CFD Simulation and Uniformity Optimization of the Airflow Field in Chinese Solar Greenhouses Using the Multifunctional Fan–Coil Unit System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Greenhouse
2.2. Experimental Data Collection
2.3. CFD Numerical Simulation Method
2.3.1. Fundamental Control Equations
2.3.2. Computing Domain and Mesh Dividing
2.3.3. Boundary Conditions and Numerical Solution Process
2.4. Evaluation Indexes for CFD Model Validation
2.5. Optimization Program for Simulation Models
2.5.1. Optimization Factors and Methodologies
2.5.2. Optimization Monitoring Point Arrangement
2.5.3. Evaluation Criteria for Optimized Schemes
3. Model Validation and Optimization Scheme Analysis
3.1. Model Validation
3.2. Analysis of Velocity Distributions before Optimization
3.3. Analysis of the Optimized Velocity Distribution
3.3.1. Fan Tilt Angle Optimization
3.3.2. Fan Swing Angle Optimization
3.3.3. Fan Height Optimization from the Ground
3.3.4. Baffle Shape Optimization of the Fan Outlet
4. Results and Discussion
4.1. Analysis of Coefficient of Variation
4.2. Analysis of Disturbance Characteristics of the Optimized System Layout
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, G.; Chen, Q.; Xu, H. Passive solar energy utilization: A review of envelope material selection for Chinese solar greenhouses. Sustain. Energy Technol. Assess. 2022, 50, 101833. [Google Scholar] [CrossRef]
- Cao, K.; Xu, H.; Zhang, R.; Xu, D.; Yan, L.; Sun, Y.; Xia, L.; Zhao, J.; Zou, Z.; Bao, E. Renewable and sustainable strategies for improving the thermal environment of Chinese solar greenhouses. Energy Build. 2019, 202, 109414. [Google Scholar] [CrossRef]
- Kitaya, Y.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air velocity on photosynthesis of plant canopies under elevated CO2 levels in a plant culture system. Adv. Space Res. 2004, 34, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 2003, 31, 177–182. [Google Scholar] [CrossRef]
- Li, H.; Ji, D.; Hu, X.; Xie, T.; Song, W.; Tian, S. Comprehensive evaluation of combining CFD simulation and entropy weight to predict natural ventilation strategy in a sliding cover solar greenhouse. Int. J. Agric. Biol. Eng. 2021, 14, 213–221. [Google Scholar] [CrossRef]
- Kimura, K.; Yasutake, D.; Miyoshi, Y.; Yamanami, A.; Daiou, K.; Ueno, H.; Kitano, M. Leaf boundary layer conductance in a tomato canopy under the convective effect of circulating fans in a greenhouse heated by an air duct heater. Environ. Control Biol. 2016, 54, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Yasutake, D.; Yu, X.; Asano, T.; Ishikawa, M.; Mori, M.; Kitano, M.; Ishikawa, K. Control of greenhouse humidity and airflow with fogging and circulation systems and its effect on leaf conductance in cucumber plants. Environ. Control Biol. 2014, 52, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.N.; Duncan, G.A. Effectiveness of Recommended Greenhouse Air Circulation Systems. Trans. ASAE 1974, 17, 0371–0374. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F.; Tan, D.; Shen, Z.; Zhang, L.; Ai, Q. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl. Energy 2015, 141, 106–118. [Google Scholar] [CrossRef]
- Fernandez, J.E.; Bailey, B.J. The Influence of Fans on Environmental Conditions in Greenhouses. J. Agric. Eng. Res. 1994, 58, 201–210. [Google Scholar] [CrossRef]
- Ishii, M.; Okushima, L.; Moriyama, H.; Furihata, Y. Influence of Circulation Fans on the Distribution of Air Temperature and Air Velocity in a Greenhouse. Shokubutsu Kankyo Kogaku 2012, 24, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Tokairin, T.; Sumi, A.; Shimomura, N.; Kumazaki, T.; Suzuki, K.; Saigusa, M. Effect of Air Circulator on Airflow Distributions in Greenhouse with a Pad-Fan Evaporative Cooling System. Shokubutsu Kankyo Kogaku 2017, 29, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Tokairin, T.; Sumi, A.; Kumazaki, T.; Suzuki, K. Effect of airflow control on temperature distributions in a greenhouse with a fan-and-pad evaporative cooling system. Acta Hortic. 2018, 1227, 115–122. [Google Scholar] [CrossRef]
- Baek, M.-S.; Kwon, S.-Y.; Lim, J.-H. Improvement of uniformity in cultivation environment and crop growth rate by hybrid control of air flow devices. J. Cent. South Univ. 2015, 22, 4702–4708. [Google Scholar] [CrossRef]
- Baek, M.-S.; Kwon, S.-Y.; Lim, J.-H. Improvement of the Crop Growth Rate in Plant Factory by Promoting Air Flow inside the CultivationImprovement of the Crop Growth Rate in Plant Factory by Promoting Air Flow inside the Cultivation. Int. J. Smart Home 2016, 10, 63–74. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 2015, 138, 291–301. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, X.; Li, L.; Chen, J.; Lu, Q. CFD Simulation for Effect of Circulation Fans Arrangement on Flow Field in Greenhouse. J. Agric. Mech. Res. 2018, 41, 180–185. (In Chinese) [Google Scholar]
- Chalill, S.M.; Chowdhury, S.; Karthikeyan, R. Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study. Agriculture 2021, 11, 658. [Google Scholar] [CrossRef]
- Duan, M.; Yang, F.; Wang, R.; Han, F.; Diao, L.; Xia, S. The Research of the Temperature in Solar Greenhouse in Winter. J. Agric. Mech. Res. 2014, 36, 54–57. (In Chinese) [Google Scholar]
- Wang, R.; Duan, M.; Yang, F.; Yao, Y.; Zhang, W.; Li, Y. Study on temperature optimization in solar greenhouse in winter. J. Northeast Agric. Univ. 2014, 45, 101–106. (In Chinese) [Google Scholar]
- Zhuang, Y.; Zhang, Y.; Zhao, S.; Song, W.; Ma, C.; Chen, X.; Zhang, T. Air-circulator effects on the greenhouse environment and tomato photosynthetic parameters in a Chinese solar greenhouse. Acta Hortic. 2018, 1227, 197–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Shumei, Z.; Wang, Q.; Ren, X. Effects of Air Circulator on Environmental Parameter and Tomato Growth in Solar Greenhouse. China Veg. 2016, 9, 52–57. [Google Scholar]
- Li, M.; Geng, R.; Song, W.; Wang, P.; Li, H.; Wang, X. Performances of Thermal Collecting and Releasing System Developed with Fan-coil Units in Plastic Tunnel Covered with Thermal Blanket. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 371–378. [Google Scholar]
- He, X.; Wang, P.; Song, W.; Wu, G.; Ma, C.; Li, M. Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse. Renew. Energy 2022, 198, 1148–1161. [Google Scholar] [CrossRef]
- He, X.; Wang, P.; Li, M.; Song, W. Parameters Optimization of Greenhouse Air-cooled Condenser Heat Collection and Release System by Response Surface Method. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 315–323. [Google Scholar]
- Zong, C.; Wang, P.; Chen, X.; Li, M.; He, X.; Wang, J.; Xu, D.; Song, W. Influences of air thermal energy utilization system with fan-coil units on the thermal and humid environment of multi-span tunnel in cold wave. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2021, 37, 214–221. [Google Scholar]
- Bournet, P.-E.; Rojano, F. Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Comput. Electron. Agric. 2022, 201, 107277. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, J.; Xiao, B.; Hu, H.; Cao, X.; Wang, X.; Zhang, L. Numerical Simulation and Wind Tunnel Test on the Wind-Induced Response of Three Typical Types of Greenhouse Main Structures. Agriculture 2022, 12, 1294. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M.; An, L. A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst. Eng. 2016, 147, 193–205. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosyst. Eng. 2022, 220, 73–86. [Google Scholar] [CrossRef]
- Posner, J.D.; Buchanan, C.R.; Dunn-Rankin, D. Measurement and prediction of indoor air flow in a model room. Energy Build. 2003, 35, 515–526. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Yue, X.; Liu, X.; Tian, S.; Li, T. Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation. PLoS ONE 2020, 15, e0239851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Improving Climate Uniformity and Energy Use Efficiency in Controlled Environment Agriculture. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2019. [Google Scholar]
- Yeo, U.-H.; Lee, S.-Y.; Park, S.-J.; Kim, J.-G.; Choi, Y.-B.; Kim, R.-W.; Shin, J.H.; Lee, I.-B. Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics. Agriculture 2022, 12, 903. [Google Scholar] [CrossRef]
- Bouhoun Ali, H.; Bournet, P.E.; Cannavo, P.; Chantoiseau, E. Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Comput. Electron. Agric. 2018, 149, 26–40. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.C.; Pouillard, J.B.; Fatnassi, H.; Grisey, A. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
Parameter | Boundary Conditions |
---|---|
Fan–coil units | The fan model |
Back wall | Nonslip wall |
Back roof | Nonslip wall |
Film | Nonslip wall |
Ground | Nonslip wall |
East and west walls | Symmetry |
Baffle | Nonslip wall |
Fixed plate | Nonslip wall |
Inlet and outlet of the fan–coil units | Interior |
Emulated Scenarios | Fan Tilt Angle (°) | Coefficient of Variation |
---|---|---|
Case 1 | +20 | 0.76 |
Case 2 | −2.5 | 0.56 |
Case 3 | −25 | 0.93 |
Case 4 | −47.5 | 0.64 |
Case 5 | −70 | 0.52 |
Emulated Scenarios | Fan Swing Angle (°) | Coefficient of Variation |
---|---|---|
Case 1 | 0 | 0.56 |
Case 2 | 15 | 0.72 |
Case 3 | 30 | 0.42 |
Case 4 | 45 | 0.58 |
Case 5 | 60 | 0.34 |
Emulated Scenarios | Fan Heights (m) | Coefficient of Variation |
---|---|---|
Case 1 | 2.5 | 0.38 |
Case 2 | 2.6 | 0.38 |
Case 3 | 2.7 | 0.37 |
Case 4 | 2.8 | 0.35 |
Case 5 | 2.9 | 0.34 |
Emulated Scenarios | Upper and Lower Opening Angle (°) | Left and Right Opening Angle (°) | Coefficient of Variation |
---|---|---|---|
Case 1 | 0 | 15 | 0.34 |
Case 2 | 0 | 30 | 0.43 |
Case 3 | 0 | 45 | 0.39 |
Case 4 | 0 | 60 | 0.33 |
Case 5 | 15 | 0 | 0.61 |
Case 6 | 15 | 15 | 0.48 |
Case 7 | 15 | 30 | 0.49 |
Case 8 | 15 | 45 | 0.48 |
Case 9 | 15 | 60 | 0.47 |
Case 10 | 30 | 0 | 0.80 |
Case 11 | 30 | 15 | 0.73 |
Case 12 | 30 | 30 | 0.69 |
Case 13 | 30 | 45 | 0.63 |
Case 14 | 30 | 60 | 0.58 |
Fan Height above the Ground (m) | Coefficient of Variation | |
---|---|---|
Empirical Scheme | Proposed Scheme | |
0.7 | 0.63 | 0.43 |
1.0 | 0.72 | 0.25 |
1.3 | 0.77 | 0.22 |
1.6 | 0.91 | 0.44 |
Average value | 0.76 | 0.33 |
Airflow Velocity (m/s) | Empirical Scheme (%) | Proposed Scheme (%) | ||||||
---|---|---|---|---|---|---|---|---|
Plane 1 | Plane 2 | Plane 3 | Plane 4 | Plane 1 | Plane 2 | Plane 3 | Plane 4 | |
<0.15 | 57.63 | 58.98 | 56.61 | 57.14 | 41.32 | 56.27 | 67.59 | 65.9 |
0.15–0.25 | 28.72 | 23.33 | 24.23 | 23.44 | 32.26 | 26.69 | 16.88 | 15.24 |
0.25–0.35 | 13.17 | 13.87 | 12.73 | 12.91 | 20.32 | 17.04 | 10.13 | 12.88 |
0.35–0.45 | 0.48 | 3.82 | 5.9 | 4.58 | 6.09 | 0 | 5.04 | 3.32 |
>0.45 | 0 | 0 | 0.53 | 1.93 | 0 | 0 | 0 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Li, H.; He, X.; Zong, C.; Song, W.; Zhao, S. CFD Simulation and Uniformity Optimization of the Airflow Field in Chinese Solar Greenhouses Using the Multifunctional Fan–Coil Unit System. Agronomy 2023, 13, 197. https://doi.org/10.3390/agronomy13010197
Lu J, Li H, He X, Zong C, Song W, Zhao S. CFD Simulation and Uniformity Optimization of the Airflow Field in Chinese Solar Greenhouses Using the Multifunctional Fan–Coil Unit System. Agronomy. 2023; 13(1):197. https://doi.org/10.3390/agronomy13010197
Chicago/Turabian StyleLu, Jiarui, He Li, Xueying He, Chengji Zong, Weitang Song, and Shumei Zhao. 2023. "CFD Simulation and Uniformity Optimization of the Airflow Field in Chinese Solar Greenhouses Using the Multifunctional Fan–Coil Unit System" Agronomy 13, no. 1: 197. https://doi.org/10.3390/agronomy13010197
APA StyleLu, J., Li, H., He, X., Zong, C., Song, W., & Zhao, S. (2023). CFD Simulation and Uniformity Optimization of the Airflow Field in Chinese Solar Greenhouses Using the Multifunctional Fan–Coil Unit System. Agronomy, 13(1), 197. https://doi.org/10.3390/agronomy13010197