Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. ARIMA Model
2.3. ARIMA Intervention Model
2.4. Artificial Neural Network
2.5. ELM Model
- (i)
- Assign the weights from the input to the hidden layer randomly.
- (ii)
- Determine the weighted input layer output matrix.
- (iii)
- Determine the output weight .
2.6. Machine Learning Intervention Models
3. Results
3.1. Results of ARIMA Model
3.2. Results of ARIMA Intervention Model
3.3. Results of the ANN Model and the ANN Intervention Model
3.4. Results of the ELM Model and the ELM Intervention Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meixner, O.; Quehl, H.E.; Pöchtrager, S.; Haas, R. Being a Farmer in Austria during COVID-19—A Qualitative Study on Challenges and Opportunities. Agronomy 2022, 12, 1240. [Google Scholar] [CrossRef]
- Habanyati, E.J.; Paramasivam, S.; Seethapathy, P.; Jayaraman, A.; Kedanhoth, R.; Viswanathan, P.K.; Manalil, S. Impact of COVID-19 on the Agriculture Sector: Survey Analysis of Farmer Responses from Kerala and Tamil Nadu States in India. Agronomy 2022, 12, 503. [Google Scholar] [CrossRef]
- Agricultural Statistics at Glance; Ministry of Agriculture & Farmers Welfare Department of Agriculture; Cooperation & Farmers Welfare Directorate of Economics & Statistics; Government of India. 2021. Available online: https://eands.dacnet.nic.in/PDF/Agricultural%20Statitics%20at%20a%20Glance%20-%202021%20(English%20version).pdf (accessed on 15 May 2022).
- Kotler, P.; Keller, K. Marketing Management, 13th ed.; Prentice Hall International: Englewood Cliffs, NJ, USA, 2009. [Google Scholar]
- Reddy, A. Commodity Market Integration: Case of Asian Rice Markets. IUP J. Appl. Econ. 2006, 10, 71–75. [Google Scholar] [CrossRef]
- Reddy, A. Regional Disparities in Profitability of Rice Production: Where Small Farmers Stand? Indian J. Agric. Econ. 2015, 70, 259–271. [Google Scholar]
- Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Muhammad, F.; Siddique, M.; Bashir, M.; Ahmad, S. Forecasting rice production in Pakistan-using ARIMA Models. J. Anim. Plant Sci. 1992, 2, 27–31. [Google Scholar]
- Mishra, P.; Sahu, P.K. Forecasting Area, Producing and Yield of Maize in India using ARIMA Model. Int. J. Agric. Stat. 2014, 10, 425–435. [Google Scholar]
- Naveena, K.; Rathod, S.; Shukla, G.; Yogish, K.J. Forecasting of coconut production in India: Suitable time models. Int. J. Agric. Eng. 2014, 7, 190–193. [Google Scholar]
- Jalikatti, V.N.; Raghavendra, C.; Ahmad, D.G.; Shreya, A.; Sheikh, S. Forecasting the prices of onion in belgaum market of northern Karnataka using ARIMA technique. Int. J. Agric. Econ. 2014, 5, 153–159. [Google Scholar] [CrossRef]
- Jeong, M.; Lee, Y.J.; Choe, Y. Forecasting agricultural commodity price: The case of onion. J. Res. Humanit. Soc. Sci. 2017, 5, 78–81. [Google Scholar]
- Kaur, L.; Dhaliwal, T.; Rangi, P.S.; Singh, N. An economic analysis of tomato arrivals and prices in Punjab. Indian J. Agric. Econ. 2005, 19, 61–67. [Google Scholar]
- Rathod, S.; Singh, K.N.; Arya, P.; Ray, M.; Mukherjee, A.; Sinha, K.; Kumar, P.; Shekhawat, R.S. Forecasting maize yield using ARIMA-Genetic Algorithm approach. Outlook Agric. 2017, 46, 265–271. [Google Scholar] [CrossRef]
- Rathod, S.; Singh, K.N.; Patil, S.G.; Naik, R.H.; Ray, M.; Meena, V.S. Modelling and forecasting of oilseed production of India through artificial intelligence techniques. Indian J. Agric. Sci. 2018, 88, 22–27. [Google Scholar]
- Box, G.E.P.; Tiao, G.C. Intervention analysis with application to economic and environmental problems. J. Am. Stat. Assoc. 1995, 70, 70–79. [Google Scholar] [CrossRef]
- Bianchi, L.; Jeffrey, J.; Choudary, H.R. Improving forecasting for telemarketing centres by ARIMA modelling with intervention. Int. J. Forecast. 1998, 14, 497–504. [Google Scholar] [CrossRef]
- Ray, M.; Ramasubramanian, V.; Anil, R. Applications of time series intervention modelling for modelling and forecasting cotton yield. Stat. Appl. 2014, 12, 61–70. [Google Scholar]
- Ramasubramanian, V.; Ray, M. Power computation-based performance assessment of ARIMA intervention modelling. J. Indian Soc. Agric. Stat. 2019, 73, 233–242. [Google Scholar]
- Jeffrey, E.J.; Kyner, E. ARIMA modelling with intervention to forecast and analyse Chinese stock prices. Int. J. Eng. Bus. Manag. 2011, 3, 53–58. [Google Scholar]
- Corchuelo Martínez-Azúa, B.; López-Salazar, P.; Sama-Berrocal, C. Impact of the COVID-19 Pandemic on Agri-Food Companies in the Region of Extremadura (Spain). Agronomy 2021, 11, 971. [Google Scholar] [CrossRef]
- Di Marcantonio, F.; Twum, E.K.; Russo, C. COVID-19 Pandemic and Food Waste: An Empirical Analysis. Agronomy 2021, 11, 1063. [Google Scholar] [CrossRef]
- Zhang, G.P.; Patuwo, E.; Hu, Y.M. Forecasting with Artificial Neural Networks: The State of the Art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Rathod, S.; Mishra, G.C. Statistical models for forecasting Mango and Banana Yield of Karnataka, India. J. Agric. Sci. Technol. 2018, 20, 803–816. Available online: https://jast.modares.ac.ir/article-23-19768-en.html (accessed on 10 September 2021).
- Niazkar, H.R.; Niazkar, M. Application of artificial neural networks to predict the COVID-19 outbreak. Glob. Health Res. Policy 2020, 5, 50. [Google Scholar] [CrossRef]
- Hu, Z.; Ge, Q.; Li, S.; Boerwinkle, E.; Jin, L.; Xiong, M. Forecasting and Evaluating Multiple Interventions for COVID-19 Worldwide. Front. Artif. Intell. 2020, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Bejo, K.S.; Mustaffha, S.; Ismail, I.W. Application of Artificial Neural Network in predicting the Crop Yield: A review. J. Food Sci. Eng. 2014, 4, 1–9. [Google Scholar]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef]
- Huang, G.B. An Insight into Extreme Learning Machines: Random Neurons Random Features and Kernels. Cogn. Comput. 2014, 6, 376–390. [Google Scholar] [CrossRef]
- Huang, G.B. What are Extreme Learning Machines? Filling the Gap between Frank Rosenblatt’s Dream and Jhon von Neumann’s Puzzle. Cogn. Comput. 2015, 7, 263–278. [Google Scholar] [CrossRef]
- Ding, S.; Xinzheng, X.; Ru, N. Extreme learning machine and its applications. Neural Comput. Appl. 2014, 25, 549–556. [Google Scholar] [CrossRef]
- Chitikela, G.; Admala, M.; Ramalingareddy, V.K.; Bandumula, N.; Ondrasek, G.; Sundaram, R.M.; Rathod, S. Artificial-Intelligence Baes Time Series Intervention Models to Assess the Impact of the COVID-19 Pandemic on Tomato Supply and Prices in Hyderabad, India. Agronomy 2021, 11, 1878. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econ. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stats. 1995, 13, 253–263. Available online: http://www.jstor.org/stable/1392185. (accessed on 10 September 2021).
- Mrinmoy, R.; Anil, R.; Singh, K.N.; Ramasubramanian, V.; Amrender, K. Technology forecasting using time series intervention based trend impact analysis for wheat yield scenario in India. Technol. Forecast. Soc. Chang. 2017, 118, 128–133. [Google Scholar] [CrossRef]
- Ismail, Z.; Suhartono, S.; Yahaya, A.; Efend, R. Intervention model for analysing the Impact of Terrorism to Tourism Industry. J. Math. Stat. 2009, 5, 322–329. [Google Scholar]
- Omolola, M.A.; Joel, O.B.; Abiodum, M.A.; Abubeker, H.; Christina, M.B.; Daniel, D.; Eyob, T. Application of Artificial Neural Network for Predicting Maize Production in South Africa. Agronomy 2019, 11, 1145. [Google Scholar]
- Rathod, S.; Mishra, G.; Singh, K.N. Hybrid time series models for forecasting banana production in Karnataka state, India. J. Indian Soc. Agric. Stat. 2017, 71, 193–200. [Google Scholar]
- Kurumatani, K. Time Series Forecasting of Agricultural Product Prices Based on Recuurrent Neural Network and its Evaluation method. SN Appl. Sci. 2020, 2, 1434. [Google Scholar] [CrossRef]
- Zhang, G.P. Time Series Forecasting using a Hybrid ARIMA and Neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Alam, W.; Ray, M.; Kumar, R.R.; Sinha, K.S.; Rathod, S.; Singh, K.N. Improved ARIMAX modal based on ANN and SVM approaches for forecasting rice yield using weather variables. Indian J. Agric. Sci. 2018, 88, 1909–1913. [Google Scholar]
- Alam, W.; Sinha, K.; Kumar, R.R.; Ray, M.; Rathod, S.; Singh, K.N.; Arya, P. Hybrid linear time series approach for long term forecasting of crop yield. Indian J. Agric. Sci. 2018, 88, 1275–1279. [Google Scholar]
- Harini, S.; Nathan, H.; Jhonson, A.; Anthony, L.C.; Peter, S.; Marzyeh, G. Clinical intervention prediction understanding with deep neural networks. In Proceedings of the 2nd Machine Learning for Healthcare Conference, PMLR, Boston, MA, USA, 19–20 August 2017; Volume 68, pp. 322–337. Available online: https://arxiv.org/abs/1705.08498v1 (accessed on 11 April 2022).
- Rathod, S.; Yerram, S.; Arya, P.; Katti, G.; Rani, J.; Padmakumari, A.P.; Somasekhar, N.; Padmavathi, C.; Ondrasek, G.; Amdan, S.; et al. Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning pproaches. Agronomy 2022, 12, 22. [Google Scholar] [CrossRef]
- Rathod, S.; Saha, A.; Patil, R.; Ondrasek, G.; Gireesh, C.; Anantha, M.S.; Rao, D.V.K.N.; Bandumula, N.; Senguttuvel, P.; Swarnaraj, A.K.; et al. Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management. Agronomy 2021, 11, 2502. [Google Scholar] [CrossRef]
- Gorlapalli, A.; Kallakuri, S.; Sreekanth, P.D.; Patil, R.; Bandumula, N.; Ondrasek, G.; Admala, M.; Gireesh, C.; Anantha, M.S.; Parmar, B.; et al. Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models. Sustainability 2022, 14, 6690. [Google Scholar] [CrossRef]
- Saha, A.; Singh, K.N.; Ray, M.; Rathod, S. A hybrid spatio-temporal modelling: An application to space-time rainfall forecasting. Theor. Appl. Climatol. 2020, 142, 1271–1282. [Google Scholar] [CrossRef]
Mean | 33.79 |
Median | 33.84 |
Mode | 33.78 |
Standard Deviation | 0.65 |
Kurtosis | 0.49 |
Skewness | −0.70 |
Range | 3.68 |
Minimum | 31.60 |
Maximum | 35.28 |
CV(%) | 1.91 |
Sample | Dimension (m) | Rice Price (INR/kg) |
---|---|---|
eps (1) | m = 2 | 16.179 (p < 0.0001) |
m = 3 | 20.1867 (p < 0.0001) | |
eps (2) | m = 2 | 8.1075 (p < 0.0001) |
m = 3 | 8.6064 (p < 0.0001) | |
eps (3) | m = 2 | 5.0122 (p < 0.0001) |
m = 3 | 4.3058 (p < 0.0001) | |
eps (4) | m = 2 | 6.2164 (p < 0.0001) |
m = 3 | 5.3165 (p < 0.0001) |
Model | Parameters | Estimation | S.E. | Z Value | p Value | Model Fitting | Box–Pierce Non-Correlation Test | ||
---|---|---|---|---|---|---|---|---|---|
Original | Residuals | ||||||||
ARIMA (1,1,1) | AR1 | 0.14 | 0.093 | 1.4676 | 0.1422 | Log-likelihood | −147.63 | = 26.73 (p < 0.0001) | = 0.28 (p = 0.599) |
MA1 | 0.89 | 0.047 | −18.71 | p < 0.0001 | AIC | 301.26 | |||
BIC | 310.73 | ||||||||
ARIMA Int (2,0,1) | AR1 | 1.05 | 0.130 | 8.11 | p < 0.0001 | Log−likelihood | −146.56 | = 0.51 (p < 0.0001) | = 0.0021 (p = 0.963) |
AR2 | −0.12 | 0.100 | −8.25 | p < 0.0001 | |||||
MA1 | −0.83 | 0.100 | −8.24 | p < 0.0001 | AIC | 302.85 | |||
Impact (w) | 0.92 | 0.59 | 1.56 | 0.060 | BIC | 318.65 |
Model Specifications | ANN | ANN Int |
---|---|---|
Input Lag | 2 | 2 |
Dependent/Output Variable | 1 | 1 |
Hidden Layers | 1 | 1 |
Hidden Nodes | 5 | 5 |
Exogenous Variables | 0 | 1 |
Model | 2:5S:1L | 2:5S:1L |
Box–Pierce Non-Correlation test for residuals |
Specifications | ELM | ELM Intervention |
---|---|---|
Input lags | 6 | 6 |
Exogenous variable | 0 | 1 |
Hidden nodes | 4 | 4 |
Combined operator | Median | Median |
Penalty estimation | LASSO | LASSO |
Network repetition | 20 | 20 |
Box–Pierce Non-Correlation test for residuals |
ARIMA | ARIMA_Int | ANN | ANN_Int | ELM | ELM_Int | |
---|---|---|---|---|---|---|
Training | 1.29 | 1.28 | 0.85 | 0.70 | 0.58 | 0.45 |
Testing | 1.01 | 1.19 | 1.11 | 0.92 | 1.01 | 0.82 |
Rice Price | ARIMA | ARIMA_Int | ANN | ANN_Int | ELM | ELM_Int | |
---|---|---|---|---|---|---|---|
24 June 2020 | 34.73 | 34.34 | 34.23 | 34.62 | 34.15 | 34.36 | 34.29 |
25 June 2020 | 34.58 | 34.30 | 34.17 | 34.37 | 34.27 | 34.23 | 34.27 |
26 June 2020 | 34.68 | 34.30 | 34.15 | 34.41 | 34.55 | 34.20 | 34.27 |
27 June 2020 | 33.70 | 34.30 | 34.13 | 33.24 | 33.28 | 34.18 | 34.13 |
28 June 2020 | 33.57 | 34.30 | 34.12 | 34.03 | 34.03 | 34.19 | 33.91 |
29 June 2020 | 34.31 | 34.30 | 34.11 | 33.95 | 33.93 | 34.37 | 34.34 |
30 June 2020 | 34.33 | 34.30 | 34.10 | 33.99 | 33.96 | 34.39 | 34.34 |
MAPE | 1.01 | 1.19 | 1.11 | 0.92 | 1.01 | 0.82 |
A1, A2 | A1, A3 | A1, A4 | A1, A5 | A1, A6 | A2, A3 | A2, A4 | A2, A5 | |
Statistics | 0.295 | −0.533 | −1.783 | 7.918 | 7.834 | −0.641 | −1.891 | 7.413 |
Probability | 0.769 | 0.596 | 0.077 | <0.0001 | <0.0001 | 0.523 | 0.060 | <0.0001 |
A2, A6 | A3, A4 | A3, A5 | A3, A6 | A4, A5 | A4, A6 | A5, A6 | ||
Statistics | 7.431 | −1.557 | 7.383 | 7.582 | 7.429 | 7.549 | 4.199 | |
Probability | <0.0001 | 0.121 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, S.; Chitikela, G.; Bandumula, N.; Ondrasek, G.; Ravichandran, S.; Sundaram, R.M. Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches. Agronomy 2022, 12, 2133. https://doi.org/10.3390/agronomy12092133
Rathod S, Chitikela G, Bandumula N, Ondrasek G, Ravichandran S, Sundaram RM. Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches. Agronomy. 2022; 12(9):2133. https://doi.org/10.3390/agronomy12092133
Chicago/Turabian StyleRathod, Santosha, Gayatri Chitikela, Nirmala Bandumula, Gabrijel Ondrasek, Sundaram Ravichandran, and Raman Meenakshi Sundaram. 2022. "Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches" Agronomy 12, no. 9: 2133. https://doi.org/10.3390/agronomy12092133
APA StyleRathod, S., Chitikela, G., Bandumula, N., Ondrasek, G., Ravichandran, S., & Sundaram, R. M. (2022). Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches. Agronomy, 12(9), 2133. https://doi.org/10.3390/agronomy12092133