Electrostatic Insect Repulsion, Capture, and Arc-Discharge Techniques for Physical Pest Management in Greenhouses
Abstract
:1. Introduction
2. Construction of the SM-Screen
3. Dual Functions of the SD Screen: Insect Capture and Repulsion
3.1. Construction of the SD-Screen
3.2. Comparison of Insect-Capturing Ability of Single-Charged Monopolar and Dipolar Types
3.3. Insect Avoidance of the Static Electric Field: The SD Screen as an Insect-Repellant Type of Screen
4. DD Screens for Insect Capture
4.1. Construction of DD Screens and Their Insect-Capturing Ability
4.2. Practical Application of DD Screens
4.2.1. Grounded and Ungrounded Circuits for Charging
4.2.2. Diversification of DD Screens
4.2.3. Yellow-Coloring of DD Screen for Attracting Phototactic Insect Pests
5. Soil-Surface Control of Insect Pests Emerging from Underground Pupae
6. Current Condition and Future Perspectives of Electrostatic Pest Management Research
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weintraub, P.G.; Berlinger, M.J. Physical Control in Greenhouses and Field Crops. In Insect Pest Management; Horowitz, A.R., Ishaaya, I., Eds.; Springer: Amsterdam, The Netherlands, 2004; pp. 301–318. [Google Scholar] [CrossRef]
- Teitel, M.; Barak, M.; Berlinger, M.J.; Lebiush-Mordechai, S. Insect-proof screens in greenhouses: Their effect on roof ventilation and insect penetration. Acta Hort. 1999, 507, 25–34. [Google Scholar] [CrossRef]
- Taylor, R.; Shalhevet, S.; Spharim, I.; Berlinger, M.J.; Lebiush-Mordechi, S. Economic evaluation of insect-proof screens for preventing tomato yellow leaf curl virus of tomatoes in Israel. Crops Prot. 2001, 20, 561–569. [Google Scholar] [CrossRef]
- Fukuta, S.; Kato, S.; Yoshida, K.; Mizukami, Y.; Ishida, A.; Ueda, J.; Kanbe, M.; Ishimoto, Y. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J. Virol. Methods 2003, 112, 35–40. [Google Scholar] [CrossRef]
- Riley, D.G.; Srinivasan, R. Integrated Management of Tomato Yellow Leaf Curl Virus and its Whitefly Vector in Tomato. J. Econ. Èntomol. 2019, 112, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.L.; Kennedy, G.G. Tomato spotted wilt virus Can Infect Resistant Tomato when Western Flower Thrips Inoculate Blossoms. Plant Dis. 2017, 101, 1666–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Guo, J.-F.; Reitz, S.R.; Lei, Z.-R.; Wu, S.-Y. A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management. Insect Sci. 2020, 27, 626–645. [Google Scholar] [CrossRef]
- Rendina, N.; Nuzzaci, M.; Scopa, A.; Cuypers, A.; Sofo, A. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 2019, 234–235, 9–17. [Google Scholar] [CrossRef]
- Gillespie, D.R.; Menzies, J.G. Fungus gnats vector Fusarium oxysporum f.sp. radicislycopersici. Ann. Appl. Biol. 1993, 123, 539–544. [Google Scholar] [CrossRef]
- El-Hamalawi, Z. Attraction, acquisition, retention and spatiotemporal distribution of soilborne plant pathogenic fungi by shore flies. Ann. Appl. Biol. 2008, 152, 169–177. [Google Scholar] [CrossRef]
- Ueda, S.; Brown, J.K. First report of the Q biotype ofBemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 2006, 34, 405–411. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Osamura, K.; Kusakari, S.-I.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.-I.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J. Phys. Conf. Ser. 2015, 646, 012003. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Pest repelling function of an electric field screen. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 51–57. [Google Scholar]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Practical implementation of single-charged dipolar electric field screen. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 41–49. [Google Scholar]
- Matsuda, Y.; Ikeda, H.; Moriura, N.; Tanaka, N.; Shimizu, K.; Oichi, W.; Nonomura, T.; Kakutani, K.; Kusakari, S.-I.; Higashi, K.; et al. A New Spore Precipitator with Polarized Dielectric Insulators for Physical Control of Tomato Powdery Mildew. Phytopathology 2006, 96, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Matsuda, Y.; Nonomura, T.; Ikeda, H.; Tamura, N.; Kusakari, S.; Kimbara, J.; Toyoda, H. Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f.sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol. 2007, 56, 987–997. [Google Scholar] [CrossRef]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; McGraw-Hill: Boston, MD, USA, 2002; pp. 495–525. [Google Scholar]
- Cross, J.A. Dielectrophoresis. In Electrostatics: Principles, Problems and Applications; De Barr, A.E., Ed.; Adam Hilger: Bristol, RI, USA, 1987; pp. 269–276. [Google Scholar]
- Toyoda, H.; Matsuda, Y. Basic concept for constructing an electric field screen. In Electric Field Screen; Toyoda, H., Ed.; Principles and Applications; Nobunkyo Production: Tokyo, Japan, 2015; pp. 3–17. [Google Scholar]
- Yee, W.L. Three-Dimensional Versus Rectangular Sticky Yellow Traps for Western Cherry Fruit Fly (Diptera: Tephritidae). J. Econ. Èntomol. 2019, 112, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Moreau, T.L.; Isman, M.B. Trapping whiteflies? A comparison of greenhouse whitefly (Trialeurodes vaporariorum ) responses to trap crops and yellow sticky traps. Pest Manag. Sci. 2011, 67, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Bei, Y.; Zhang, J. Are yellow sticky traps an effective method for control of sweet potato whitefly, Bemisia tabaci, in the greenhouse or field? J. Insect Sci. 2012, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Stukenberg, N.; Pietruska, M.; Waldherr, A.; Meyhöfer, R. Wavelength-Specific Behavior of the Western Flower Thrips (Frankliniella occidentalis): Evidence for a Blue-Green Chromatic Mechanism. Insects 2020, 11, 423. [Google Scholar] [CrossRef]
- Parrella, M.P.; Jones, V.P. Yellow Traps as Monitoring Tools for Liriomyza trifolii (Diptera: Agromyzidae) in Chrysanthemum Greenhouses. J. Econ. Èntomol. 1985, 78, 53–56. [Google Scholar] [CrossRef]
- Murata, M.; Yamahama, Y.; Hariyama, T. Synergistic Effects of the Red Light and Blue Traps on Control of Thrips palmi (Thysanoptera: Thripidae). J. Econ. Èntomol. 2021, 114, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.D.; Zhao, H.Y.; Fu, B.L.; Han, Y.; Liu, K.; Wu, J.H. Colored sticky traps to selectively survey thrips in cowpea eco-system. Neotrop Entomol. 2016, 45, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Toyoda, H. Elimination of whiteflies colonizing greenhouse tomato plants using an electrostatic flying insect catcher. Int. J. Curr. Adv. Res. 2017, 6, 5517–5521. [Google Scholar]
- Takikawa, Y.; Nonomura, T.; Sonoda, T.; Matsuda, Y. Developing a Phototactic Electrostatic Insect Trap Targeting Whiteflies, Leafminers, and Thrips in Greenhouses. Insects 2021, 12, 960. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Nonomura, T.; Toyoda, H. Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen. Horticulturae 2022, 8, 764. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Osamura, K.; Kusakari, S.-I.; Toyoda, H. Prevention of Whitefly Entry from a Greenhouse Entrance by Furnishing an Airflow-Oriented Pre-Entrance Room Guarded with Electric Field Screens. J. Agric. Sci. 2014, 6, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Morikawa, S.; Shibao, M.; Kusakari, S.-I.; Toyoda, H. An Electrostatic Nursery Shelter for Raising Pest and Pathogen Free Tomato Seedlings in an Open-Window Greenhouse Environment. J. Agric. Sci. 2016, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Okada, K.; Shibao, M.; Kusakari, S.; Toyoda, H. Successful single-truss cropping cultivation of healthy tomato seedlings raised in an electrostatically guarded nursery cabinet with non-chemical control of whiteflies. GJPDCP 2017, 5, 269–275. [Google Scholar]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Exclusion of whiteflies from a plastic hoop greenhouse by a bamboo blind-type electric field screen. J. Agric. Sci. 2020, 12, 50–60. [Google Scholar]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Preserv. 2018, 2, 15–20. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Electrocution of mosquitoes by a novel electrostatic window screen to minimize mosquito transmission of Japanese encephalitis viruses. Int. J. Sci. Res. 2018, 7, 47–50. [Google Scholar]
- Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil. Insects 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Kakutani, K.; Takikawa, Y.; Matsuda, Y. Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains. Insects 2021, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Toyoda, H. A simple and safe electrostatic method for managing houseflies emerging from underground pupae. Agronomy 2022. submitted. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are elec-trified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.-I.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrost. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Ishay, J.; Benshalom-Shimony, T.; Ben-Shalom, A.; Kristianpoller, N. Photovoltaic effects in the Oriental hornet, Vespa orientalis. J. Insect Physiol. 1992, 38, 37–48. [Google Scholar] [CrossRef]
- McGonigle, D.F.; Jackson, C.W. Effect of surface material on electrostatic charging of houseflies (Musca domestica L). Pest Manag. Sci. 2002, 58, 374–380. [Google Scholar] [CrossRef]
- McGonigle, D.F.; Jackson, C.W.; Davidson, J.L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrost. 2002, 54, 167–177. [Google Scholar] [CrossRef]
- Honna, T.; Akiyama, Y.; Morishima, K. Demonstration of insect-based power generation using a piezoelectric fiber. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 460. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Toyoda, H.; Kimbara, J.; Osamura, K.; Kusakari, S. Practical Application of an Electric Field Screen to an Exclusion of Flying Insect Pests and Airborne Fungal Conidia from Greenhouses with a Good Air Penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Earth net-free electric field screens. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 59–67. [Google Scholar]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.-I.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.-I.; Toyoda, H. Electrostatic guarding of bookshelves for mould-free preservation of valuable library books. Aerobiologia 2014, 30, 435–444. [Google Scholar] [CrossRef]
- Nonomura, T.; Toyoda, H. Soil Surface-Trapping of Tomato Leaf-Miner Flies Emerging from Underground Pupae with a Simple Electrostatic Cover of Seedbeds in a Greenhouse. Insects 2020, 11, 878. [Google Scholar] [CrossRef]
- Alam, M.J.; Zurek, L. Association of Escherichia coli O157:H7 with Houseflies on a Cattle Farm. Appl. Environ. Microbiol. 2004, 70, 7578–7580. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Nagaraja, T.; Zurek, L. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev. Vet. Med. 2007, 80, 74–81. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir, S.; Smith, K.; Diez-Gonzalez, F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J. Appl. Microbiol. 2006, 101, 429–436. [Google Scholar] [CrossRef]
- Brandl, M.T. Plant Lesions Promote the Rapid Multiplication of Escherichia coli O157:H7 on Postharvest Lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.M.; Grieve, C.; Papiernik, S.; Yang, C.-H. Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce. Lett. Appl. Microbiol. 2009, 49, 784–790. [Google Scholar] [CrossRef]
- Helyer, N.; Brown, K.; Cattlin, N.D. Pest profiles. In A Colour Handbook of Biological Control in Plant Protection; Northcott, J., Ed.; Manson Publishing: London, UK, 2004; pp. 21–41. [Google Scholar]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body Water-Mediated Conductivity Actualizes the Insect-Control Functions of Electric Fields in Houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; Kaiser, K.L., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusakari, S.-i.; Matsuda, Y.; Toyoda, H. Electrostatic Insect Repulsion, Capture, and Arc-Discharge Techniques for Physical Pest Management in Greenhouses. Agronomy 2023, 13, 23. https://doi.org/10.3390/agronomy13010023
Kusakari S-i, Matsuda Y, Toyoda H. Electrostatic Insect Repulsion, Capture, and Arc-Discharge Techniques for Physical Pest Management in Greenhouses. Agronomy. 2023; 13(1):23. https://doi.org/10.3390/agronomy13010023
Chicago/Turabian StyleKusakari, Shin-ichi, Yoshinori Matsuda, and Hideyoshi Toyoda. 2023. "Electrostatic Insect Repulsion, Capture, and Arc-Discharge Techniques for Physical Pest Management in Greenhouses" Agronomy 13, no. 1: 23. https://doi.org/10.3390/agronomy13010023
APA StyleKusakari, S. -i., Matsuda, Y., & Toyoda, H. (2023). Electrostatic Insect Repulsion, Capture, and Arc-Discharge Techniques for Physical Pest Management in Greenhouses. Agronomy, 13(1), 23. https://doi.org/10.3390/agronomy13010023