Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Treatments of Water Stress and Experimental Design
2.3. Assessment of Aerial Plant Symptoms
2.4. Assessment Plant Water Relation Parameters
2.4.1. Stomatal Conductance
2.4.2. Leaf Water Potential
2.4.3. Relative Water Content
2.5. Statistical Analysis
3. Results
3.1. Plant Symptoms
3.2. Plant Water Relation Parameters
3.2.1. Stomatal Conductance
3.2.2. Leaf Water Potential
3.2.3. Relative Water Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations. 2022. Available online: http://www.fao.org/faostat/es/#home (accessed on 6 August 2022).
- Ruiz, I.; Almagro, M.; de Jalón, S.G.; Solà, M.D.M.; Sanz, M.J. Assessment of sustainable land management practices in Mediterranean rural regions. J. Environ. Manag. 2020, 276, 111293. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, F.; Syvertsen, J.P.; Gimeno, V.; Botía, P.; Perez-Perez, J.G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E.; Fernández-González, S. Identification of drought phases in a 110-year record from Western Mediterranean basin: Trends, anomalies and periodicity analysis for Iberian Peninsula. Glob. Planet. Change 2015, 133, 96–108. [Google Scholar] [CrossRef]
- Puigdefábregas, J.; Mendizabal, T. Perspectives on desertification: Western Mediterranean. J. Arid Environ. 1998, 39, 209–224. [Google Scholar] [CrossRef]
- Safriel, U.N. Status of Desertification in the Mediterranean Region. In Water Scarcity, Land Degradation and Desertification in the Mediterranean Region; Rubio, J.L., Safriel, U., Daussa, R., Blum, W.P.F., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2009; pp. 33–73. [Google Scholar]
- Kijne, J.W. Abiotic stress and water scarcity: Identifying and resolving conflicts from plant level to global level. Field Crops Res. 2006, 97, 3–18. [Google Scholar] [CrossRef]
- Holzapfel, E.A.; Pannunzio, A.; Lorite, I.; de Oliveira, A.S.S.; Farkas, I. Design and management of irrigation systems. Chil. J. Agric. Res. 2009, 69, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Sharif, P.; Seyedsalehi, M.; Paladino, O.; Van Damme, P.; Sillanpää, M.; Sharifi, A.A. Effect of drought and salinity stresses on morphological and physiological characteristics of canola. Int. J. Environ. Sci. Technol. 2018, 15, 1859–1866. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Arbona, V.; Morillon, R.; Gómez-Cadenas, A. Salinity and water deficit. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 291–309. ISBN 9780128121634. [Google Scholar]
- Hsiao, T.C. Plant Responses to water stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Arbona, V.; Iglesias, D.J.; Jacas, J.; Primo-Millo, E.; Talon, M.; Gómez-Cadenas, A. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 2005, 270, 73–82. [Google Scholar] [CrossRef]
- Arbona, V.; Marco, A.J.; Iglesias, D.J.; López-Climent, M.F.; Talon, M.; Gómez-Cadenas, A. Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul. 2005, 46, 153–160. [Google Scholar] [CrossRef]
- de Magalhães Erismann, N.; Caruso Machado, E.; Sant’ Anna Tucci, M.L. Photosynthetic limitation by CO2 diffusion in drought stressed orange leaves on three rootstocks. Photosynth. Res. 2008, 96, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Brakke, M.; Allen, L.H. Gas exchange of Citrus seedlings at different temperatures, vapor-pressure deficits, and soil water contents. J. Am. Soc. Hortic. Sci. 1995, 120, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Pedroso, F.K.J.V.; Prudente, D.A.; Carolina, A.; Bueno, R.; Machado, E.C.; Ribeiro, R.V. Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability. Environ. Exp. Bot. 2014, 101, 26–35. [Google Scholar] [CrossRef]
- Ford, H.W. Water management in poorly drained citrus soils. In Proceedings of the First International Citrus Symposium, Riverside, CA, USA, 16–26 March 1968; Champan, H.D., Ed.; University of California Press: Riverside, CA, USA, 1968; Volume 3, pp. 71–76. [Google Scholar]
- Martínez-Alcántara, B.; Jover, S.; Quiñones, A.; Forner-Giner, M.A.; Rodríguez-Gamir, J.; Legaz, F.; Primo-Millo, E.; Iglesias, D.J. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. J. Plant Physiol. 2012, 169, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Goell, A. Fruit growth and dry matter accumulation in grapefruit during periods of water withholding and after reirrigation. Funct. Plant Biol. 1988, 15, 633. [Google Scholar] [CrossRef]
- Li, S.-H.; Huguet, J.-G.; Schoch, P.G.; Orlando, P. Response of peach tree growth and cropping to soil water deficit at various phenological stages of fruit development. J. Hortic. Sci. 1989, 64, 541–552. [Google Scholar] [CrossRef]
- Huang, H.B.; Gao, F.F.; Xu, J.K.; Xie, Z.S. Effects of moisture stress on orange (Citrus sinensis L. Osbeck.) fruit development. Acta Hortic. Sin. 1986, 13, 237–344. [Google Scholar]
- Huang, H.B.; Gao, F.F.; Li, J.G. Fruit expansion growth in relation to water-uptake under climate changes. Acta Hortic. Sin. 1994, 21, 124–128. [Google Scholar]
- Jagoueix, S.; Bove, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 1994, 44, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Texeira, D.C.; Ayres, J.; Kitajima, E.W.; Danet, L.; Jagoueix-Eveillard, S.; Saillard, C.; Bové, J.M. First report of a Huanglongbing-like disease of citrus in São Paulo State, Brazil and association of a new Liberibacter Species, “Candidatus Liberibacter americanus”, with the disease. Plant Dis. 2005, 89, 107. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- McClean, A.P.D.; Oberholzer, P.C.J. Citrus psylla, a vector of the greening disease of sweet orange. South Afr. J. Agric. Sci. 1965, 8, 297–298. [Google Scholar]
- Capoor, S.P.; Rao, D.G.; Viswanath, S.M. Diaphorina citri Kuway., a vector of the greening disease of citrus in India. Indian J. Agric. Sci. 1967, 37, 572–579. [Google Scholar]
- Yamamoto, P.T.; Felippe, M.R.; Garbim, L.F.; Coelho, J.H.C.; Ximenes, N.L.; Martins, E.C.; Leite, A.P.R.; Sousa, M.C.; Abrahão, D.P.; Braz, J.D. Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae): Vector of the bacterium Candidatus Liberibacter americanus. In Proceedings of the Huanglongbing-greening International Workshop, Ribeiro Preto, Brazil, 16–20 July 2006; Pietersen, G., Le Roux, H.F., Eds.; Citrus Research International: Ribeiro Preto, Brazil, 2006; p. 96. [Google Scholar]
- Ajene, I.J.; Khamis, F.; Mohammed, S.; Rasowo, B.; Ombura, F.L.; Pietersen, G.; van Asch, B.; Ekesi, S. First report of field population of Trioza erytreae carrying the Huanglongbing-associated pathogen, Candidatus Liberibacter asiaticus, in Ethiopia. Plant Dis. 2019, 103, 1766. [Google Scholar] [CrossRef]
- Siverio, F.; Marco-Noales, E.; Bertolini, E.; Teresani, G.R.; Peñalver, J.; Mansilla, P.; Aguín, O.; Pérez-Otero, R.; Abelleira, A.; Guerra-García, J.A.; et al. Survey of huanglongbing associated with “Candidatus Liberibacter” species in Spain: Analyses of citrus plants and Trioza erytreae. Phytopathol. Mediterr. 2017, 56, 98–110. [Google Scholar] [CrossRef]
- EPPO, 2022. European and Mediterranean Plant Protection Organization. Available online: https://gd.eppo.int/ (accessed on 5 October 2022).
- Pérez-Otero, R.; Mansilla, J.P.; Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arq. Entomolóxicos 2015, 13, 119–122. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- DGAV, 2022. Direção-Geral de Alimentação e Veterinária. Available online: https://www.dgav.pt/ (accessed on 29 August 2022).
- Tallón Vila, C.I. Biotechnology applied to the genetic improvement of citrus rootstocks. In Development of a Protocol for Micropropagation and Adventitious Regeneration for Use in Generating Salt Toleran Mutant Lines; Universidad de Murcia: Murcia, Spain, 2015. [Google Scholar]
- Bowman, K.D.; Joubert, J. Citrus rootstocks. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 105–127. ISBN 9780128121634. [Google Scholar]
- Grosser, J.; Graham, J.; Hoyte, A. Continued development of rootstocks tolerant of the Phytophthora-Diaprepes complex via greenhouse screening. In Proceedings of the Florida State Horticultural Society, Palm Beach County, FL, USA, 3–5 June 2007; Volume 120, pp. 103–109. [Google Scholar]
- Grosser, J.W.; Omar, A.A.; Gmitter, J.A.; Syvertsen, J.P. Salinity tolerance of ‘Valencia’ orange trees on allotetraploid rootstocks. Proceeding Fla. State Hortic. Soc. 2012, 125, 50–55. [Google Scholar]
- Kunwar, S.; Grosser, J.; Gmitter, F.G.; Castle, W.S.; Albrecht, U. Field performance of ‘Hamlin’ orange trees grown on various rootstocks in Huanglongbing-endemic conditions. HortScience 2021, 56, 244–253. [Google Scholar] [CrossRef]
- Grosser, J.W. Citrus rootstock named “UFR-1”. United States Plant Patent Application Publication Publication Number: US 2015/0237782 P1, 20 August 2015. pp. 1–9. [Google Scholar]
- Project 18-029C. Evaluation of Citrus Rootstocks Response to HLB in Large-Scale Existing Field Trials. 2022. Available online: https://slideplayer.com/slide/17630075/ (accessed on 7 October 2022).
- Savage, E.M.; Gardner, F.E. The Troyer and Carrizo citranges. Calif. Citrogr. 1965, 50, 112–116. [Google Scholar]
- Oficina Española de Variedades Vegetales, Registro de Variedades, Ministerio de Agricultura, Pesca y Alimentación. 2022. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/semillas-y-plantas-de-vivero/registro-de-variedades/ (accessed on 29 August 2022).
- Aparicio-Durán, L.; Gmitter, F.G., Jr.; Arjona-López, J.M.; Calero-Velázquez, R.; Hervalejo, Á.; Arenas-Arenas, F.J. Water-stress influences on three new promising HLB-tolerant Citrus rootstocks. Horticulturae 2021, 7, 336. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L. V Temporal analysis of epidemics I: Descriptions and comparisons of disease progress curve. In Introduction to Plant Disease Epidemiology; Campbell, C.L., Madden, L.V., Eds.; Wiley: New York, NY, USA, 1990; pp. 161–202. [Google Scholar]
- Rewald, B.; Raveh, E.; Gendler, T.; Ephrath, J.E.; Rachmilevitch, S. Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J. Exp. Bot. 2012, 63, 2717–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Morgan, J.M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 299–319. [Google Scholar] [CrossRef]
- R Development Core Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Development Core Team R: Vienna, Austria, 2022; ISBN 3-900051-07-0. Available online: http://www.r-project.org/ (accessed on 29 June 2022).
- Steel, R.G.D.; Torrie, J.H. Principles and procedures of statistics: With special reference to the biological sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- de Mendiburu, F. Statistical procedures for agricultural research. Package “Agricolae”, version 1.4-4; Comprehensive R archive network, Institute for statistics and mathematics: Vienna, Austria, 2013.
- Wickham, H. Data Analysis. In ggplot2. Use R! Springer: Cham, Switzerland, 2016; pp. 189–201. [Google Scholar]
- Florida Citrus Rootstock Selection Guide, 4th Edition, 2022. Available online: https://crec.ifas.ufl.edu/extension/citrus_rootstock/tables.html (accessed on 7 October 2022).
- Aleza, P.; Forner-Giner, M.A.; Del-Pino, Á. El panorama varietal y los nuevos patrones. Análisis de la situación actual. In Una hoja de ruta para la citricultura española; García Álvarez-Coque, J.M., Moltó García, E., Eds.; Cajamar Caja Rural: Almería, Spain, 2020; pp. 151–166. ISBN 978-84-95531-49-0. [Google Scholar]
- Gomez-Cadenas, A.; Tadeo, F.R.; Talon, M.; Primo-Millo, E. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 1996, 112, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielsa, B.; Hewitt, S.; Reyes-Chin-Wo, S.; Dhingra, A.; Rubio-Cabetas, M.J. Identification of water use efficiency related genes in “Garnem” almond-peach rootstock using time-course transcriptome analysis. PLoS ONE 2018, 13, e0205493. [Google Scholar] [CrossRef] [Green Version]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.-K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef]
- Kahil, M.; Albiac, J.; Dinar, A.; Calvo, E.; Esteban, E.; Avella, L.; Garcia-Molla, M. Improving the performance of water policies: Evidence from drought in Spain. Water 2016, 8, 34. [Google Scholar] [CrossRef]
Time | Eto (mm Day−1) | Kc | Etc (mm Day−1) |
---|---|---|---|
D1 | 5.85 | 0.45 | 2.63 |
D3 | 5.36 | 0.45 | 2.41 |
D5 | 5.75 | 0.45 | 2.59 |
D9 | 6.78 | 0.45 | 3.05 |
D12 | 7.55 | 0.45 | 3.40 |
D15 | 6.70 | 0.45 | 3.02 |
D19 | 4.80 | 0.45 | 2.16 |
D22 | 4.13 | 0.45 | 1.86 |
D24 | 5.95 | 0.45 | 2.68 |
D26 | 7.20 | 0.45 | 3.24 |
D29 | 7.38 | 0.45 | 3.32 |
Treatment | ||||
---|---|---|---|---|
Rootstock | Control | MWS | Drought | Flooding |
Carrizo citrange | 0.00 ± 0.00 h | 0.00 ± 0.00 h | 0.20 ± 0.04 fg | 0.50 ± 0.08 cd |
Orange-14 | 0.00 ± 0.00 h | 0.03 ± 0.03 h | 0.98 ± 0.08 a | 0.66 ± 0.10 bc |
UFR-1 | 0.00 ± 0.00 h | 0.00 ± 0.00 h | 0.77 ± 0.11 b | 0.26 ± 0.06 ef |
B11R3T27 | 0.00 ± 0.00 h | 0.03 ± 0.03 gh | 0.78 ± 0.10 b | 0.41 ± 0.07 de |
Treatment | ||||
---|---|---|---|---|
Rootstock | Control | MWS | Drought | Flooding |
Carrizo citrange | 205.32 ± 20.82 a | 184.33 ± 12.77 ab | 43.32 ± 7.60 f | 172.63 ± 34.21 ab |
Orange-14 | 123.23 ± 15.02 cd | 98.00 ± 1.98 de | 41.67 ± 3.28 f | 36.23 ± 1.54 f |
UFR-1 | 102.00 ± 17.67 de | 97.87 ± 7.95 de | 46.17 ± 10.15 f | 69.35 ± 22.10 fe |
B11R3T27 | 187.28 ± 16.39 ab | 158.75 ± 13.46 bc | 44.93 ± 4.67 f | 117.48 ± 0.83 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjona-López, J.M.; Aparicio-Durán, L.; Gmitter, F.G., Jr.; Romero-Rodríguez, E.; Grosser, J.W.; Hervalejo, A.; Arenas-Arenas, F.J. Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks. Agronomy 2023, 13, 63. https://doi.org/10.3390/agronomy13010063
Arjona-López JM, Aparicio-Durán L, Gmitter FG Jr., Romero-Rodríguez E, Grosser JW, Hervalejo A, Arenas-Arenas FJ. Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks. Agronomy. 2023; 13(1):63. https://doi.org/10.3390/agronomy13010063
Chicago/Turabian StyleArjona-López, Juan M., Lidia Aparicio-Durán, Frederick G. Gmitter, Jr., Estefanía Romero-Rodríguez, Jude W. Grosser, Aurea Hervalejo, and Francisco J. Arenas-Arenas. 2023. "Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks" Agronomy 13, no. 1: 63. https://doi.org/10.3390/agronomy13010063
APA StyleArjona-López, J. M., Aparicio-Durán, L., Gmitter, F. G., Jr., Romero-Rodríguez, E., Grosser, J. W., Hervalejo, A., & Arenas-Arenas, F. J. (2023). Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks. Agronomy, 13(1), 63. https://doi.org/10.3390/agronomy13010063