M. Contrasting Leaf Porometer and Infra-Red Gas Analyser Methodologies: An Old Paradigm about the Stomatal Conductance Measurement. Theor. Exp. Plant Physiol. 2019, 31, 483–492. [Google Scholar] [CrossRef]
- Ehrenberger, W.; Rüger, S.; Fitzke, R.; Vollenweider, P.; Günthardt-Goerg, M.; Kuster, T.; Zimmermann, U.; Arend, M. Concomitant Dendrometer and Leaf Patch Pressure Probe Measurements Reveal the Effect of Microclimate and Soil Moisture on Diurnal Stem Water and Leaf Turgor Variations in Young Oak Trees. Funct. Plant Biol. 2012, 39, 297. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Buckley, T.N.; Egea, G.; de Cires, A.; Hernandez-Santana, V.; Martorell, S.; Diaz-Espejo, A. Most Stomatal Closure in Woody Species under Moderate Drought Can Be Explained by Stomatal Responses to Leaf Turgor. Plant Cell Environ. 2016, 39, 2014–2026. [Google Scholar] [CrossRef]
- Zimmermann, U.; Rüger, S.; Shapira, O.; Westhoff, M.; Wegner, L.H.; Reuss, R.; Gessner, P.; Zimmermann, G.; Israeli, Y.; Zhou, A.; et al. Effects of Environmental Parameters and Irrigation on the Turgor Pressure of Banana Plants Measured Using the Non-Invasive, Online Monitoring Leaf Patch Clamp Pressure Probe. Plant Biol. 2010, 12, 424–436. [Google Scholar] [CrossRef]
- Tomos, A.D.; Leigh, R.A. THE PRESSURE PROBE: A Versatile Tool in Plant Cell Physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 447–472. [Google Scholar] [CrossRef]
- Kim, Y.X.; Stumpf, B.; Sung, J.; Lee, S.J. The Relationship between Turgor Pressure Change and Cell Hydraulics of Midrib Parenchyma Cells in the Leaves of Zea Mays. Cells 2018, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Knoche, M.; Grimm, E.; Schlegel, H.J. Mature Sweet Cherries Have Low Turgor. J. Am. Soc. Hortic. Sci. 2014, 139, 3–12. [Google Scholar] [CrossRef]
- Bramley, H.; Ehrenberger, W.; Zimmermann, U.; Palta, J.A.; Rüger, S.; Siddique, K.H.M. Non-Invasive Pressure Probes Magnetically Clamped to Leaves to Monitor the Water Status of Wheat. Plant Soil 2013, 369, 257–268. [Google Scholar] [CrossRef]
- Rüger, S.; Ehrenberger, W.; Arend, M.; Geßner, P.; Zimmermann, G.; Zimmermann, D.; Bentrup, F.-W.; Nadler, A.; Raveh, E.; Sukhorukov, V.L.; et al. Comparative Monitoring of Temporal and Spatial Changes in Tree Water Status Using the Non-Invasive Leaf Patch Clamp Pressure Probe and the Pressure Bomb. Agric. Water Manag. 2010, 98, 283–290. [Google Scholar] [CrossRef]
- Westhoff, M.; Reuss, R.; Zimmermann, D.; Netzer, Y.; Gessner, A.; Geßner, P.; Zimmermann, G.; Wegner, L.H.; Bamberg, E.; Schwartz, A.; et al. A Non-Invasive Probe for Online-Monitoring of Turgor Pressure Changes under Field Conditions. Plant Biol. 2009, 11, 701–712. [Google Scholar] [CrossRef]
- Zimmermann, U.; Bitter, R.; Marchiori, P.E.R.; Rüger, S.; Ehrenberger, W.; Sukhorukov, V.L.; Schüttler, A.; Ribeiro, R.V. A Non-Invasive Plant-Based Probe for Continuous Monitoring of Water Stress in Real Time: A New Tool for Irrigation Scheduling and Deeper Insight into Drought and Salinity Stress Physiology. Theor. Exp. Plant Physiol. 2013, 25, 2–11. [Google Scholar] [CrossRef]
- Afzal, A.; Duiker, S.W.; Watson, J.E. Leaf Thickness to Predict Plant Water Status. Biosyst. Eng. 2017, 156, 148–156. [Google Scholar] [CrossRef]
- Seelig, H.-D.; Stoner, R.J.; Linden, J.C. Irrigation Control of Cowpea Plants Using the Measurement of Leaf Thickness under Greenhouse Conditions. Irrig. Sci. 2012, 30, 247–257. [Google Scholar] [CrossRef]
- De Swaef, T.; Steppe, K.; Lemeur, R. Determining Reference Values for Stem Water Potential and Maximum Daily Trunk Shrinkage in Young Apple Trees Based on Plant Responses to Water Deficit. Agric. Water Manag. 2009, 96, 541–550. [Google Scholar] [CrossRef]
- Downes, G.M.; Drew, D.; Battaglia, M.; Schulze, D. Measuring and Modelling Stem Growth and Wood Formation: An Overview. Dendrochronologia 2009, 27, 147–157. [Google Scholar] [CrossRef]
- Silber, A.; Naor, A.; Israeli, Y.; Assouline, S. Combined Effect of Irrigation Regime and Fruit Load on the Patterns of Trunk-Diameter Variation of “Hass” Avocado at Different Phenological Periods. Agric. Water Manag. 2013, 129, 87–94. [Google Scholar] [CrossRef]
- Ueda, M.; Shibata, E. Diurnal Changes in Branch Diameter as Indicator of Water Status of Hinoki Cypress Chamaecyparis Obtusa. Trees 2001, 15, 315–318. [Google Scholar] [CrossRef]
- Sevanto, S.; Vesala, T.; Perämäki, M.; Nikinmaa, E. Time Lags for Xylem and Stem Diameter Variations in a Scots Pine Tree. Plant. Cell Environ. 2002, 25, 1071–1077. [Google Scholar] [CrossRef]
- Cermak, J.; Kucera, J.; Bauerle, W.L.; Phillips, N.; Hinckley, T.M. Tree Water Storage and Its Diurnal Dynamics Related to Sap Flow and Changes in Stem Volume in Old-Growth Douglas-Fir Trees. Tree Physiol. 2007, 27, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Abdelfatah, A.; Aranda, X.; Savé, R.; de Herralde, F.; Biel, C. Evaluation of the Response of Maximum Daily Shrinkage in Young Cherry Trees Submitted to Water Stress Cycles in a Greenhouse. Agric. Water Manag. 2013, 118, 150–158. [Google Scholar] [CrossRef]
- Fernández, J.E.; Cuevas, M.V. Irrigation Scheduling from Stem Diameter Variations: A Review. Agric. For. Meteorol. 2010, 150, 135–151. [Google Scholar] [CrossRef]
- Martín-Palomo, M.J.; Corell, M.; Girón, I.; Andreu, L.; Trigo, E.; López-Moreno, Y.E.; Torrecillas, A.; Centeno, A.; Pérez-López, D.; Moriana, A. Pattern of Trunk Diameter Fluctuations of Almond Trees in Deficit Irrigation Scheduling during the First Seasons. Agric. Water Manag. 2019, 218, 115–123. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine. Horticulturae 2021, 7, 154. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Fernández, J.E.; Cuevas, M.V.; Perez-Martin, A.; Diaz-Espejo, A. Photosynthetic Limitations by Water Deficit: Effect on Fruit and Olive Oil Yield, Leaf Area and Trunk Diameter and Its Potential Use to Control Vegetative Growth of Super-High Density Olive Orchards. Agric. Water Manag. 2017, 184, 9–18. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Bhusal, N.; Han, S.G.; Yoon, T.M. Impact of Drought Stress on Photosynthetic Response, Leaf Water Potential, and Stem Sap Flow in Two Cultivars of Bi-Leader Apple Trees (Malus × Domestica Borkh.). Sci. Hortic. (Amsterdam) 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Begg, J.E.; Turner, N.C. Water Potential Gradients in Field Tobacco. Plant Physiol. 1970, 46, 343–346. [Google Scholar] [CrossRef]
- Memmi, H.; Gijón, M.C.; Couceiro, J.F.; Pérez-López, D. Water Stress Thresholds for Regulated Deficit Irrigation in Pistachio Trees: Rootstock Influence and Effects on Yield Quality. Agric. Water Manag. 2016, 164, 58–72. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Diaz-Espejo, A.; Morales-Sillero, A.; Martín-Palomo, M.J.; Mayr, S.; Beikircher, B.; Fernández, J.E. Shoot Hydraulic Characteristics, Plant Water Status and Stomatal Response in Olive Trees under Different Soil Water Conditions. Plant Soil 2013, 373, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Abrisqueta, I.; Conejero, W.; Valdés-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem Water Potential Estimation of Drip-Irrigated Early-Maturing Peach Trees under Mediterranean Conditions. Comput. Electron. Agric. 2015, 114, 7–13. [Google Scholar] [CrossRef]
- Schaefer, N.L.; Trickett, E.S.; Ceresa, A.; Barrs, H.D. Continuous Monitoring of Plant Water Potential. Plant Physiol. 1986, 81, 45–49. [Google Scholar] [CrossRef]
- Turner, N.C. Techniques and Experimental Approaches for the Measurement of Plant Water Status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Pagay, V.; Santiago, M.; Sessoms, D.A.; Huber, E.J.; Vincent, O.; Pharkya, A.; Corso, T.N.; Lakso, A.N.; Stroock, A.D. A Microtensiometer Capable of Measuring Water Potentials below -10 MPa. Lab Chip 2014, 14, 2806–2817. [Google Scholar] [CrossRef]
- Martínez, E.M.; Cancela, J.J.; Cuesta, T.S.; Neira, X.X. Review. Use of Psychrometers in Field Measurements of Plant Material: Accuracy and Handling Difficulties. Spanish J. Agric. Res. 2011, 9, 313. [Google Scholar] [CrossRef]
- Martínez, E.M.; Rey, B.J.; Fandiño, M.; Cancela, J.J. Comparison of Two Techniques for Measuring Leaf Water Potential in Vitis Vinifera Var. Albariño. Cienc. e Tec. Vitivinic. 2013, 28, 29–41. [Google Scholar]
- Levin, A.D. Re-Evaluating Pressure Chamber Methods of Water Status Determination in Field-Grown Grapevine (Vitis Spp.). Agric. Water Manag. 2019, 221, 422–429. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent Advances in Crop Water Stress Detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Ammar, A.; Ben Aissa, I.; Mars, M.; Gouiaa, M. Comparative Physiological Behavior of Fig (Ficus Carica L.) Cultivars in Response to Water Stress and Recovery. Sci. Hortic. (Amsterdam). 2020, 260, 108881. [Google Scholar] [CrossRef]
- Rodríguez, P.; Mellisho, C.D.; Conejero, W.; Cruz, Z.N.; Ortuño, M.F.; Galindo, A.; Torrecillas, A. Plant Water Relations of Leaves of Pomegranate Trees under Different Irrigation Conditions. Environ. Exp. Bot. 2012, 77, 19–24. [Google Scholar] [CrossRef]
- Giménez, C.; Gallardo, M.; Thompson, R.B. Plant–Water Relations. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–8. ISBN 9780124095489. [Google Scholar]
- Alarcón, J.J.; Domingo, R.; Green, S.R.; Sánchez-Blanco, M.J.; Rodríguez, P.; Torrecillas, A. Sap Flow as an Indicator of Transpiration and the Water Status of Young Apricot Trees. Plant Soil 2000, 227, 77–85. [Google Scholar] [CrossRef]
- Flo, V.; Martinez-Vilalta, J.; Steppe, K.; Schuldt, B.; Poyatos, R. A Synthesis of Bias and Uncertainty in Sap Flow Methods. Agric. For. Meteorol. 2019, 271, 362–374. [Google Scholar] [CrossRef]
- Poyatos, R.; Granda, V.; Flo, V.; Molowny-Horas, R.; Steppe, K.; Mencuccini, M.; Martínez-Vilalta, J. SAPFLUXNET: A Global Database of Sap Flow Measurements. Zenodo 2020. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, S.; van Bavel, C.H.M.; McFarland, M.J. A Gauge to Measure Mass Flow Rate of Sap in Stems of Woody Plants.Pdf. J. Am. Soc. Hortic. Sci. 1989, 114, 466–472. [Google Scholar] [CrossRef]
- Baker, J.M.; van Bavel, C.H.M. Measurement of Mass Flow of Water in the Stems of Herbaceous Plants. Plant, Cell Environ. 1987, 10, 777–782. [Google Scholar] [CrossRef]
- Green, S.R.; Clothier, B.E. Water Use of Kiwifruit Vines and Apple Trees by the Heat-Pulse Technique. J. Exp. Bot. 1988, 39, 115–123. [Google Scholar] [CrossRef]
- Forster, M. How Reliable Are Heat Pulse Velocity Methods for Estimating Tree Transpiration? Forests 2017, 8, 350. [Google Scholar] [CrossRef]
- Fernández, J.; Palomo, M.; Díaz-Espejo, A.; Clothier, B.; Green, S.; Girón, I.; Moreno, F. Heat-Pulse Measurements of Sap Flow in Olives for Automating Irrigation: Tests, Root Flow and Diagnostics of Water Stress. Agric. Water Manag. 2001, 51, 99–123. [Google Scholar] [CrossRef]
- Green, S.; Clothier, B.; Jardine, B. Theory and Practical Application of Heat Pulse to Measure Sap Flow. Agron. J. 2003, 95, 1371–1379. [Google Scholar] [CrossRef]
- Green, S.R. Radiation Balance, Transpiration and Photosynthesis of an Isolated Tree. Agric. For. Meteorol. 1993, 64, 201–221. [Google Scholar] [CrossRef]
- Alarcón, J.J.; Ortuno, M.F.; Nicolas, E.; Torres, R.; Torrecillas, A. Compensation Heat-Pulse Measurements of Sap Flow for Estimating Transpiration in Young Lemon Trees. Biol. Plant. 2005, 49, 527–532. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and Comparison of Thermal Dissipation, Heat Ratio and Heat Field Deformation Sap Flow Probes for Diffuse-Porous Trees. Agric. For. Meteorol. 2017, 244–245, 151–161. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An External Heat Pulse Method for Measurement of Sap Flow through Fruit Pedicels, Leaf Petioles and Other Small-Diameter Stems. Plant. Cell Environ. 2009, 32, 1652–1663. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Ge, J.; Wang, Q.; Yong, C.; You, W. New Design of External Heat-Ratio Method for Measuring Low and Reverse Rates of Sap Flow in Thin Stems. For. Ecol. Manag. 2018, 419–420, 10–16. [Google Scholar] [CrossRef]
- Ren, R.; von der Crone, J.; Horton, R.; Liu, G.; Steppe, K. An Improved Single Probe Method for Sap Flow Measurements Using Finite Heating Duration. Agric. For. Meteorol. 2020, 280, 107788. [Google Scholar] [CrossRef]
- Cabibel, B. Mesures Thermiques Des Flux de Sève et Comportement Hydrique Des Arbres. III. Influence Sur Les Flux de Sève Des Modalités d’apport d’eau En Irrigation Localisée Sur Sol Fissuré. Agronomie 1991, 11, 877–888. [Google Scholar] [CrossRef]
- Rabbel, I.; Diekkrüger, B.; Voigt, H.; Neuwirth, B. Comparing ΔTmax Determination Approaches for Granier-Based Sapflow Estimations. Sensors 2016, 16, 2042. [Google Scholar] [CrossRef]
- Alizadeh, A.; Toudeshki, A.; Ehsani, R.; Migliaccio, K.; Wang, D. Detecting Tree Water Stress Using a Trunk Relative Water Content Measurement Sensor. Smart Agric. Technol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Nadezhdina, N. Sap Flow Index as an Indicator of Plant Water Status. Tree Physiol. 1999, 19, 885–891. [Google Scholar] [CrossRef]
- Nadezhdina, N. A Simplified Equation for Sap Flow Calculation Based on the Heat- Field Deformation (HFD) Measurements. Acta Hortic. 2012, 951, 117–120. [Google Scholar] [CrossRef]
- Nadezhdina, N. Heat Field Deformation Sensors for Sap Flow Measurements in Small Stems. Acta Hortic. 2013, 991, 53–60. [Google Scholar] [CrossRef]
- Hanssens, J.; De Swaef, T.; Nadezhdina, N.; Steppe, K. Measurement of Sap Flow Dynamics through the Tomato Peduncle Using a Non-Invasive Sensor Based on the Heat Field Deformation Method. Acta Hortic. 2013, 991, 409–416. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Fernández, J.E.; Rodriguez-Dominguez, C.M.; Romero, R.; Diaz-Espejo, A. The Dynamics of Radial Sap Flux Density Reflects Changes in Stomatal Conductance in Response to Soil and Air Water Deficit. Agric. For. Meteorol. 2016, 218–219, 92–101. [Google Scholar] [CrossRef]
- Ferreira, M. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 38. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T. Variability among Species of Stomatal Control under Fluctuating Soil Water Status and Evaporative Demand: Modelling Isohydric and Anisohydric Behaviours. J. Exp. Bot. 1998, 49, 419–432. [Google Scholar] [CrossRef]
- Schultz, H.R. Differences in Hydraulic Architecture Account for Near-Isohydric and Anisohydric Behaviour of Two Field-Grown Vitis Vinifera L. Cultivars during Drought. Plant. Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among Grapevine Cultivars in Their Stomatal Behavior and Water Use Efficiency under Progressive Water Stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Paudel, I.; Gerbi, H.; Zisovich, A.; Sapir, G.; Klein, T. Intraspecific Plasticity in Hydraulic and Stomatal Regulation under Drought Is Linked to Aridity at the Seed Source in a Wild Pear Species. Tree Physiol. 2021, 41, 960–973. [Google Scholar] [CrossRef]
- Rahmati, M.; Davarynejad, G.H.; Génard, M.; Bannayan, M.; Azizi, M.; Vercambre, G. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions. PLoS One 2015, 10, 1–19. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and Water Productivity Responses to Irrigation Cut-off Strategies after Fruit Set Using Stem Water Potential Thresholds in a Super-High Density Olive Orchard. Front. Plant Sci. 2017, 8, 1280. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Gambín, J.M.B.; Tortosa, P.A.N.; Cabañero, J.J.A.; Nicolás, E.N. Isohydricity of Two Different Citrus Species under Deficit Irrigation and Reclaimed Water Conditions. Plants 2021, 10, 2121. [Google Scholar] [CrossRef]
- Williams, L.E.; Baeza, P.; Vaughn, P. Midday Measurements of Leaf Water Potential and Stomatal Conductance Are Highly Correlated with Daily Water Use of Thompson Seedless Grapevines. Irrig. Sci. 2012, 30, 201–212. [Google Scholar] [CrossRef]
- Padilla-Díaz, C.M.; Rodriguez-Dominguez, C.M.; Hernandez-Santana, V.; Perez-Martin, A.; Fernandes, R.D.M.; Montero, A.; García, J.M.; Fernández, J.E. Water Status, Gas Exchange and Crop Performance in a Super High Density Olive Orchard under Deficit Irrigation Scheduled from Leaf Turgor Measurements. Agric. Water Manag. 2018, 202, 241–252. [Google Scholar] [CrossRef]
- Padilla-Díaz, C.M.; Rodriguez-Dominguez, C.M.; Hernandez-Santana, V.; Perez-Martin, A.; Fernández, J.E. Scheduling Regulated Deficit Irrigation in a Hedgerow Olive Orchard from Leaf Turgor Pressure Related Measurements. Agric. Water Manag. 2016, 164, 28–37. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Ehrenberger, W.; Sann, C.; Rüger, S.; Sukhorukov, V.; Martín-Palomo, M.J.; Diaz-Espejo, A.; Cuevas, M.V.; Torres-Ruiz, J.M.; Perez-Martin, A.; et al. Concomitant Measurements of Stem Sap Flow and Leaf Turgor Pressure in Olive Trees Using the Leaf Patch Clamp Pressure Probe. Agric. Water Manag. 2012, 114, 50–58. [Google Scholar] [CrossRef]
- Aissaoui, F.; Chehab, H.; Bader, B.; Salem, A.B.; M’barki, N.; Laamari, S.; Chihaoui, B.; Mahjoub, Z.; Boujnah, D. Early Water Stress Detection on Olive Trees (Olea Europaea L. Cvs ‘Chemlali’ and ‘Chetoui’) Using the Leaf Patch Clamp Pressure Probe. Comput. Electron. Agric. 2016, 131, 20–28. [Google Scholar] [CrossRef]
- Scalisi, A.; Bresilla, K.; Grilo, F.S. Continuous Determination of Fruit Tree Water-Status by Plant-Based Sensors. Italus Hortus 2018, 24, 39–50. [Google Scholar] [CrossRef]
- Sharon, Y.; Bravdo, B. A Fully–Automated Orchard Irrigation System Based on Continuous Monitoring of Turgor Potential with a Leaf Sensor. Acta Hortic. 2001, 562, 55–61. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Hernandez-Santana, V.; Buckley, T.N.; Fernández, J.E.; Diaz-Espejo, A. Sensitivity of Olive Leaf Turgor to Air Vapour Pressure Deficit Correlates with Diurnal Maximum Stomatal Conductance. Agric. For. Meteorol. 2019, 272–273, 156–165. [Google Scholar] [CrossRef]
- Ortuño, M.F.; Conejero, W.; Moreno, F.; Moriana, A.; Intrigliolo, D.S.; Biel, C.; Mellisho, C.D.; Pérez-Pastor, A.; Domingo, R.; Ruiz-Sánchez, M.C.; et al. Could Trunk Diameter Sensors Be Used in Woody Crops for Irrigation Scheduling? A Review of Current Knowledge and Future Perspectives. Agric. Water Manag. 2010, 97, 1–11. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Evaluation of Grapevine Water Status from Trunk Diameter Variations. Irrig. Sci. 2007, 26, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Fernández, J.E. Plant-Based Sensing to Monitor Water Stress: Applicability to Commercial Orchards. Agric. Water Manag. 2014, 142, 99–109. [Google Scholar] [CrossRef]
- Corell, M.; Girón, I.F.; Galindo, A.; Torrecillas, A.; Torres-Sánchez, R.; Pérez-Pastor, A.; Moreno, F.; Moriana, A. Using Band Dendrometers in Irrigation Scheduling. Agric. Water Manag. 2014, 142, 29–37. [Google Scholar] [CrossRef]
- Moriana, A.; Fereres, E. Plant Indicators for Scheduling Irrigation of Young Olive Trees. Irrig. Sci. 2002, 21, 83–90. [Google Scholar] [CrossRef]
- de la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Torres, R.; Pérez-Pastor, A. Feasibility of Using Trunk Diameter Fluctuation and Stem Water Potential Reference Lines for Irrigation Scheduling of Early Nectarine Trees. Agric. Water Manag. 2013, 126, 133–141. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Ruiz-Sánchez, M.C.; Alarcón, J.J.; Torrecillas, A. Stem and Leaf Water Potentials, Gas Exchange, Sap Flow, and Trunk Diameter Fluctuations for Detecting Water Stress in Lemon Trees. Trees - Struct. Funct. 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Conejero, W.; Alarcon, J.J.; Garcia-Orellana, Y.; Nicolas, E.; Torrecillas, A. Evaluation of Sap Flow and Trunk Diameter Sensors for Irrigation Scheduling in Early Maturing Peach Trees. Tree Physiol. 2007, 27, 1753–1759. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E.; Mata, M.; Girona, J.; Cohen, M. Journal of the American Society for Horticultural Science. J. Am. Soc. Hortic. Sci. 1999, 124, 437–444. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D. Suitability of Stem Diameter Variations and Water Potential as Indicators for Irrigation Scheduling of Almond Trees. J. Hortic. Sci. Biotechnol. 2003, 78, 139–144. [Google Scholar] [CrossRef]
- Elsayed-Farag, S.; Melgar, J.C. Efficiency of Tree-Based Water Status Indicators at the Onset of Water Deficit in Citrus. Hortic. Environ. Biotechnol. 2015, 56, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.B.; Smith, N.D. A Comparative Study of Leaf Thickness among Southern Appalachian Hardwoods. Can. J. Bot. 1981, 59, 1393–1396. [Google Scholar] [CrossRef]
- Nobel, P.S.; Hartsock, T.L. Development of Leaf Thickness for Plectranthus Parviflorus - Influence of Photosynthetically Active Radiation. Physiol. Plant. 1981, 51, 163–166. [Google Scholar] [CrossRef]
- White, J.W.; Montes-R, C. Variation in Parameters Related to Leaf Thickness in Common Bean (Phaseolus vulgaris L.). F. Crop. Res. 2005, 91, 7–21. [Google Scholar] [CrossRef]
- Alcaras, L.M.A.; Rousseaux, M.C.; Searles, P.S. Responses of Several Soil and Plant Indicators to Post-Harvest Regulated Deficit Irrigation in Olive Trees and Their Potential for Irrigation Scheduling. Agric. Water Manag. 2016, 171, 10–20. [Google Scholar] [CrossRef]
- Naor, A. Midday Stem Water Potential as a Plant Water Stress Indicator for Irrigation Scheduling in Fruit Trees. Acta Hortic. 2000, 537, 447–454. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Marín, D.; Sesma, B.; Intrigliolo, D.S.; Mirás-Avalos, J.M.; Escalona, J.M.; Montoro, A.; de Herralde, F.; Baeza, P.; et al. Discrimination Ability of Leaf and Stem Water Potential at Different Times of the Day through a Meta-Analysis in Grapevine (Vitis Vinifera L.). Agric. Water Manag. 2019, 221, 202–210. [Google Scholar] [CrossRef]
- Moriana, A.; Girón, I.F.; Martín-Palomo, M.J.; Conejero, W.; Ortuño, M.F.; Torrecillas, A.; Moreno, F. New Approach for Olive Trees Irrigation Scheduling Using Trunk Diameter Sensors. Agric. Water Manag. 2010, 97, 1822–1828. [Google Scholar] [CrossRef]
- Marino, G.; Scalisi, A.; Guzmán-Delgado, P.; Caruso, T.; Marra, F.P.; Lo Bianco, R. Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors. Plants 2021, 10, 131. [Google Scholar] [CrossRef]
- El Yamani, M.; Sakar, E.H.; Boussakouran, A.; Rharrabti, Y. Leaf Water Status, Physiological Behavior and Biochemical Mechanism Involved in Young Olive Plants under Water Deficit. Sci. Hortic. (Amsterdam). 2020, 261, 108906. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Kamgar-Haghighi, A.A.; Shahsavar, A.R.; Niyogi, D. Evapotranspiration, Crop Coefficients, and Physiological Responses of Citrus Trees in Semi-Arid Climatic Conditions. Agric. Water Manag. 2020, 227, 105838. [Google Scholar] [CrossRef]
- Shahidian, S.; Valverde, P.; Coelho, R.; Santos, A.; Vaz, M.; Rato, A.; Serrano, J.; Rodrigues, S. Leaf Water Potential and Sap Flow as Indicators of Water Stress in Crimson ‘Seedless’ Grapevines under Different Irrigation Strategies. Theor. Exp. Plant Physiol. 2016, 28, 221–239. [Google Scholar] [CrossRef]
- Fulton, A.; Grant, J.; Buchner, R.; Connell, J. Using the Pressure Chamber for Irrigation Management in Walnut, Almond and Prune; University of California, Agriculture and Natural Resources: Berkeley, CA, USA, 2014; ISBN 978-1-60107-858-2. [Google Scholar]
- Martins, A.; Raimundo, F.; Borges, O.; Linhares, I.; Sousa, V.; Coutinho, J.P.; Gomes-Laranjo, J.; Madeira, M. Effects of Soil Management Practices and Irrigation on Plant Water Relations and Productivity of Chestnut Stands under Mediterranean Conditions. Plant Soil 2010, 327, 57–70. [Google Scholar] [CrossRef]
- Mota, M.; Pinto, T.; Vilela, A.; Marques, T.; Borges, A.; Caço, J.; Ferreira-Cardoso, J.; Raimundo, F.; Gomes-Laranjo, J. Irrigation Positively Affects the Chestnut’s Quality: The Chemical Composition, Fruit Size and Sensory Attributes. Sci. Hortic. (Amsterdam) 2018, 238, 177–186. [Google Scholar] [CrossRef]
- Blanco, V.; Martínez-Hernández, G.B.; Artés-Hernández, F.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Water Relations and Quality Changes throughout Fruit Development and Shelf Life of Sweet Cherry Grown under Regulated Deficit Irrigation. Agric. Water Manag. 2019, 217, 243–254. [Google Scholar] [CrossRef]
- Schonfeld, M.A.; Johnson, R.C.; Carver, B.F.; Mornhinweg, D.W. Water Relations in Winter Wheat as Drought Resistance Indicators. Crop Sci. 1988, 28, 526–531. [Google Scholar] [CrossRef]
- Dutta, P.; Bandopadhyay, P.; Bera, A.K. Identification of Leaf Based Physiological Markers for Drought Susceptibility during Early Seedling Development of Mungbean. Am. J. Plant Sci. 2016, 07, 1921–1936. [Google Scholar] [CrossRef]
- Torres, I.; Sánchez, M.-T.; Benlloch-González, M.; Pérez-Marín, D. Irrigation Decision Support Based on Leaf Relative Water Content Determination in Olive Grove Using near Infrared Spectroscopy. Biosyst. Eng. 2019, 180, 50–58. [Google Scholar] [CrossRef]
- Smith, D.M.; Allen, S.J. Measurement of Sap Flow in Plant Stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Nadezhdin, V.; Ferreira, M.I.; Pitacco, A. Variability with Xylem Depth in Sap Flow in Trunks and Branches of Mature Olive Trees. Tree Physiol. 2007, 27, 105–113. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A Comparison of Sap Flux Density Using Thermal Dissipation, Heat Pulse Velocity and Heat Field Deformation Methods. Agric. For. Meteorol. 2010, 150, 1046–1056. [Google Scholar] [CrossRef]
- Muchena, L.; Dzikiti, S.; Lötze, E.; Midgley, S.J.E. Using Sap Flow Sensors to Study the Influence of Rootstock and Mid-Summer Water Deficit on Transpiration of Apple Trees in South Africa. Acta Hortic. 2020, 201–210. [Google Scholar] [CrossRef]
- Mancha, L.A.; Uriarte, D.; Prieto, M.D.H. Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors. Water 2021, 13, 2867. [Google Scholar] [CrossRef]
- Kokkotos, E.; Zotos, A.; Tsirogiannis, G.; Patakas, A. Prediction of Olive Tree Water Requirements under Limited Soil Water Availability, Based on Sap Flow Estimations. Agronomy 2021, 11, 1318. [Google Scholar] [CrossRef]
- Eastham, J.; Gray, S.A. A Preliminary Evaluation of the Suitability of Sap Flow Sensors for Use in Scheduling Vineyard Irrigation. Am. J. Enol. Vitic. 1998, 49, 171–176. [Google Scholar]
- López-López, M.; Espadador, M.; Testi, L.; Lorite, I.J.; Orgaz, F.; Fereres, E. Water Use of Irrigated Almond Trees When Subjected to Water Deficits. Agric. Water Manag. 2018, 195, 84–93. [Google Scholar] [CrossRef]
- Rana, G.; De Lorenzi, F.; Palatella, L.; Martinelli, N.; Ferrara, R.M. Field Scale Recalibration of the Sap Flow Thermal Dissipation Method in a Mediterranean Vineyard. Agric. For. Meteorol. 2019, 269–270, 169–179. [Google Scholar] [CrossRef]
- Cammalleri, C.; Rallo, G.; Agnese, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Combined Use of Eddy Covariance and Sap Flow Techniques for Partition of ET Fluxes and Water Stress Assessment in an Irrigated Olive Orchard. Agric. Water Manag. 2013, 120, 89–97. [Google Scholar] [CrossRef]
- Lascano, R.J.; Goebel, T.S.; Booker, J.; Baker, J.T.; Gitz III, D.C. The Stem Heat Balance Method to Measure Transpiration: Evaluation of a New Sensor. Agric. Sci. 2016, 07, 604–620. [Google Scholar] [CrossRef]
- Becker, P. Limitations of a Compensation Heat Pulse Velocity System at Low Sap Flow: Implications for Measurements at Night and in Shaded Trees. Tree Physiol. 1998, 18, 177–184. [Google Scholar] [CrossRef]
- Testi, L.; Villalobos, F.J. New Approach for Measuring Low Sap Velocities in Trees. Agric. For. Meteorol. 2009, 149, 730–734. [Google Scholar] [CrossRef]
- Bleby, T.M.; Burgess, S.S.O.; Adams, M.A. A Validation, Comparison and Error Analysis of Two Heat-Pulse Methods for Measuring Sap Flow in Eucalyptus Marginata Saplings. Funct. Plant Biol. 2004, 31, 645. [Google Scholar] [CrossRef]
- Cohen, Y.; Fuchs, M.; Falkenflug, V.; Moreshet, S. Calibrated Heat Pulse Method for Determining Water Uptake in Cotton. Agron. J. 1988, 80, 398–402. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of Transpiration in a Douglas-Fir Stand by Means of Sap Flow Measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Lu, P.; Chacko, E.K. Xylem Sap Flow Measurements in Mango Trees. Acta Hortic. 1997, 339–350. [Google Scholar] [CrossRef]
- Lu, P.; Lauren, U.; Zhao, P. Review on the Granier Sap Flow ( TDP ) Method: Theory and Practice. Acta Bot. Sin. 2004, 46. [Google Scholar]
- Bush, S.E.; Hultine, K.R.; Sperry, J.S.; Ehleringer, J.R. Calibration of Thermal Dissipation Sap Flow Probes for Ring- and Diffuse-Porous Trees. Tree Physiol. 2010, 30, 1545–1554. [Google Scholar] [CrossRef]
- Nourtier, M.; Chanzy, A.; Granier, A.; Huc, R. Sap Flow Measurements by Thermal Dissipation Method Using Cyclic Heating: A Processing Method Accounting for the Non-Stationary Regime. Ann. For. Sci. 2011, 68, 1255–1264. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Vandegehuchte, M.W.; Steppe, K. Sap Flux Density Measurements Based on the Heat Field Deformation Method. Trees 2012, 26, 1439–1448. [Google Scholar] [CrossRef]
- Fernández, E.; Čermák, J.; Cohen, Y.; Ferreira, I.; Nadezhdina, N.; Testi, L.; Steppe, K. Methods to Estimate Sap Flow. ISHS Work. Gr. Sap Flow 2017, 9, 1–9. [Google Scholar]
- Nicolas, E.; Torrecillas, A.; Ortuño, M.F.; Domingo, R.; Alarcón, J.J. Evaluation of Transpiration in Adult Apricot Trees from Sap Flow Measurements. Agric. Water Manag. 2005, 72, 131–145. [Google Scholar] [CrossRef]
- Ortuño, M.; Alarcón, J.; Nicolás, E.; Torrecillas, A. Interpreting Trunk Diameter Changes in Young Lemon Trees under Deficit Irrigation. Plant Sci. 2004, 167, 275–280. [Google Scholar] [CrossRef]
- Cocozza, C.; Marino, G.; Giovannelli, A.; Cantini, C.; Centritto, M.; Tognetti, R. Simultaneous Measurements of Stem Radius Variation and Sap Flux Density Reveal Synchronisation of Water Storage and Transpiration Dynamics in Olive Trees. Ecohydrology 2015, 8, 33–45. [Google Scholar] [CrossRef]
- Livellara, N.; Saavedra, F.; Salgado, E. Plant Based Indicators for Irrigation Scheduling in Young Cherry Trees. Agric. Water Manag. 2011, 98, 684–690. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Pires, M.; Conceição, N.; Claro, A.M.; Dinis, L.T.; Moutinho-Pereira, J. Linking Sap Flow and Trunk Diameter Measurements to Assess Water Dynamics of Touriga-Nacional Grapevines Trained in Cordon and Guyot Systems. Agriculture 2020, 10, 315. [Google Scholar] [CrossRef]
- Sirca, C.; Lo Cascio, M.; Noun, G.; Snyder, R.L.; Marras, S.; Fernandes de Oliveira, A.; Barbaro, M.; Meloni, P.; Loddo, S.; Ucchesu, M.; et al. Water Status Monitoring in Grapevines with Traditional and New Automated Sensors. Acta Hortic. 2021, 1314, 69–74. [Google Scholar] [CrossRef]
- De Ollas, C.; Morillón, R.; Fotopoulos, V.; Puértolas, J.; Ollitrault, P.; Gómez-Cadenas, A.; Arbona, V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. Front. Plant Sci. 2019, 10, 427. [Google Scholar] [CrossRef]
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of Climate Change on Water Resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Vargas-Amelin, E.; Pindado, P. The Challenge of Climate Change in Spain: Water Resources, Agriculture and Land. J. Hydrol. 2014, 518, 243–249. [Google Scholar] [CrossRef]
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef]
- Ghinoi, S.; Steiner, B. The Political Debate on Climate Change in Italy: A Discourse Network Analysis. Polit. Gov. 2020, 8, 215–228. [Google Scholar] [CrossRef]
- Hess, D.J.; Renner, M. Conservative Political Parties and Energy Transitions in Europe: Opposition to Climate Mitigation Policies. Renew. Sustain. Energy Rev. 2019, 104, 419–428. [Google Scholar] [CrossRef]
- Loddo, S.; Soccol, M.; Perra, A.; Ucchesu, M.; Meloni, P.; Barbaro, M.; Lo Cascio, M.; Sirca, C. Biosensing IoT Platform for Water Management in Vineyards. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–4. [Google Scholar]
- Soccol, M.; Perra, A.; Loddo, S.; Meloni, P.; Barbaro, M.; Lo Cascio, M.; Sirca, C. Sustainable Water Management in Quality Wine-Making. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 264–268. [Google Scholar]
- Ballester, C.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Usefulness of Thermography for Plant Water Stress Detection in Citrus and Persimmon Trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- López-Bernal, A.; García-Tejera, O.; Testi, L.; Orgaz, F.; Villalobos, F.J. Stomatal Oscillations in Olive Trees: Analysis and Methodological Implications. Tree Physiol. 2018, 38, 531–542. [Google Scholar] [CrossRef]
- Reig, G.; Iglesias, I.; Zazurca, L.; Torguet, L.; Martinez, G.; Miarnau, X. Physiological and Agronomical Responses of ‘Vairo’ Almond and ‘Big Top’ Nectarine Cultivars Grafted onto Different Prunus Rootstocks and Grown under Semiarid Mediterranean Conditions. Agronomy 2022, 12, 821. [Google Scholar] [CrossRef]
- Dell’Amico, J.; Moriana, A.; Corell, M.; Girón, I.F.; Morales, D.; Torrecillas, A.; Moreno, F. Low Water Stress Conditions in Table Olive Trees (Olea europaea L.) during Pit Hardening Produced a Different Response of Fruit and Leaf Water Relations. Agric. Water Manag. 2012, 114, 11–17. [Google Scholar] [CrossRef]
- Stellfeldt, A.; Maldonado, M.A.; Hueso, J.J.; Cuevas, J. Gas Exchange and Water Relations of Young Potted Loquat Cv. Algerie under Progressive Drought Conditions. J. Integr. Agric. 2018, 17, 1360–1368. [Google Scholar] [CrossRef]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Kamgar-Haghighi, A.A.; Aalami, A. The Physiological Responses of Various Pomegranate Cultivars to Drought Stress and Recovery in Order to Screen for Drought Tolerance. Sci. Hortic. (Amsterdam) 2017, 217, 164–172. [Google Scholar] [CrossRef]
- Costa A, J.M.; B, M.F.O.; A, C.M.L.; A, M.M.C. Grapevine Varieties Exhibiting Differences in Stomatal Response to Water Deficit. Funct. Plant Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Fernandes, R.D.M.; Perez-Arcoiza, A.; Fernández, J.E.; Garcia, J.M.; Diaz-Espejo, A. Relationships between Fruit Growth and Oil Accumulation with Simulated Seasonal Dynamics of Leaf Gas Exchange in the Olive Tree. Agric. For. Meteorol. 2018, 256–257, 458–469. [Google Scholar] [CrossRef]
- Guizani, M.; Dabbou, S.; Maatallah, S.; Montevecchi, G.; Hajlaoui, H.; Rezig, M.; Helal, A.N.; Kilani-Jaziri, S. Physiological Responses and Fruit Quality of Four Peach Cultivars under Sustained and Cyclic Deficit Irrigation in Center-West of Tunisia. Agric. Water Manag. 2019, 217, 81–97. [Google Scholar] [CrossRef]
- Fernandes de Oliveira, A.; Mameli, M.G.; Lo Cascio, M.; Sirca, C.; Satta, D. An Index for User-Friendly Proximal Detection of Water Requirements to Optimized Irrigation Management in Vineyards. Agronomy 2021, 11, 323. [Google Scholar] [CrossRef]
- Tortosa, I.; Escalona, J.M.; Douthe, C.; Pou, A.; Garcia-Escudero, E.; Toro, G.; Medrano, H. The Intra-Cultivar Variability on Water Use Efficiency at Different Water Status as a Target Selection in Grapevine: Influence of Ambient and Genotype. Agric. Water Manag. 2019, 223, 105648. [Google Scholar] [CrossRef]
- Jiménez, S.; Fattahi, M.; Bedis, K.; Nasrolahpour-moghadam, S.; Irigoyen, J.J.; Gogorcena, Y. Interactional Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach. Front. Plant Sci. 2020, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Morandi, B.; Manfrini, L.; Lugli, S.; Tugnoli, A.; Boini, A.; Perulli, G.D.; Bresilla, K.; Venturi, M.; Corelli Grappadelli, L. Sweet Cherry Water Relations and Fruit Production Efficiency Are Affected by Rootstock Vigor. J. Plant Physiol. 2019, 237, 43–50. [Google Scholar] [CrossRef]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. E Ff Ects of Postharvest Water Deficits on the Nectarine Trees. Plants 2020, 9, 1104. [Google Scholar] [CrossRef]
- Ehrenberger, W.; Rüger, S.; Rodríguez-Domínguez, C.M.; Díaz-Espejo, A.; Fernández, J.E.; Moreno, J.; Zimmermann, D.; Sukhorukov, V.L.; Zimmermann, U. Leaf Patch Clamp Pressure Probe Measurements on Olive Leaves in a Nearly Turgorless State. Plant Biol. 2012, 14, 666–674. [Google Scholar] [CrossRef]
- Puerto, P.; Domingo, R.; Torres, R.; Pérez-Pastor, A.; García-Riquelme, M. Remote Management of Deficit Irrigation in Almond Trees Based on Maximum Daily Trunk Shrinkage: Water Relations and Yield. Agric. Water Manag. 2013, 126, 33–45. [Google Scholar] [CrossRef]
- Ballester, C.; Buesa, I.; Soler, E.; Besada, C.; Salvador, A.; Bonet, L.; Intrigliolo, D.S. Postharvest Regulated Deficit Irrigation in Early- and Intermediate-Maturing Loquat Trees. Agric. Water Manag. 2018, 205, 1–8. [Google Scholar] [CrossRef]
- Conesa, M.R.; de la Rosa, J.M.; Domingo, R.; Bañon, S.; Pérez-Pastor, A. Changes Induced by Water Stress on Water Relations, Stomatal Behaviour and Morphology of Table Grapes (Cv. Crimson Seedless) Grown in Pots. Sci. Hortic. (Amsterdam) 2016, 202, 9–16. [Google Scholar] [CrossRef]
- Yu, R.; Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Front. Plant Sci. 2020, 11, 790. [Google Scholar] [CrossRef]
- Saitta, D.; Consoli, S.; Ferlito, F.; Torrisi, B.; Allegra, M.; Longo-Minnolo, G.; Ramírez-Cuesta, J.M.; Vanella, D. Adaptation of Citrus Orchards to Deficit Irrigation Strategies. Agric. Water Manag. 2021, 247, 106734. [Google Scholar] [CrossRef]
- Centeno, A.; Memmi, H.; Moreno, M.M.; Moreno, C.; Pérez-López, D. Water Relations in Olive Trees under Cold Conditions. Sci. Hortic. (Amsterdam) 2018, 235, 1–8. [Google Scholar] [CrossRef]
- Gasque, M.; Martí, P.; Granero, B.; González-Altozano, P. Effects of Long-Term Summer Deficit Irrigation on “Navelina” Citrus Trees. Agric. Water Manag. 2016, 169, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Badal, E.; El-Mageed, T.A.A.; Buesa, I.; Guerra, D.; Bonet, L.; Intrigliolo, D.S. Moderate Plant Water Stress Reduces Fruit Drop of “ Rojo Brillante” Persimmon (Diospyros Kaki) in a Mediterranean Climate. Agric. Water Manag. 2013, 119, 154–160. [Google Scholar] [CrossRef]
- Pagán, E.; Robles, J.M.; Temnani, A.; Berríos, P.; Botía, P.; Pérez-Pastor, A. Effects of Water Deficit and Salinity Stress on Late Mandarin Trees. Sci. Total Environ. 2022, 803, 150109. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Mahadevan, M.; Bonada, M.; Skewes, M.A.; Cox, J.W. Night-Time Sap Flow Is Parabolically Linked to Midday Water Potential for Field-Grown Almond Trees. Irrig. Sci. 2013, 31, 1265–1276. [Google Scholar] [CrossRef]
- Cuevas, M.V.; Martín-Palomo, M.J.; Diaz-Espejo, A.; Torres-Ruiz, J.M.; Rodriguez-Dominguez, C.M.; Perez-Martin, A.; Pino-Mejías, R.; Fernández, J.E. Assessing Water Stress in a Hedgerow Olive Orchard from Sap Flow and Trunk Diameter Measurements. Irrig. Sci. 2013, 31, 729–746. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Early Morning Fluctuations in Trunk Diameter Are Highly Sensitive to Water Stress in Nectarine Trees. Irrig. Sci. 2016, 34, 117–128. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Reference Values of Maximum Daily Trunk Shrinkage for Irrigation Scheduling in Mid-Late Maturing Peach Trees. Agric. Water Manag. 2016, 171, 31–39. [Google Scholar] [CrossRef]
- López-Bernal, Á.; García-Tejera, O.; Vega, V.A.; Hidalgo, J.C.; Testi, L.; Orgaz, F.; Villalobos, F.J. Using Sap Flow Measurements to Estimate Net Assimilation in Olive Trees under Different Irrigation Regimes. Irrig. Sci. 2015, 33, 357–366. [Google Scholar] [CrossRef]
- López-Bernal, Á.; Alcántara, E.; Villalobos, F.J. Thermal Properties of Sapwood of Fruit Trees as Affected by Anatomy and Water Potential: Errors in Sap Flux Density Measurements Based on Heat Pulse Methods. Trees - Struct. Funct. 2014, 28, 1623–1634. [Google Scholar] [CrossRef]
- Pasqualotto, G.; Carraro, V.; Menardi, R.; Anfodillo, T. Calibration of Granier-Type (TDP) Sap Flow Probes by a High Precision Electronic Potometer. Sensors 2019, 19, 2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicators, Measured Variables, Sensors, and Methods. | ||||
---|---|---|---|---|
Technical Function | Strengths | Limitations | Main References | |
(1) Stomatal conductance gs (maximum daily stomatal aperture) approach | ||||
(a) Porometer | Computes gs to Water Vapor (WV) | - Effective - Sensitive | - Handheld - Not automated - Leaf-to-leaf variation - Affected by nature of crop | |
(b) Infrared gas analyzer (IRGA) | Computes gs to WV and CO2 | [61] | ||
(2) Leaf turgor (cell turgor pressure) approach | ||||
(a) Cell pressure probe technique | Measures the turgor pressure equilibrium sap/oil | - Continuous and accurate measurement | - Invasive- Not suitable for long-term outdoor applications | [62,63] |
(b) Leaf patch clamp pressure probe | Measures attenuated output pressure, in response to magnetic clamp pressure | - Noninvasive - Sensitive - Accurate - Continuous | - Possible leaf-to-leaf variation - Level of accuracy depends on crop | [64] |
(3) Stem diameter variation (maximum daily shrinkage) approach | ||||
(a) Dendrometer | Measures potential difference of either swelling or shrinking of the stem and translates it into an electrical signal | - Continuously and automatically recorded | - Affected by environmental changes and plant age - Variable and inaccurate | [65,66] |
(b) Linear variable differential transformer | Converts linear displacements of the stem to an electrical signal | - Robust - High precision - Automated | - Needs individual calibration | [49] |
(4) Leaf thickness approach | ||||
(a) Micrometer | Pressure–volume curve. | - Automated | - Invasive method (requires leaf cut) | [67,68] |
(b) Linear variable displacement transducers | Distance separating the sensor head of the metal target and leaf probe | - Noninvasive method | - Sensitivity limited by lateral shrinkage - Expensive instrumentation | [69] |
(5) Leaf water content | ||||
(a) Leaf Water Meter (LWM) | Measures leaf water content through the measurement of the absorption of radiation | - Noninvasive - Sensitive - Non-destructive | - Novel instrumentation | [70] |
(6) Plant water potential (free energy of water) approach | ||||
(a) Thermocouple psychrometer | Measure temperature and voltage variations due to vapor pressure | - Noninvasive | - Not automated | [71] |
(b) Scholander pressure chamber | Balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap | - Simple - Effective | - Uses highly compressed gases - Time-consuming - Not continuous - Misrepresentation | [72] |
(c) Pump-up pressure | Pressure applied by means of pump | - Avoids use of compressed gases - Mainly designed for irrigation scheduling and monitoring | - Novel instrumentation | [73] |
(d) Microtensiometer | Sensor embedded in trunk to directly measure Stem Water Potential (SWP) | - Continuous - Accurate - Automated | - Underestimate SWP values below -1.5 MPa - Inaccurate measurement under high Vapor Pressure Deficit (VPD) condition | [74,75] |
(7) Relative water content (relative amount of water present in the plant tissues) approach | ||||
(a) Mass weighing | Weighing fresh, dry, and turgid masses of the leaf | - Easy to measure - Directly related to physiological function | - Difficult to obtain uniform replication | [48] |
(8) Sap flow (movement of fluid) approach | ||||
(a) Heat balance method | ||||
(i) Stem heat balance | Heat input from the heater to the entire circumference is balanced by the heat fluxes out of the stem | - Used for woody and herbaceous stems | - Invasive - Sensors are rigid and fixed - Cannot be used for thick stems | [51] |
(ii) Trunk sector heat balance method | Heat applied to a segment of the stem | - Used for large stem diameters | - Invasive - Sensors are rigid and fixed | [76] |
(b) Heat pulse method | ||||
(i) Compensation heat pulse method | Heat pulse velocity is calculated by measuring temperature differences | - Consistent results | - Need to be corrected - Unable to measure low sap flow rates and reverse flow | [50] |
(ii) Heat ratio method | Measures the ratio of the increase in temperature | - Measures reverse flow | - More accurate than Compensation Heat Pulse Method (CHPM) - Less reliable at high flux densities | [77] |
(iii) T-max method | Calculates time delay for a maximum temperature rise to occur at the downstream temperature sensor | - Single temperature sensor - Measures simultaneously the heat wave at several depths in the trunk | - Noisy measurements at night - Unable to measure low flow rates | [78] |
(iv) TmRatio heat pulse method | Calculates heat pulse velocity using the ratio of the maximum temperature increase between the downstream and side probe | - Low-cost - Easily replicated - Able to measure low flow and at night | - Novel instrumentation | [79] |
(v) Sapflow+ method | Calculates conduction and convection of a short-duration heat pulse | - Nondestructive measurement of high, low, and reverse sap flows | - Requires temperature correction | [80] |
(vi) Single probe heat pulse | Measures sap velocity using a probe | - Simple and small size, less physical damage, less errors | - Unreliable in determining low sap velocity | [81] |
(vii) Dual heat pulse method | Measures diverse flow ranges such as low and high flow rates, as well as reverse flows, using two heat pulse techniques | - Effective in tracking water demands associated with changing microclimatic conditions | - Limited efficacy (research purposes) | [82] |
(c) Continuous heat method | ||||
(i) Thermal dissipation probe | Calculate temperature difference between two probes | - Simple - Accurate - Low-cost | - Needs calibration - Errors in estimating sap flow for whole tree - High electrical consumption | [83] |
(ii) Heat field deformation method | Continuous linear heating system | - Shows plants’ responses to sudden environmental changes and water stress - Measures at different depths in the sapwood, high, low, and reverse flows | - Can cause errors in estimations | [84] |
Years | Total | |||||||||||||
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||||
Approaches and Sensors/Methods | Stomatal conductance (gs) | Porometer | 2 | 3 | - | 1 | 1 | 3 | - | 1 | 1 | 2 | 2 | 16 |
Infrared gas ana-lyzer (IRGA) | 2 | 1 | - | - | 5 | 2 | 3 | 6 | 4 | 4 | - | 27 | ||
Leaf Turgor | Cell Pressure Probe | - | - | - | - | - | - | - | - | - | - | - | 0 | |
LPCPP (ZIM-probe) | 2 | - | - | - | 5 | 1 | 1 | 3 | 1 | 1 | - | 14 | ||
Leaf Thickness (LT) | Micrometer | - | - | - | - | - | - | - | - | 1 | - | - | 1 | |
Leaf Water Potential (LWP) and Stem Water Potential (SWP) | Thermocouple Psychrometer | - | 1 | - | - | - | - | - | - | - | - | - | 1 | |
Scholander Pressure Chamber | 2 | 7 | - | 2 | 7 | 4 | 4 | 8 | 3 | 6 | 3 | 46 | ||
Pump up Pressure Chamber | - | - | - | - | - | - | 1 | - | 2 | 1 | - | 4 | ||
Stem Diameter Variation (SDV) | Dendrometer | - | 1 | - | 1 | - | 2 | - | 1 | - | 2 | - | 7 | |
Linear Variable Differential Transformers (LVDT) | - | 3 | - | - | 3 | 1 | 1 | 2 | 1 | - | 1 | 12 | ||
Relative water Content (RWC) | Mass Weighing | 1 | - | - | - | - | 1 | - | 3 | 2 | - | - | 7 | |
Sap Flow (SF)—Heat balance | Stem Heat Balance (SHB) | - | - | - | - | - | - | - | 1 | 1 | - | - | 2 | |
Trunk Sector Heat Balance | - | 1 | - | - | - | - | - | - | - | - | - | 1 | ||
SF—Heat pulse | Compensation Heat Pulse Method (CHPM) | 1 | 1 | - | 1 | - | 1 | 2 | - | - | 1 | - | 7 | |
Heat Ratio Method (HRM) | - | - | - | - | - | - | - | - | 1 | - | - | 1 | ||
T-max | - | 2 | - | - | - | - | - | - | 1 | 1 | - | 4 | ||
TmRatio | - | - | - | - | - | - | - | - | - | - | - | 0 | ||
Sapflow+ | - | - | 4 | - | - | - | - | - | - | - | - | 4 | ||
Single Probe Heat Pulse (SPHP) | - | - | - | - | - | 5 | - | - | - | - | - | 5 | ||
Dual Heat Pulse | - | - | 1 | - | - | - | - | - | - | - | - | 1 | ||
Continuous SF | Thermal Dissipation Probe | - | 1 | - | 1 | 1 | - | - | 1 | 2 | 3 | - | 9 | |
Heat Field Deformation (HFD) | - | - | - | - | - | - | - | - | - | - | - | 0 | ||
Total | 10 | 21 | 5 | 6 | 22 | 20 | 12 | 26 | 20 | 21 | 6 |
Approaches and Sensors/Methods | ||||||||||||||||||||||
Stomatal Conductance gs | Leaf Turgor | Leaf Thickness LT | Leaf and Stem Water Potential (LWP and SWP) | Stem Diameter Variation (SDV) | Relative Water Content (RWC) | Sap Flow (SF) Heat Balance | SF Heat Pulse | Continuous SF | ||||||||||||||
Porometer | Infrared Gas Analyzer (IRGA) | Cell Pressure Probe | Cell Pressure Probe LPCPP | Micrometer | Thermocouple Psychrometer | Scholander Pressure Chamber | Pump up Pressure Chamber | Dendrometer | Linear Variable Differential Transformers (LVDT) | Mass Weighing | Stem Heat Balance (SHB) | Trunk Sector Heat Balance | Compensation Heat Pulse Method (CHPM) | Heat Ratio Method (HRM) | T-max | TmRatio | Sapflow+ | Single Probe Heat Pulse (SPHP) | Dual Heat Pulse | Thermal Dissipation Probe | Heat Field Deformation (HFD) | |
Almond | 1 | 1 | - | 1 | - | - | 5 | - | 1 | 1 | - | - | - | 1 | - | 1 | - | 1 | 1 | - | - | - |
Apple | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | - | - | - | - |
Avocado | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
Cherry | 1 | 2 | - | - | - | - | 4 | - | - | 3 | - | - | 1 | - | - | - | - | - | - | - | - | - |
Chestnut | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Citrus | 1 | 3 | - | - | - | - | 6 | - | - | 1 | - | - | - | 1 | - | 1 | - | 1 | 1 | - | 1 | - |
Fig | 1 | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | 1 | - | - | - | - |
Grapevine | 2 | 8 | - | 1 | 1 | 1 | 8 | 2 | - | 3 | - | 1 | - | 1 | - | 1 | - | - | - | 1 | 3 | - |
Hazelnut | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - |
Loquat | - | 1 | - | - | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Nectarine | 2 | 1 | - | 1 | - | - | 2 | - | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
Olive | 2 | 7 | - | 10 | - | - | 7 | 1 | 4 | - | 1 | - | - | 4 | - | 1 | - | 1 | 1 | - | 4 | - |
Peach | 2 | 2 | - | - | - | - | 4 | - | - | 2 | 2 | - | - | - | - | - | - | - | - | - | - | - |
Pear | - | 1 | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - |
Persimmon | 1 | - | - | 1 | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Pistachio | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Plum | 1 | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Pomegranate | 2 | 1 | - | - | - | - | 3 | - | 1 | - | 2 | - | - | - | - | - | - | - | - | - | - | - |
Walnut | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - |
Total | 16 | 27 | 0 | 14 | 1 | 1 | 46 | 4 | 7 | 12 | 7 | 2 | 1 | 7 | 1 | 4 | 0 | 4 | 5 | 1 | 9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noun, G.; Lo Cascio, M.; Spano, D.; Marras, S.; Sirca, C. Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy 2022, 12, 2127. https://doi.org/10.3390/agronomy12092127
Noun G, Lo Cascio M, Spano D, Marras S, Sirca C. Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy. 2022; 12(9):2127. https://doi.org/10.3390/agronomy12092127
Chicago/Turabian StyleNoun, Gilbert, Mauro Lo Cascio, Donatella Spano, Serena Marras, and Costantino Sirca. 2022. "Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review" Agronomy 12, no. 9: 2127. https://doi.org/10.3390/agronomy12092127
APA StyleNoun, G., Lo Cascio, M., Spano, D., Marras, S., & Sirca, C. (2022). Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy, 12(9), 2127. https://doi.org/10.3390/agronomy12092127