Use of Biostimulants Obtained from Sewage Sludge for the Restoration of Soils Polluted by Diuron: Effect on Soil Biochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Experimental Biostimulants, Soil and Diuron
2.2. Incubation Layout and Soil Analysis
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the New Biostimulants
3.2. Soil Biochemical Properties and Microbial Community
3.3. Persistence of Diuron in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mailler, R.; Gasperi, J.; Chebbo, G.; Rocher, V. Priority and emerging pollutants in sewage sludge and fate during sludge treatment. Waste Manag. 2014, 34, 1217–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleiman, M.F.; Santanen, A.; Stoddard, F.L.; Mäkelä, P. Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 2012, 89, 211–1217. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, N.; Hamou, A.; Lousdad, A.; Al-Douri, Y. Physico-chemical characterization of sewage sludge and green waste for agricultural utilization. Environ. Technol. 2015, 13, 1–11. [Google Scholar] [CrossRef]
- Jing, X.; Yao, G.; Liu, D.; Liang, Y.; Luo, M.; Zhou, Z.; Wang, P. Effects of wastewater irrigation and sewage sludge applications on soil residues of chiral fungicide benalaxyl. Environ. Poll. 2017, 224, 1–6. [Google Scholar] [CrossRef]
- Melo, W.; Delarica, D.; Guedes, A.; Lavezzo, L.; Donha, R.; de Araujo, A.; de Melo, G.; Macedo, F. Ten years of application of sewage sludge on tropical soil. A balance sheet on agricultural crops and environmental quality. Sci. Total Environ. 2018, 643, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of urban sewage sludge amendment on agricultural soils parameters. Environ. Technol. Innov. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Rodríguez-Cruz, M.S.; Herrero-Hernández, E.; Ordax, J.M.; Marín-Benito, J.M.; Draoui, K.; Sánchez-Martin, M.J. Adsorption of pesticides by sewage sludge, grape marc, spent mushroom substrate and by amended soil. Intern. J. Environ. Anal. Chem. 2012, 92, 933–948. [Google Scholar] [CrossRef]
- Liang, Q.; Lei, M.; Chen, T.; Wang, X.; Yang, S. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil. J. Environ. Sci. 2014, 26, 1673–1680. [Google Scholar] [CrossRef]
- Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Díaz-López, M.; Bastida, F.; Tejada, M. Use of slaughterhouse sludge in the bioremediation of an oxyfluorfen-polluted soil. Int. J. Environ. Res. 2021, 15, 723–731. [Google Scholar] [CrossRef]
- Tejada, M.; Macías-Benítez, S.; Caballero, P.; Gómez, I.; Paneque, P.; Parrado, J. Bioremediation of an oxyfluorfen-polluted soil using biostimulants obtained for fermentation processes: Effects on biological properties. Appl. Soil Ecol. 2022, 170, 104270. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Morgado, B.; Gómez, I.; Parrado, J.; García-Martínez, A.M.; Aragón, C.; Tejada, M. Obtaining edaphic biostimulants/biofertilizers from sewage sludges. Effects on soil biological properties. Environ. Technol. 2015, 36, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer—Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Arja Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.L.; Mäkelä, P.S.A. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
- Pan, J.; Cai, H.; Zhang, Z.; Liu, H.; Li, R.; Mao, H.; Awasthi, M.K.; Nang, Q.; Zhai, L. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction. Biores. Technol. 2018, 270, 467–475. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Parrado, J. Degradation of chlorpyrifos using different biostimulants/biofertilizers: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2014, 84, 158–165. [Google Scholar] [CrossRef]
- Rodríguez-Morgado, B.; Caballero, P.; Paneque, P.; Gómez, I.; Parrado, J.; Tejada, M. Obtaining edaphic biostimulants/biofertilizers from sewage sludge using fermentative processes. Short-time effects on soil biochemical properties. Environ. Technol. 2019, 40, 399–406. [Google Scholar] [CrossRef]
- Coelho-Moreira, J.S.; Bracht, A.; de Souza, A.C.S.; Oliveira, R.F.; de Sa-Nakanishi, A.B.; de Souza, C.G.M.; Peralta, R.M. Degradation of diuron by Phanerochaete chrysosporium: Role of ligninolytic enzymes and cytochrome P450. BioMed Res. Int. 2013, 2013, 251354. [Google Scholar] [CrossRef] [Green Version]
- Fontecha-Cámara, M.A.; López-Ramón, M.V.; Pastrana-Martínez, L.M.; Moreno-Castilla, C. Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons. J. Hazard. Mater. 2008, 156, 472–477. [Google Scholar] [CrossRef]
- Huovinen, M.; Loikkanen, J.; Naarala, J.; Vahakangas, K. Toxicity of diuron in human cancer cells. Toxicol. Vitr. 2015, 29, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Feng, G.; Du, L.; Zeng, D. Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron contaminated soils. PLoS ONE 2017, 12, e0182556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egea, T.C.; da Silva, R.; Boscolo, M.; Rigonato, J.; Monteiro, D.A.; Grünig, D.; da Silva, F.H.; van der Wielen, F.; Helmus, R.; Parsons, J.R.; et al. Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 2017, 3, e00471. [Google Scholar] [CrossRef] [Green Version]
- Kadian, N.; Malik, A.; Satya, S.; Dureja, P. Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. J. Environ. Manag. 2012, 95, S199–S202. [Google Scholar] [CrossRef]
- Tejada, M.; Morillo, E.; Gómez, I.; Madrid, F.; Undabeytia, T. Effect of controlled release formulations of diuron and alachlor herbicides on the biochemical activity of agricultural soils. J. Hazard. Mater. 2017, 322, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M.F. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- Kumar, G.; Lal, S.; Soni, S.K.; Maurya, S.K.; Shukla, P.K.; Chaudhary, P.; Bhattacherjee, A.K.; Garg, N. Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front. Microbiol. 2022, 13, 891870. [Google Scholar] [CrossRef]
- Li, J.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.; Xiong, W.; Xu, L.; Wu, Y.; He, Z.; Li, X. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- SSEW. Soil Survey of England and Wales. Soil Survey Laboratory Methods; Techical Monograph 6; SSEW: Harpenden, UK, 1982. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Comm. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 192. [Google Scholar]
- García, C.; Hernandez, T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil. Sci. Plan. Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Montes de Oca-Vásquez, G.; Solano-Campos, F.; Vega-Baudrit, J.R.; López-Mondéjar, R.; Odriozola, I.; Vera, A.; Moreno, J.L.; Bastida, F. Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity. J. Hazard. Mater. 2020, 391, 122224. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Benítez, C. Effects of different organic wastes on soil biochemical properties and yield in an olive grove. Appl. Soil Ecol. 2020, 146, 103371. [Google Scholar] [CrossRef]
- Romero, E.; Fernández-Bayo, J.; Diaz, J.M.C.; Nogales, R. Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Appl. Soil Ecol. 2010, 44, 198–204. [Google Scholar] [CrossRef]
- Rubio-Bellido, M.; Madrid, F.; Morillo, E.; Villaverde, J. Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments. Sci. Total Environ. 2015, 502, 690–705. [Google Scholar] [CrossRef]
1. C: Control soil. Without BS and without diuron |
2. C+BS1: Soil amended with BS1 |
3. C+BS2: Soil amended with BS2 |
4. C+BS3: Soil amended with BS3 |
5. C+D: Soil contaminated with diuron |
6. C+D+BS1: Soil contaminated with diuron and amended with BS1 |
7. C+D+BS2: Soil contaminated with diuron and amended with BS2 |
8. C+D+BS3: Soil contaminated with diuron and amended with BS3 |
SS | BS1 | BS2 | BS3 | |
---|---|---|---|---|
Dry matter (%) | 5.3a ± 0.7 | 5.6a ± 0.3 | 5.6a ± 0.2 | 5.4a ± 0.2 |
pH | 6.4a ± 0.3 | 8.0b ± 0.2 | 8.0b ± 0.3 | 8.3b ± 0.2 |
Organic matter (g kg−1) | 477a ± 17 | 478a ± 12 | 475a ± 11 | 468a ± 19 |
N (g kg−1) | 29.2a ± 6.3 | 34.3a ± 4.7 | 31.4a ± 4.7 | 29.6a ± 5.2 |
P (g kg−1) | 10.9a ± 1.8 | 3.1b ± 0.8 | 11.7a ± 1.9 | 12.5a ± 1.9 |
K (g kg−1) | 5.8a ± 1.3 | 19.7b ± 4.1 | 6.0a ± 1.0 | 6.3a ± 1.5 |
S (g kg−1) | 14.9a ± 2.0 | 6.8b ± 1.5 | 18.4a ± 2.0 | 15.7a ± 1.8 |
Ca (g kg−1) | 41.0a ± 3.6 | 47.3a ± 4.4 | 45.9a ± 3.8 | 42.8a ± 2.7 |
Mg (g kg−1) | 6.6a ± 1.3 | 8.2a ± 1.1 | 6.9a ± 1.7 | 7.5a ± 1.2 |
Fe (mg kg−1) | 16.3a ± 1.9 | 15.5a ± 1.3 | 16.8a ± 1.1 | 18.1a ± 1.6 |
Cu (mg kg−1) | 322a ± 11 | 314b ± 2.1 | 318a ± 15 | 312a ± 10 |
Mn (mg kg−1) | 150a ± 6 | 91.4b ± 4.8 | 138a ± 4.6 | 131a ± 8 |
Zn (mg kg−1) | 79.5a ± 11.6 | 2.3b ± 0.7 | 71.7a ± 10.1 | 75.4a ± 9.8 |
Pb (mg kg−1) | 39.8a ± 7.9 | 0.88b ± 0.45 | 33.5a ± 5.7 | 36.5a ± 5.6 |
As (mg kg−1) | 4.1a ± 1.3 | 0.13b ± 0.06 | 3.8a ± 0.7 | 3.7a ± 0.5 |
Cd (mg kg−1) | 1.3a ± 0.6 | 0.17b ± 0.08 | 1.1a ± 0.3 | 1.2a ± 0.2 |
Protein molecular-weight distribution (Da) | ||||
>10,000 | 98.8a ± 1.3 | 22.8c ± 2.2 | 40.0b ± 2.1 | 42.8b ± 2.7 |
10,000–5000 | 0.0a ± 0.0 | 9.7b ± 1.1 | 15.6c ± 2.1 | 13.8c ± 1.6 |
5000–1000 | 1.2a ± 0.5 | 6.2b ± 1.2 | 11.8c ± 1.9 | 11.7c ± 1.3 |
1000–300 | 0.0a ± 0.0 | 2.0b ± 0.4 | 1.6b ± 0.4 | 2.0b ± 0.5 |
<300 | 0.0a ± 0.0 | 59.3c ± 4.7 | 31.0b ± 2.5 | 29.7b ± 3.2 |
Dehydrogenase Activity (µg INTF g−1 h−1) | ||||||
---|---|---|---|---|---|---|
2 | 6 | 10 | 20 | 35 | 55 | |
C | 3.4b ± 0.5 | 3.2b ± 0.7 | 3.0b ± 0.4 | 3.2b ± 0.3 | 3.4b ± 0.5 | 3.5b ± 0.4 |
C+BS1 | 23.5d ± 2.4 | 30.4d ± 3.1 | 21.3c ± 2.6 | 5.3b ± 1.1 | 4.2b ± 0.8 | 3.6b ± 0.2 |
C+BS2 | 11.3c ± 1.50 | 10.8c ± 1.9 | 4.9b ± 1.7 | 3.6b ± 0.4 | 3.6b ± 0.3 | 3.4b ± 0.5 |
C+BS3 | 9.30c ± 1.10 | 7.4bc ± 1.7 | 4.0b ± 1.2 | 3.4b ± 0.5 | 3.5b ± 0.5 | 3.5b ± 0.3 |
C+D | 1.9a ± 0.3 | 1.6a ± 0.2 | 1.3a ± 0.3 | 1.6a ± 0.4 | 1.7a ± 0.2 | 1.4a ± 0.2 |
C+D+BS1 | 17.2c ± 2.2 | 11.4c ± 1.6 | 8.31c ± 1.9 | 4.4b ± 1.8 | 3.3b ± 1,2 | 2.8ab ± 0.9 |
C+D+BS2 | 9.7c ± 1.5 | 5.2b ± 1.2 | 3.9b ± 1.1 | 2.6ab ± 0.7 | 2.4a ± 0.9 | 2.3a ± 0.3 |
C+D+BS3 | 7.3bc ± 1.9 | 3.1b ± 1.3 | 2.7ab ± 0.9 | 2.1a ± 0.5 | 2.2a ± 0.6 | 2.1a ± 0.6 |
β-glucosidase Activity (μmol PNP g−1 h−1) | ||||||
C | 0.57b ± 0.08 | 0.55b ± 0.05 | 0.58b ± 0.06 | 0.59b ± 0.05 | 0.55b ± 0.08 | 0.54b ± 0.07 |
C+BS1 | 1.70c± 0.3 | 2.6c ± 0.5 | 2.0c ± 0.3 | 0.98c ± 0.09 | 0.58b ± 0.09 | 0.59b ± 0.07 |
C+BS2 | 0.57b ± 0.05 | 0.55b ± 0.08 | 0.58b ± 0.09 | 0.56b ± 0.08 | 0.54b ± 0.07 | 0.55b ± 0.06 |
C+BS3 | 0.56b ± 0.05 | 0.54b ± 0.07 | 0.57b ± 0.08 | 0.57b ± 0.05 | 0.56b ± 0.06 | 0.57b ± 0.05 |
C+D | 0.34a ± 0.07 | 0.32a ± 0.10 | 0.34a ± 0.09 | 0.35a ± 0.08 | 0.32a ± 0.10 | 0.27a ± 0.09 |
C+D+BS1 | 1.1c ± 0.3 | 1.4c ± 0.06 | 0.98c ± 0.07 | 0.60b ± 0.09 | 0.50b ± 0.06 | 0.47b ± 0.04 |
C+D+BS2 | 0.45a ± 0.05 | 0.40a ± 0.04 | 0.40a ± 0.05 | 0.38a ± 0.04 | 0.31a ± 0.06 | 0.33a ± 0.05 |
C+D+BS3 | 0.43a ± 0.03 | 0.38a ± 0.05 | 0.41a ± 0.04 | 0.37a ± 0.04 | 0.37a ± 0.10 | 0.35a ± 0.06 |
Alkaline Phosphatase Activity (µmol PNP g−1 h−1) | ||||||
---|---|---|---|---|---|---|
2 | 6 | 10 | 20 | 35 | 55 | |
C | 3.3b ± 1.0 | 3.5b ± 1.2 | 3.4b ± 0.97 | 3.3b ± 1.1 | 3.1b ± 1.0 | 3.3b ± 1.1 |
C+BS1 | 7.3c ± 2.3 | 17.1d ± 3.5 | 10.6c ± 2.8 | 5.2 b± 2.0 | 3.8b ± 1.1 | 3.2b ± 1.0 |
C+BS2 | 3.1b ± 0.9 | 3.4b ± 1.0 | 3.4b ± 1.3 | 3.3b ± 1.0 | 3.2b ± 1.4 | 3.4b ± 0.9 |
C+BS3 | 3.2b ± 0.7 | 3.1b ± 0.8 | 3.5b ± 0.7 | 3.4b ± 1.3 | 3.4b ± 0.9 | 3.3b ± 1.3 |
C+D | 1.5a ± 0.7 | 1.8a ± 0.9 | 1.4a ± 0.5 | 1.4a ± 0.8 | 1.5a ± 0.7 | 1.3a ± 0.6 |
C+D+BS1 | 4.8b ± 1.8 | 8.6c ± 2.9 | 5.3b ± 1.7 | 4.2b ± 1.0 | 3.0b ± 0.6 | 2.4b ± 0.5 |
C+D+BS2 | 1.4a ± 0.3 | 1.6a ± 0.3 | 1.7a ± 0.4 | 1.4a ± 0.3 | 1.3a ± 0.2 | 1.4a ± 0.2 |
C+D+BS3 | 1.6a ± 0.4 | 1.5a ± 0.4 | 1.6a ± 0.3 | 1.3a ± 0.2 | 1.5a ± 0.4 | 1.5a ± 0.3 |
bacGram+ | bacGram− | Total Bacterial PLFA | Fungal PLFA | |
---|---|---|---|---|
C (2d) | 13.8b ± 3.5 | 2.5b ± 1.0 | 16.3b ± 4.8 | 1.5b ± 0.3 |
C (10d) | 13.4b ± 2.8 | 2.3b ± 0.94 | 15.7b ± 3.6 | 1.2b ± 0.2 |
C (55d) | 13.0b ± 2.9 | 2.6b ± 1.1 | 15.6b ± 4.1 | 1.4b ± 0.2 |
C+BS1 (2d) | 32.5c ± 3.3 | 5.2c ±1.9 | 37.5c ± 4.6 | 2.6c ± 0.3 |
C+BS1 (10d) | 27.3c ± 2.0 | 3.0b ± 1.6 | 30.3c ± 3.4 | 1.9b ± 0.3 |
C+BS1 (55d) | 13.8b ± 2.4 | 2.7b ± 1.2 | 16.5b ± 3.5 | 1.5b ± 0.4 |
C+BS2 (2d) | 21.3c ± 3.2 | 3.5b ± 1.3 | 24.8bc ± 4.2 | 2.0b ± 0.3 |
C+BS2 (10d) | 17.4b ± 2.6 | 2.9b ± 0.95 | 20.3b ± 3.5 | 1.8b ± 0.2 |
C+BS2 (55d) | 13.2b ± 2.1 | 2.2b ± 1.0 | 15.4b ± 3.3 | 1.5b ± 0.3 |
C+BS3 (2d) | 19.0b ± 2.3 | 3.1b ± 1.1 | 22.1b ± 3.5 | 2.0b ± 0.2 |
C+BS3 (10d) | 15.3b ± 2.0 | 2.6b ± 0.84 | 17.9b ± 2.1 | 1.7b ± 0.1 |
C+BS3 (55d) | 13.0b ± 2.3 | 2.2b ± 0.90 | 15.2b ± 2.5 | 1.4b ± 0.2 |
C+D (2d) | 6.5a ± 1.0 | 1.1a ± 0.1 | 7.6a ± 1.2 | 0.63a ± 0.12 |
C+D (10d) | 6.0a ± 1.7 | 1.3a ± 0.2 | 7.3a ± 1.8 | 0.61a ± 0.11 |
C+D (55d) | 6.7a ± 1.3 | 1.1a ± 0.1 | 7.8a ± 1.6 | 0.64a ± 0.15 |
C+D+BS1 (2d) | 23.8c ± 3.0 | 3.8b ± 1.1 | 27.6bc ± 4.0 | 0.89ab ± 0.13 |
C+D+BS1 (10d) | 19.6b ± 2.8 | 2.1b ± 0.93 | 21.7b ± 3.7 | 0.80a ± 0.08 |
C+D+BS1 (55d) | 9.3ab ± 1.5 | 1.7ab ± 0.2 | 11.0ab ± 1.8 | 0.76a ± 0.11 |
C+D+BS2 (2d) | 17.4b ± 2.9 | 3.0b ±1.2 | 20.4b ± 4.0 | 0.77a ± 0.08 |
C+D+BS2 (10d) | 12.4b ± 2.2 | 1.9ab ± 0.56 | 14.6b ± 2.8 | 0.77a ± 0.14 |
C+D+BS2 (55d) | 7.6a ± 1.1 | 1.3a ± 0.2 | 8.9a ± 1.5 | 0.74a ± 0.12 |
C+D+BS3 (2d) | 15.3b ± 2.4 | 2.8b ± 0.4 | 18.1b ± 3.0 | 0.75a ± 0.15 |
C+D+BS3 (10d) | 10.8ab ± 2.0 | 1.6ab ± 0.4 | 12.4b ± 2.6 | 0.72a ± 0.11 |
C+D+BS3 (55d) | 7.1a ± 1.8 | 1.3a ± 0.1 | 8.4a ± 2.0 | 0.70a ± 0.09 |
Diuron (mg kg−1) | ||||||
---|---|---|---|---|---|---|
2 | 6 | 10 | 20 | 35 | 55 | |
C+D | 24.5a ± 0.4 | 23.3a ± 0.8 | 20.3a ± 0.5 | 14.5b ± 1.0 | 13.6b ± 1.2 | 10.9b ± 1.2 |
C+D+BS1 | 19.3a ± 1.1 | 13.4b ± 1.4 | 8.7c ± 1.1 | 7.0b ± 0.8 | 5.7c ± 0.5 | 2.9bd± 0.4 |
C+D+BS2 | 21,94a ± 1.5 | 16.7b ± 1.7 | 15.0b ± 1.6 | 11.8b ± 1.2 | 9.9b ± 1.1 | 7.6c ± 0.9 |
C+D+BS3 | 22.9a ± 1.7 | 20.8a ± 1.2 | 18.6b ± 1.3 | 13.7b ± 1.5 | 12.0b ± 1.5 | 8.2c ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada, M.; Gómez, I.; Paneque, P.; Toro, M.d.; García-Quintanilla, A.; Parrado, J. Use of Biostimulants Obtained from Sewage Sludge for the Restoration of Soils Polluted by Diuron: Effect on Soil Biochemical Properties. Agronomy 2023, 13, 24. https://doi.org/10.3390/agronomy13010024
Tejada M, Gómez I, Paneque P, Toro Md, García-Quintanilla A, Parrado J. Use of Biostimulants Obtained from Sewage Sludge for the Restoration of Soils Polluted by Diuron: Effect on Soil Biochemical Properties. Agronomy. 2023; 13(1):24. https://doi.org/10.3390/agronomy13010024
Chicago/Turabian StyleTejada, Manuel, Isidoro Gómez, Patricia Paneque, Marina del Toro, Albert García-Quintanilla, and Juan Parrado. 2023. "Use of Biostimulants Obtained from Sewage Sludge for the Restoration of Soils Polluted by Diuron: Effect on Soil Biochemical Properties" Agronomy 13, no. 1: 24. https://doi.org/10.3390/agronomy13010024
APA StyleTejada, M., Gómez, I., Paneque, P., Toro, M. d., García-Quintanilla, A., & Parrado, J. (2023). Use of Biostimulants Obtained from Sewage Sludge for the Restoration of Soils Polluted by Diuron: Effect on Soil Biochemical Properties. Agronomy, 13(1), 24. https://doi.org/10.3390/agronomy13010024