Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques
Abstract
:1. Introduction
2. Green Space-Related Challenges
3. Materials and Methods
3.1. Study Region
3.2. Data Used
3.3. Satellite Image Classification
3.4. Accuracy Assessment and Kappa Coefficient
3.5. Land Surface Temperature (LST) Calculation
3.5.1. LST for Landsat TM
- Equation (3) presents the transformation of the digital number to spectral radiance.
- Equation (4) defines the spectral radiance conversion to temperature in Kelvin.
- The conversion of Kelvin to Celsius [61] is estimated by Equation (5).
3.5.2. LST for Landsat OLI
- The transformation of the digital number (DN) to spectral radiance (L) [62,63] is calculated by Equation (6).
- The metadata file is used for the identification of LST, where the thermal (TIRS) band (band 10) data have transformed from SR to BT once the digital number (DN) value is converted to SR [64] (Equation (7)).
- Minimum and maximum NDVI values are used for the proportion of vegetation calculated by using reference [63] according to Equation (9).
3.6. Spectral Indices
3.6.1. Normalized Difference Vegetation Index (NDVI)
3.6.2. Normalized Difference Built-up Index (NDBI)
3.7. Correlation Analysis
3.8. The Urban Thermal Field Variance Index (UTFVI)
3.9. The Surface Urban Heat Island (SUHI)
3.10. Heat Stress Index Calculation
3.11. Validation of the Study Results
4. Results and Discussion
4.1. LULC Dynamics
4.2. Spatial Distribution of LST
4.3. Spectral Indices
4.4. Correlation Analysis Using LST and Spectral Indices
4.5. Urban Green Space Patterns
4.6. Urban Heat Island Evaluation
4.7. Heat Stress Index
5. Conclusions, Limitations and Further Research Proposals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, H. Vegetation of the Earth in Relation to Climate and the Eco-Physiological Conditions; English Universities Press: Cambridge, UK, 1973; ISBN 0340171650. [Google Scholar]
- Halder, B.; Haghbin, M.; Farooque, A.A. An Assessment of Urban Expansion Impacts on Land Transformation of Rajpur-Sonarpur Municipality. Knowl. Based Eng. Sci. 2021, 2, 34–53. [Google Scholar] [CrossRef]
- Ayub, M.A.; Farooqi, Z.U.R.; Umar, W.; Nadeem, M.; Ahmad, Z.; Fatima, H.; Iftikhar, I.; Anjum, M.Z. Role of Urban Vegetation: Urban Forestry in Micro-Climate Pollution Management. In Examining International Land Use Policies, Changes, and Conflicts; IGI Global: Hershey, PA, USA, 2021; pp. 231–251. [Google Scholar]
- Poortinga, A.; Bastiaanssen, W.; Simons, G.; Saah, D.; Senay, G.; Fenn, M.; Bean, B.; Kadyszewski, J. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data. Remote Sens. 2017, 9, 86. [Google Scholar] [CrossRef]
- Bayatvarkeshi, M.; Bhagat, S.K.; Mohammadi, K.; Kisi, O.; Farahani, M.; Hasani, A.; Deo, R.; Yaseen, Z.M. Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models. Comput. Electron. Agric. 2021, 185, 106158. [Google Scholar] [CrossRef]
- Okasha, A.M.; Ibrahim, H.G.; Elmetwalli, A.H.; Khedher, K.M.; Yaseen, Z.M.; Elsayed, S. Designing low-cost capacitive-based soil moisture sensor and smart monitoring unit operated by solar cells for greenhouse irrigation management. Sensors 2021, 21, 5387. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Bickici Arikan, B.; Jiechen, L.; Sabbah, I.I.; Ewees, A.; Homsi, R.; Sulaiman, S.O. Dew Point Time Series Forecasting at the North Dakota. Knowl. Based Eng. Sci. 2021, 2, 24–34. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Yin, P.; Jia, D.; Li, G. Remote sensing classification method of vegetation dynamics based on time series Landsat image: A case of opencast mining area in China. EURASIP J. Image Video Process. 2018, 2018, 113. [Google Scholar] [CrossRef]
- Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Nemani, R.R.; Running, S.W. Simulated impacts of historical land cover changes on global climate in northern winter. Clim. Dyn. 2000, 16, 93–105. [Google Scholar] [CrossRef]
- Rajagopalan, G.; Sukumar, R.; Ramesh, R.; Pant, R.K.; Rajagopalan, G. Late Quaternary vegetational and climatic changes from tropical peats in southern India—An extended record up to 40,000 years BP. Curr. Sci. 1997, 73, 60–63. [Google Scholar]
- Gopalakrishnan, R.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Climate change and Indian forests. Curr. Sci. 2011, 101, 348–355. [Google Scholar]
- Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch. Environ. Res. Risk Assess. 2020, 34, 447–464. [Google Scholar] [CrossRef]
- Tiwari, R.C. Analytical study on variation of climatic parameters at Aizawl, Mizoram (India). Bull. Arunachal For. Res. 2006, 22, 33–39. [Google Scholar]
- Ravindranath, N.H.; Joshi, N.V.; Sukumar, R.; Saxena, A. Impact of climate change on forests in India. Curr. Sci. 2006, 90, 354–361. [Google Scholar]
- Sarkar, S.; Kafatos, M. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sens. Environ. 2004, 90, 268–280. [Google Scholar] [CrossRef]
- Palmate, S.S.; Pandey, A.; Kumar, D.; Pandey, R.P.; Mishra, S.K. Climate change impact on forest cover and vegetation in Betwa Basin, India. Appl. Water Sci. 2014, 7, 103–114. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, Z.; Su, S.; Kang, M.; Ge, Y. Unraveling the association between the urban polycentric structure and urban surface thermal environment in urbanizing China. Sustain. Cities Soc. 2022, 76, 103490. [Google Scholar] [CrossRef]
- Vyas, G.S.; Jha, K.N. Identification of green building attributes for the development of an assessment tool: A case study in India. Civ. Eng. Environ. Syst. 2016, 33, 313–334. [Google Scholar] [CrossRef]
- Serdar, M.Z.; Koç, M.; Al-Ghamdi, S.G. Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustain. Cities Soc. 2022, 76, 103452. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Sejati, A.W.; Buchori, I.; Rudiarto, I. The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain. Cities Soc. 2019, 46, 101432. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.; Yan, H.; Huang, Y.; Zhang, G.; Lin, T.; Ye, H.; Bonafoni, S. Downscaling Building Energy Consumption Carbon Emissions by Machine Learning. Remote Sens. 2021, 13, 4346. [Google Scholar] [CrossRef]
- Kedia, S.; Bhakare, S.P.; Dwivedi, A.K.; Islam, S.; Kaginalkar, A. Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Clim. 2021, 36, 100782. [Google Scholar] [CrossRef]
- Chang, H.-T. A Temporal and Spatial Analysis of Urban Heat Island in Basin City Utilizing Remote Sensing Techniques. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 165–170. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kushwaha, G.; Nikam, B.; Srivastav, S.K.; Shelar, A.; Kumar, P. Analysing the day/night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities. Sustain. Cities Soc. 2021, 75, 103374. [Google Scholar] [CrossRef]
- Thanh Hoan, N.; Liou, Y.-A.; Nguyen, K.-A.; Sharma, R.; Tran, D.-P.; Liou, C.-L.; Cham, D. Assessing the Effects of Land-Use Types in Surface Urban Heat Islands for Developing Comfortable Living in Hanoi City. Remote Sens. 2018, 10, 1965. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index—A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [PubMed]
- Bardhan, R.; Debnath, R.; Bandopadhyay, S. A conceptual model for identifying the risk susceptibility of urban green spaces using geo-spatial techniques. Model. Earth Syst. Environ. 2016, 2, 144. [Google Scholar] [CrossRef]
- Kafy, A.A.; Faisal, A.A.; Rahman, M.S.; Islam, M.; Al Rakib, A.; Islam, M.A.; Khan, M.H.H.; Sikdar, M.S.; Sarker, M.H.S.; Mawa, J.; et al. Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustain. Cities Soc. 2021, 64, 102542. [Google Scholar] [CrossRef]
- Rihan, M.; Naikoo, M.W.; Ali, M.A.; Usmani, T.M.; Rahman, A. Urban Heat Island Dynamics in Response to Land-Use/Land-Cover Change in the Coastal City of Mumbai. J. Indian Soc. Remote Sens. 2021, 49, 2227–2247. [Google Scholar]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environ. Monit. Assess. 2019, 191, 551. [Google Scholar] [CrossRef]
- Khan, F.; Das, B.; Mohammad, P. Urban Growth Modeling and Prediction of Land Use Land Cover Change Over Nagpur City, India Using Cellular Automata Approach. In Geospatial Technology for Landscape and Environmental Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 261–282. [Google Scholar]
- Singh, V.S.; Pandey, D.N.; Chaudhry, P. Urban Forests and Open Green Spaces: Lessons for Jaipur, Rajasthan, India; RSPCB Occasional Paper, No. 1/2010; Rajasthan State Pollution Control Board: Jaipur, India, 2010.
- Halder, B.; Bandyopadhyay, J.; Banik, P. Evaluation of the Climate Change Impact on Urban Heat Island Based on Land Surface Temperature and Geospatial Indicators. Int. J. Environ. Res. 2021, 15, 819–835. [Google Scholar] [CrossRef]
- Halder, B.; Banik, P.; Bandyopadhyay, J. Mapping and monitoring land dynamic due to urban expansion using geospatial techniques on South Kolkata. Saf. Extrem. Environ. 2021, 3, 27–42. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi, India. Environ. Dev. Sustain. 2019, 22, 7331–7356. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al Maliki, A.; Sultan, M.A.; Shahid, S.; Yaseen, Z.M. Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Nat. Hazards 2022, 112, 1223–1246. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Sivaramakrishnan, K.C.; Kundu, A.; Singh, B.N.; Singh, B.N. Handbook of Urbanization in India: An Analysis of Trends and Processes; Oxford University Press: Oxford, UK, 2005; ISBN 0195672399. [Google Scholar]
- Nagendra, H.; Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore, India. Urban Ecosyst. 2010, 14, 211–223. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Kumar, A.; Singh, G.K. Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Liou, Y.A.; Nguyen, K.A.; Ho, L.T. Altering urban greenspace patterns and heat stress risk in Hanoi city during Master Plan 2030 implementation. Land Use Policy 2021, 105, 105405. [Google Scholar] [CrossRef]
- Amarsaikhan, D.; Ganzorig, M.; Blotevogel, H.H.; Nergui, B.; Gantuya, R. Integrated method to extract information from high and very high resolution RS images for urban planning. J. Geogr. Reg. Plan. 2009, 2, 258–267. [Google Scholar]
- Khelifi, L.; Mignotte, M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Nadizadeh Shorabeh, S.; Hamzeh, S.; Zanganeh Shahraki, S.; Firozjaei, M.K.; Jokar Arsanjani, J. Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. Int. J. Remote Sens. 2020, 41, 7400–7426. [Google Scholar] [CrossRef]
- Khan, A.; Chatterjee, S. Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Modeling Earth Syst. Environ. 2016, 2, 71. [Google Scholar] [CrossRef]
- Chatterjee, U.; Majumdar, S. Impact of land use change and rapid urbanization on urban heat island in Kolkata city: A remote sensing based perspective. J. Urban Manag. 2021, 11, 59–71. [Google Scholar]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharath, H.A.; Chandan, M.C.; Vinay, S.; Ramachandra, T.V. Modelling the growth of two rapidly urbanizing Indian cities. J. Geomat. 2017, 11, 149–166. [Google Scholar]
- Ramachandra, T.V.; Bharath, H.A.; Vinay, S. Land use land cover dynamics in a rapidly urbanising landscape. SCIT J. 2013, 13, 1–12. [Google Scholar]
- Singh, S.K.; Srivastava, P.K.; Szabó, S.; Petropoulos, G.P.; Gupta, M.; Islam, T. Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto Int. 2016, 32, 113–127. [Google Scholar] [CrossRef]
- Cheruto, M.C.; Kauti, M.K.; Kisangau, P.D.; Kariuki, P. Assessment of Land Use and Land Cover Change Using GIS and Remote Sensing Techniques: A Case Study of Makueni County, Kenya. J. Remote Sens. GIS 2016, 5, 175. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Owojori, A.; Xie, H. Landsat Image-Based LULC Changes of San Antonio, Texas Using Advanced Atmospheric Correction and Object-Oriented Image Analysis Approaches. In Proceedings of the 5th International Symposium on Remote Sensing of Urban Areas, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- Cao, L.; Li, P.; Zhang, L.; Chen, T. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Vegetation Fraction. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Beijing, China, 3–11 July 2008. [Google Scholar]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-Related Deaths during the July 1995 Heat Wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef]
- Scarano, M.; Sobrino, J.A. On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [Google Scholar] [CrossRef]
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS Global Land Survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sensors 2016, 2016, 1480307. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J. Evaluating the impact of climate change on urban environment using geospatial technologies in the planning area of Bilaspur, India. Environ. Chall. 2021, 5, 100286. [Google Scholar] [CrossRef]
- Naim, M.N.H.; Kafy, A.-A. Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environ. Chall. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the US National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Rowlinson, S.; Yunyan-Jia, A.; Li, B.; Chuanjing-Ju, C. Management of climatic heat stress risk in construction: A review of practices, methodologies, and future research. Accid. Anal. Prev. 2014, 66, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Satellite | Sensor | Date | Path and Row | Data Source |
---|---|---|---|---|
Landsat 5 | TM | 2 April 2010 | 139, 44 | https://earthexplorer.usgs.gov/ (accessed on 13 May 2020). |
Landsat 8 | OLI/TIRS | 28 March 2020 | 139, 44 |
Sl. No. | Value of K | Strength of Agreement |
---|---|---|
1 | <0.20 | Poor |
2 | 0.21–0.40 | Fair |
3 | 0.41–0.60 | Moderate |
4 | 0.61–0.80 | Good |
5 | 0.81–1.00 | Very Good |
Urban Thermal Field Variation Index | Urban Thermal Island Phenomenon | Ecological Evaluation Index |
---|---|---|
<0 | None | Excellent |
0–0.005 | Weak | Good |
0.005–0.010 | Middle | Normal |
0.010–0.015 | Strong | Bad |
0.015–0.020 | Stronger | Worse |
>0.020 | Strongest | Worst |
LULC Class | Area (Hectares) | Area (Percentage) | Areal Change (%) | ||
---|---|---|---|---|---|
2010 | 2020 | 2010 | 2020 | (2010 to 2020) | |
Water Body | 2542.24 | 2198.75 | 10.52 | 9.10 | −1.42 |
Other Land | 12743.95 | 15458.34 | 52.73 | 63.96 | 11.23 |
Park and Grassland | 2532.89 | 2245.35 | 10.48 | 9.29 | −1.19 |
Tree and Vegetation Area | 6348.64 | 4265.28 | 26.27 | 17.65 | −8.62 |
Total | 24167.72 | 24167.72 | 100.00 | 100.00 |
Class Name | Ground Truth/Reference | Row Total | Commission Error | User Accuracy | |||
---|---|---|---|---|---|---|---|
Water Body | Other Land | Park and Grassland | Tree and Vegetation Land | ||||
Water Body | 28 | 1 | 1 | 0 | 30 | 6.67% | 93.33% |
Other Land | 1 | 71 | 3 | 1 | 75 | 6.67% | 94.67% |
Park and Grassland | 0 | 0 | 27 | 2 | 29 | 6.90% | 93.10% |
Tree and Vegetation Land | 0 | 1 | 3 | 62 | 66 | 6.06% | 93.94% |
Column Total | 29 | 73 | 34 | 65 | 200 | ||
Omission Error | 3.45% | 2.74% | 20.59% | 4.62% | |||
Produced Accuracy | 96.55% | 97.26% | 79.41% | 95.38% | |||
Overall Accuracy | 94.00% | Kappa Coefficient | 0.915 |
Class Name | Ground Truth/Reference | Row Total | Commission Error | User Accuracy | |||
---|---|---|---|---|---|---|---|
Water Body | Other Land | Park and Grassland | Tree and Vegetation Land | ||||
Water Body | 25 | 1 | 1 | 1 | 28 | 10.71% | 89.29% |
Other Land | 1 | 76 | 3 | 2 | 82 | 7.32% | 92.68% |
Park and Grassland | 0 | 0 | 27 | 1 | 28 | 3.57% | 96.43% |
Tree and Vegetation Land | 0 | 1 | 2 | 59 | 62 | 4.84% | 95.16% |
Column Total | 26 | 78 | 33 | 63 | 200 | ||
Omission Error | 3.85% | 2.56% | 18.18% | 6.35% | |||
Produce Accuracy | 96.15% | 97.44% | 81.82% | 93.65% | |||
Overall Accuracy | 93.50% | Kappa Coefficient | 0.907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halder, B.; Bandyopadhyay, J.; Al-Hilali, A.A.; Ahmed, A.M.; Falah, M.W.; Abed, S.A.; Falih, K.T.; Khedher, K.M.; Scholz, M.; Yaseen, Z.M. Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques. Agronomy 2022, 12, 2129. https://doi.org/10.3390/agronomy12092129
Halder B, Bandyopadhyay J, Al-Hilali AA, Ahmed AM, Falah MW, Abed SA, Falih KT, Khedher KM, Scholz M, Yaseen ZM. Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques. Agronomy. 2022; 12(9):2129. https://doi.org/10.3390/agronomy12092129
Chicago/Turabian StyleHalder, Bijay, Jatisankar Bandyopadhyay, Aqeel Ali Al-Hilali, Ali M. Ahmed, Mayadah W. Falah, Salwan Ali Abed, Khaldoon T. Falih, Khaled Mohamed Khedher, Miklas Scholz, and Zaher Mundher Yaseen. 2022. "Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques" Agronomy 12, no. 9: 2129. https://doi.org/10.3390/agronomy12092129
APA StyleHalder, B., Bandyopadhyay, J., Al-Hilali, A. A., Ahmed, A. M., Falah, M. W., Abed, S. A., Falih, K. T., Khedher, K. M., Scholz, M., & Yaseen, Z. M. (2022). Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques. Agronomy, 12(9), 2129. https://doi.org/10.3390/agronomy12092129