Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Measurements
2.4. Data Analysis
Total N output = crop N uptake + 0–60cm soil Nmin after harvest + estimated N losses.
3. Results
3.1. Soil organic Carbon, Total Nitrogen, and Other Chemical Parameters
3.2. Grain Yield and Nitrogen Productivity
3.3. Dry Matter Accumulation and Nitrogen Uptake
3.4. Patterns of Stem Number and Weight of Individual Plants
3.5. Apparent N Balance and N Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Ying, H.; Chen, M.; Bai, J.; Xue, Y.; Yin, Y.; William, D.; Yang, Y.; Bai, Z.; Du, M.; et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2021, 2, 426–433. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, Y.; Wang, Y.; Tian, X.; Ying, H.; Zhang, Q.; Xue, Y.; Oenema, O.; Li, S.; Zhou, F.; et al. Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs. Nat. Food 2022, 3, 1031–1039. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Shang, Y.; Liu, D.; Liesack, W.; Cui, Z.; Peng, J.; Zhang, F. Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity. Plant Soil. 2021, 470, 21–34. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Sun, Z.; Li, F.; Hou, R.; Li, J.; Ouyang, Z.; Li, B.; Cao, C. Changes and controlling factors of cropland soil organic carbon in North China Plain over a 30-year period. Plant Soil 2016, 403, 437–453. [Google Scholar] [CrossRef]
- Mulder, V.; Lacoste, M.; Richer-de-Forges, A.; Martin, M.; Arrouays, D. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma 2016, 263, 16–34. [Google Scholar] [CrossRef]
- Poffenbarger, H.; Barker, D.; Helmers, M.; Miguez, F.; Olk, D.; Sawyer, J. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.; Muir, J. Dairy manure compost improves soil and increases tall wheatgrass yield. Agron. J. 2006, 98, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- State Statistics Bureau of China. 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 10 October 2022).
- Racz, I.; Hirişcău, D.; Berindean, I.; Kadar, R.; Muntean, E.; Tritean, N.; Russu, F.; Ona, A.; Muntean, L. The Influence of flag leaf removal and its characteristics on main yield components and yield quality indices on wheat. Agronomy 2022, 12, 2545. [Google Scholar] [CrossRef]
- Miralles, D.; Slafer, G. Sink limitations to yield in wheat: How could it be reduced? J. Agric. Sci. 2007, 145, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Sreenivasulu, N.; Schnurbusch, T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 2012, 17, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Duggan, B.; Richards, R.; van Herwaarden, A.; Fettell, N. Agronomic evaluation of a tiller inhibition gene (tin) in wheat. I. Effect on yield, yield components, and grain protein. Aust. J. Agric. Res. 2005, 56, 169–178. [Google Scholar] [CrossRef]
- Lu, D.; Lu, F.; Pan, J.; Cui, Z.; Zou, C.; Chen, X.; He, M.; Wang, Z. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res. 2015, 171, 157–164. [Google Scholar] [CrossRef]
- Cassman, K.; Dobermann, A.; Walters, D.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Peng, J.; Liu, P.; Bei, Q.; Rensing, C.; Li, Y.; Yuan, H.; Liesack, W.; Zhang, F.; Cui, Z. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 2021, 785, 147329. [Google Scholar] [CrossRef]
- Qiu, S.; Ju, X.; Ingwersen, J.; Guo, Z.; Stange, C.F.; Bisharat, R.; Streck, T.; Chistie, P.; Zhang, F. Role of carbon substrates added in the transformation of surplus nitrate to organic nitrogen in a calcareous soil. Pedosphere 2013, 23, 205–212. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Romheld, V.; Horlacher, D.; Schulz, R.; Boning-Zilkens, M. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutr. Cycl. Agroecosys. 2006, 74, 91–98. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Miao, Y.; Li, F.; Zhang, F.; Li, J.; Ye, Y.; Yang, Z.; Zhang, Q.; Liu, C. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China plain. Agron. J. 2008, 100, 1527–1534. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Mi, G.; Chen, F.; Li, F.; Chen, X. Interaction between genotypic difference and nitrogen management strategy in determining nitrogen use efficiency of summer maize. Plant Soil. 2009, 317, 267–276. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Dou, Z.; Li, J. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res. 2010, 116, 140–146. [Google Scholar] [CrossRef]
- Cui, Z.; Yue, S.; Wang, G.; Zhang, F.; Chen, X. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environ. Sci. Technol. 2013, 47, 6015–6022. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Till. Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Oelofse, M.; Markussen, B.; Knudsen, L.; Schelde, K.; Olesen, J.; Jensen, L.; Bruun, S. Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. Eur. J. Agron. 2015, 66, 62–73. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A. Quantification of the effect of soil organic-matter content on soil productivity. Soil Sci. Soc. Am. J. 1994, 58, 185–193. [Google Scholar] [CrossRef]
- Diaz-Zorita, M.; Duarte, G.; Grove, J. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Tillage Res. 2002, 65, 1–18. [Google Scholar] [CrossRef]
- Edmeades, D. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Berry, P.; Spink, J.; Foulkes, M.; Wade, A. Quantifying the contributions and losses of dry matter from non-surviving shoots in four cultivars of winter wheat. Field Crops Res. 2003, 80, 111–121. [Google Scholar] [CrossRef]
- Mason, H.; Spaner, D. Competitive ability of wheat in conventional and organic management systems: A review of the literature. Can. J. Plant Sci. 2006, 86, 333–343. [Google Scholar] [CrossRef]
- Habteselassie, M.; Stark, J.; Miller, B.; Thacker, S.; Norton, J. Gross nitrogen transformations in an agricultural soil after repeated dairy-waste application. Soil Sci. Soc. Am. J. 2006, 70, 1338–1348. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Agron. Sustain. Dev. 2011, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Petraityte, D.; Ceseviciene, J.; Arlauskiene, A.; Slepetiene, A.; Skersiene, A.; Gecaite, V. Variation of soil nitrogen, organic carbon, and waxy wheat yield using liquid organic and mineral fertilizers. Agriculture 2022, 12, 2016. [Google Scholar] [CrossRef]
- Álvaro, F.; Isidro, J.; Villegas, D.; GarcÍa del Moral, L.; Royo, C. Breeding effects on grain filling, biomass partitioning and remobilization in Mediterranean durum wheat. Agron. J. 2008, 100, 361–370. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Ma, L.; Jin, S.; Ma, W.; Velthof, G.; Oenema, O.; Liu, L.; Chadwick, D.; Zhang., F. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 2016, 50, 13409–13418. [Google Scholar] [CrossRef] [Green Version]
- David, C.; Jia, W.; Tong, Y.; Yu, G.; Shen, Q.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agr. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Barrett, G.; Alexander, P.; Robinson, J.; Bragg, N. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Szajdak, L.; Jezierski, A.; Wegner, K.; Meysner, T.; Szczepanski, M. Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules 2020, 25, 2587. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.; Silva, C.; Akashi, K.; Mastrolonardo, G.; Miguel, M.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agriv. 2020, 7, 15. [Google Scholar] [CrossRef]
Year | Treatments | SOC | TN | C/N | Olsen-P | Available-K |
---|---|---|---|---|---|---|
mg kg–1 | mg kg–1 | mg kg–1 | mg kg–1 | |||
2014 | Control (EM) | 8.1 ± 0.1b | 1.0 ± 0.1b | 8.1 ± 0.1b | 5.3 ± 0.4b | 135 ± 8b |
Manure | 11.0 ± 0.3a | 1.2 ± 0.1a | 9.1 ± 0.1a | 23.0 ± 2.1a | 246 ± 3a | |
2017 | Control | 8.1 ± 0.1c | 1.1 ± 0.1b | 7.4 ± 0.4c | 7.2 ± 0.2c | 175 ± 11c |
EM | 15.4 ± 0.4a | 1.6 ± 0.1a | 9.6 ± 0.5a | 12.5 ± 0.5b | 204 ± 5b | |
Manure | 12.0 ± 1.0b | 1.4 ± 0.1a | 8.9 ± 0.4b | 30.6 ± 3.7a | 373 ± 33a |
Year | Treatment | Before Sowing (kg ha–1) | GS30 (kg ha–1) | Total N Rate (kg ha–1) |
---|---|---|---|---|
2014–2015 | CK | 90 | 120 | 210 |
Manure | 90 | 120 | 210 | |
EM | 90 | 120 | 210 | |
2015–2016 | CK | 90 | 67 | 157 |
Manure | 90 | 30 | 120 | |
EM | 90 | 30 | 120 | |
2016–2017 | CK | 30 | 157 | 187 |
Manure | 30 | 77 | 107 | |
EM | 30 | 56 | 86 | |
Average | CK | 70 | 114 | 184 |
Manure | 70 | 76 | 146 | |
EM | 70 | 69 | 139 |
Yield (Mg ha–1) | Spikes (m–2) | Grains (Spike–1) | Thousand-Kernel Weight (g) | N Productivity (kg kg–1) | |
---|---|---|---|---|---|
Treatments (T) | |||||
Control | 7.7 ± 0.5 | 559 ± 35 | 26.4 ± 2.0 | 39.5 ± 2.1 | 20.5 ± 1.4 |
Manure | 9.2 ± 0.4 | 758 ± 42 | 31.3 ± 0.4 | 37.2 ± 1.7 | 23.6 ± 0.6 |
EM | 9.1 ± 0.6 | 710 ± 54 | 32.1 ± 1.0 | 38.1 ± 1.6 | 23.6 ± 1.0 |
LSD0.05 | 1.0 | 91 | 3.5 | 2.1 | 1.3 |
Year (Y) | |||||
2015 | 8.6 ± 0.5 | 716 ± 28 | 30.3 ± 0.4 | 33.7 ± 0.3 | - |
2016 | 7.7 ± 0.4 | 582 ± 35 | 30.1 ± 2.4 | 40.6 ± 0.7 | 19.3 ± 1.1 |
2017 | 9.7 ± 0.4 | 741 ± 87 | 30.0 ± 2.4 | 40.1 ± 0.7 | 25.9 ± 1.7 |
LSD0.05 | 0.8 | 102 | 2.6 | 1.9 | 1.5 |
T × Y | NS | ** | *** | NS | NS |
Year | Treatment | Aboveground Dry Matter Accumulation (Mg ha–1) | LAI | ||||||
---|---|---|---|---|---|---|---|---|---|
GS23 | GS30 | GS61 | GS93 | GS23 | GS30 | GS61 | GS75 | ||
Treatments (T) | Control | 0.37 ± 0.17 | 3.17 ± 0.20 | 6.63± | 14.5± | 0.60 ± 0.04 | 3.43 ± 1.02 | 3.15 ± 0.61 | 2.16 ± 0.63 |
Manure | 0.50 ± 0.12 | 5.11 ± 0.24 | 9.65± | 18.0± | 1.10 ± 0.06 | 5.78 ± 0.55 | 5.10 ± 0.65 | 3.29 ± 1.10 | |
EM | 0.51 ± 0.04 | 4.57± | 9.58± | 18.3± | 0.91 ± 0.01 | 5.50 ± 0.60 | 5.03 ± 0.65 | 3.09 ± 0.92 | |
LSD0.05 | 0.14 | 1.18 | 2.99 | 2.19 | 0.17 | 0.81 | 0.90 | 1.28 | |
Year (Y) | 2015 | 0.73 ± 0.03 | 5.92± | 12.13± | 18.8± | - | 4.97 ± 0.87 | 4.16 ± 0.47 | - |
2016 | 0.43 ± 0.28 | 4.9± | 9.15± | 13.8± | - | 4.52 ± 0.91 | 4.27 ± 0.80 | 1.95 ± 0.22 | |
2017 | 0.66 ± 0.18 | 5.35± | 11.04± | 18.5± | 0.84 ± 0.15 | 5.94 ± 0.61 | 5.54 ± 0.82 | 3.73 ± 0.48 | |
LSD0.05 | 0.15 | 0.67 | 3.31 | 2.49 | - | 1.19 | 1.24 | 0.37 | |
T × Y | * | * | * | NS | - | NS | NS | NS |
CK | Manure | EM | |
---|---|---|---|
2015–2016 | |||
A. Total N input | |||
1. Chemical N fertilizer rate | 157 | 120 | 120 |
2. 0–60 cm soil Nmin before planting | 168 | 187 | 196 |
3. Apparent N mineralization | 66 | 91 | 85 |
B. N output | |||
4. Crop N uptake | 162 | 213 | 197 |
5. 0–60 cm soil Nmin after harvest | 202 | 164 | 183 |
6. Estimated N losses | 27 | 21 | 21 |
2016–2017 | |||
A. Total N input | |||
1. Chemical N fertilizer rate | 187 | 107 | 86 |
2. 0–60 cm soil Nmin before planting | 156 | 192 | 185 |
3. Apparent N mineralization | 29 | 75 | 104 |
B. Total N output | |||
4. Crop N uptake | 218 | 267 | 277 |
5. 0–60 cm soil Nmin after harvest | 121 | 88 | 81 |
6. Estimated N losses | 33 | 19 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Miao, Q.; Zhang, W.; Wang, H.; Wang, W.; Xue, Y.; Qi, S.; Cui, Z. Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity. Agronomy 2023, 13, 198. https://doi.org/10.3390/agronomy13010198
Pan J, Miao Q, Zhang W, Wang H, Wang W, Xue Y, Qi S, Cui Z. Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity. Agronomy. 2023; 13(1):198. https://doi.org/10.3390/agronomy13010198
Chicago/Turabian StylePan, Junxiao, Qi Miao, Wenjie Zhang, Hongye Wang, Weidong Wang, Yanfang Xue, Shijun Qi, and Zhenling Cui. 2023. "Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity" Agronomy 13, no. 1: 198. https://doi.org/10.3390/agronomy13010198
APA StylePan, J., Miao, Q., Zhang, W., Wang, H., Wang, W., Xue, Y., Qi, S., & Cui, Z. (2023). Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity. Agronomy, 13(1), 198. https://doi.org/10.3390/agronomy13010198