Plant Growth-Promoting Bacteria and Crop Residue in Rice–Wheat System Cultivated with Favorable Tillage Influence Crop Productivity, Nutrient Uptake, Soil Quality, and Profitability in the Terai Agro-Ecological Zone of West Bengal, India
Abstract
:1. Introduction
2. Materials and Method
2.1. Field Location and Treatment Details
2.2. Weather
2.3. Crop Management
2.4. Soil and Crop Data Collection and Analysis
2.5. Economics
2.6. Statistical Analysis
3. Results
3.1. Effect of Tillage, Crop Residue, and Plant Growth-Promoting Bacteria on Grain Yield in a Rice–Wheat System
3.2. Effect of Tillage, Crop Residue, and Plant-Growth Promoting Bacteria on Straw Yield in a Rice–Wheat System
3.3. Effect of Tillage, Crop Residue, and Plant Growth-Promoting Bacteria on Nitrogen Uptake in a Rice–Wheat System
3.4. Effect of Tillage, Crop Residue, and Plant Growth-Promoting Bacteria on Phosphorus Uptake in Rice–Wheat System
3.5. Effect of Tillage, Crop Residue, and Plant Growth-Promoting Bacteria on Potassium Uptake in Rice–Wheat System
3.6. Effect of Tillage, Crop Residue, and Plant Growth-Promoting Bacteriaon Soil Properties in Rice–Wheat System
3.7. Effect of Tillage, Crop Residue, and Plant Growth-promoting Bacteria on the Economics of Rice–Wheat System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, R.; Singh, P.; Hossain, A.; Timsina, J. Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. PaddyWater Environ. 2021, 19, 345–365. [Google Scholar] [CrossRef]
- Kalaiselvi, B.; Sweta Kumari, S.; Sathya, S.; Dharumarajan, K.S. Anil Kumar, Rajendra Hegde, 2-Crop management practices for carbon sequestration. In Agricultural Soil Sustainability and Carbon Management; Meena, S.K., De Oliveira Ferreira, A., Meena, V.S., Rakshit, A., Shrestha, R.P., Rao, C.E., Siddique, K.H.M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 27–68. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Tirthankar, R. Roots of Agrarian Crisis in Interwar India: Retrieving a Narrative. Econ. Political Wkly. 2006, 41, 5389–5400. Available online: http://www.jstor.org/stable/4419085 (accessed on 26 August 2023).
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
- Somasundaram, J.; Sinha, N.K.; Dalal, R.C.; Lal, R.; Mohanty, M.; Naorem, A.K.; Hati, K.M.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K. No-till farming and conservation agriculture in South Asia—Issues, challenges, prospects and benefits. Crit. Rev. Plant Sci. 2020, 39, 236–279. [Google Scholar] [CrossRef]
- Khedwal, R.S.; Chaudhary, A.; Sindhu, V.K.; Yadav, D.B.; Kumar, N.; Chhokar, R.S.; Poonia, T.M.; Kumar, Y.; Dahiya, S. Challenges and technological interventions in rice–wheat system for resilient food–water–energy-environment nexus in North-western Indo-Gangetic Plains: A review. Cereal Res. Commun. 2023. [Google Scholar] [CrossRef]
- Hoque, M.A.; Gathala, M.K.; Timsina, J.; Ziauddin, M.A.T.M.; Hossain, M.; Krupnik, T.J. Reduced tillage and crop diversification can improve productivity and profitability of rice-based rotations of the Eastern Gangetic Plains. Field Crops Res. 2023, 291, 108791. [Google Scholar] [CrossRef]
- Ngoma, H.; Angelsen, A.; Jayne, T.S.; Chapoto, A. Understanding Adoption and Impacts of Conservation Agriculture in Eastern and Southern Africa: A Review. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Dhanda, S.; Yadav, A.; Yadav, D.B.; Chauhan, B.S. Emerging Issues and Potential Opportunities in the Rice-Wheat Cropping System of North-Western India. Front Plant Sci. 2022, 13, 832683. [Google Scholar] [CrossRef] [PubMed]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Aryal, J.; Sapkota, T.; Jat, M.; Bishnoi, D. On-farm economic and environmental impact of zero-tillage wheat: A case of north-west India. Exp. Agric. 2015, 51, 1–16. [Google Scholar] [CrossRef]
- Itelima, J.U.; Bang, W.J.; Onyimba, I.A.; Oj, E. A review: Biofertilizer; a key player in enhancing soil fertility and crop productivity. J. Microbiol. Biotechnol. Rep. 2018, 2, 22–28. [Google Scholar]
- Boraste, A.; Vamsi, K.K.; Jhadav, A.; Khairnar, Y.; Gupta, N.; Trivedi, S.; Patil, P.; Gupta, G.; Gupta, M.; Mujapara, A.K.; et al. Biofertilizers: A novel tool for agriculture. Int. J. Microbiol. Res. 2009, 1, 23–31. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 2012, 14, 605–611. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, D.P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol. 2014, 17, 288–293. [Google Scholar] [CrossRef]
- Yadav, K.K.; Sarkar, S. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
- Cisse, A.; Arshad, A.; Wang, X.; Yattara, F.; Hu, Y. Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy 2019, 9, 312. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Barman, D. Crop residue management and greenhouse gases emissions in tropical rice lands. In Soil Management and Climate Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–335. [Google Scholar]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Lamessa, K. Integrated Nutrient Management for Food Security and Environmental Quality. Food Sci. Qual. Manag. 2016, 56, 32–41. [Google Scholar]
- Mirzaei, M.; Gorji Anari, M.; Razavy-Toosi, E.; Asadi, H.; Moghiseh, E.; Saronjic, N.; Rodrigo-Comino, J. Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy 2021, 11, 302. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Naresh, R.; Mandal, A.; Singh, R.; Dhaliwal, M. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. J. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Lakshmi-kumari, M.; Lakshmi, V.; Nalimi, P.A.; Subba Rao, N.S. Reactions of Azospirillum to certain dyes and their usefulness in enumeration of the organism. Curr. Sci. 1980, 49, 438–439. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: New York, NY, USA, 1998; pp. 75–83. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Blake, L.; Mercik, S.; Koerschens, M.; Goulding KW, T.; Stempen, S.; Weigel, A.; Poulton, P.R.; Powlson, D.S. Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 1999, 216, 1–14. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommer, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; ASA-SSSA: Madison, WI, USA, 1982; pp. 579–595. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A Rapid Procedure for the Estimation of Available Nitrogen in Soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1982; Volume 1159. [Google Scholar]
- Hanway, J.J.; Heidal, H. Soil analysis methods as used in Iowa State College Soil Testing Laboratory. Iowa State Coll. Agric. Bull. 1952, 57, 1–31. [Google Scholar]
- Sheoran, O.P.; Tonk, D.S.; Kaushik, L.S.; Hasija, R.C.; Pannu, R.S. Statistical Software Package for Agricultural Research Workers. In Recent Advances in Information Theory, Statistics & Computer Applications; Hooda, D.S., Hasija, R.C., Eds.; Department of Mathematics Statistics, CCS HAU: Hisar, India, 1998; pp. 139–143. [Google Scholar]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Corbeels, M.; Sakyi, R.K.; Kühne, R.F.; Whitbread, A. Meta-Analysis of Crop Responses to Conservation Agriculture in Sub-Saharan Africa. CCAFS Report No. 12. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 2014. Available online: https://www.ccafs.cgiar.org (accessed on 17 August 2023).
- Rusinamhodzi, L.; Corbeels, M.; Wijk MT, V.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Allam, M.; Radicetti, E.; Petroselli, V.; Mancinelli, R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture 2021, 11, 823. [Google Scholar] [CrossRef]
- Singh, Y.H.B.; Shan, Y.H.; Beebout, S.E.J.; Singh, Y.; Buresh, R.J. Crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar]
- Zamir, M.S.I.; Ahmad, A.H.; Nadeem, M.A. Behavior of various wheat cultivars at tillage in Sub-tropical conditions. Cerc. Agron. Moldov. 2010, 4, 13–19. [Google Scholar]
- Meenakshi. Influence of Paddy Residue and Nitrogen Management on the Productivity of Wheat (Triticum aestivum L.). Master’s Thesis, Punjab Agricultural University, Ludhiana, India, 2010. [Google Scholar]
- Kaushal, M.; Singh, A.; Kang, J.S. Effect of planting techniques and nitrogen levels on growth, yield and N recovery in wheat (Triticum aestivum L.). J. Res. Punjab Agric. Univ. 2012, 49, 14–16. [Google Scholar]
- Tripathi, S.C.; Chander, S.; Meena, R.P. Effect of residue retention, tillage options and timing of nitrogen application in rice-wheat cropping system. SAARC J. Agric. 2015, 13, 37–49. [Google Scholar] [CrossRef]
- Timalsina, H.P.; Marahatta, S.; Sah, S.K.; Gautam, A.K. Effect of tillage method, crop residue and nutrient management on growth and yield of wheat in rice-wheat cropping system at Bhairahawa condition. Agron. J. Nepal 2021, 5, 52–62. [Google Scholar] [CrossRef]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Kasimatis, C.-N.; Kakabouki, I.; Leonidakis, D.; Danalatos, N.; et al. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci. Rep. 2022, 12, 11598. [Google Scholar] [CrossRef]
- Roy, D.; Sinha, A.; Rao, K.K.; Rakesh, S.; Sahoo, S.; Mukhopadhyay, P.; Bhattacharya, P.; Ghosh, A.; Mukherjee, P. Short term effect of tillage, residue and biofertilizer on physicochemical soil attributes under Terai agro-ecological zone of West Bengal, India. J. AgriSearch 2021, 8, 318–324. [Google Scholar] [CrossRef]
- Ibrahim, M.; Yamin, M.; Sarwar, G.; Anayat, A.; Habib, F.; Ullah, S.; Rehman, S.U. Tillage and farm manure affect root growth and nutrient uptake of wheat and rice under semi-arid conditions. Appl. Geochem. 2011, 26, S194–S197. [Google Scholar] [CrossRef]
- Ishaq, M. Tillage effect on nutrient uptake by wheat and cotton as influenced by fertilizer rate. Soil Tillage Res. 2001, 62, 41–53. [Google Scholar] [CrossRef]
- Sarwar, G.; Hussain, N.; Schmeisky, H.; Muhammad, S.; Ibrahim, M.; Ahmad, S. Efficiency of various organic residues for enhancing rice–wheat production under normal soil conditions. Pakistan J. Bot. 2008, 40, 2107–2113. [Google Scholar]
- Wienhold, B.J.; Ardell, D.; Halvorson, A.D. Nitrogen mineralization response, cropping tillage and nitrogen rate in the northern Great Plains. Soil Sci. Soc. Am. J. 1999, 63, 192–196. [Google Scholar] [CrossRef]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems. Agriculture 2021, 11, 580. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation-a review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2010, 155, 211–223. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Winowiecki, L. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Tadiello, T.; Acutis, M.; Perego, A.; Schillaci, C.; Valkama, E. Can conservation agriculture enhance soil organic carbon sequestration in Mediterranean and Humid subtropical climates? A Meta-Analysis. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021; pp. 19–30, EGU21-12243. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- Sinha, A.K.; Ghosh, A.; Dhar, T.; Bhattacharya, P.M.; Mitra, B.; Rakesh, S.; Paneru, P.; Shrestha, S.R.; Manandhar, S.; Beura, K.; et al. Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Res. 2019, 57, 883. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, L.; Zhao, L.; Liu, Z.; Lin, C.; Hu, Y.; Liu, L. Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture 2021, 11, 1129. [Google Scholar] [CrossRef]
- Buragohain, S.; Sarma, B.; Nath, D.J.; Gogoi, N.; Meena, R.S.; Lal, R. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. SoilResearch 2017, 56, 49–58. [Google Scholar] [CrossRef]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Laik, R.; Sharma, S.; Idris, M.; Singh, A.K.; Singh, S.S.; Bhatt, B.P.; Saharawat, Y.S.; Humphreys, E.; Ladha, J.K. Integration of conservation agriculture with best management practices for improving system performance of the rice–wheat rotation in the Eastern Indo-Gangetic Plains of India. Agric. Ecosyst. Environ. 2014, 195, 68–82. [Google Scholar] [CrossRef]
Treatment Details | Plot Area (m2) | Chemical Fertilizer Application (kg ha−1) | Crop Residue (t ha−1) | Biofertilizers (g Inoculation kg−1 Seed) | ||||
---|---|---|---|---|---|---|---|---|
N (R–W) | P (R–W) | K (R–W) | Rice Residue | Wheat Residue | Azospirillum and Phosphate Solubilizer | Azotobacter and Phosphate Solubilizer | ||
ZT | 263 | 100:120 | 60:60 | 80:60 | 0.0 | 0.0 | 0.0 | 0.0 |
ZT + B | 216 | 100:120 | 60:60 | 80:60 | 0.0 | 0.0 | 5.0 | 5.0 |
ZT + R | 268 | 100:120 | 60:60 | 80:60 | 3.0 | 3.0 | 0.0 | 0.0 |
ZT + B + R | 222 | 100:120 | 60:60 | 80:60 | 3.0 | 3.0 | 5.0 | 5.0 |
CT | 485 | 100:120 | 60:60 | 80:60 | 0.0 | 0.0 | 0.0 | 0.0 |
CT + B | 189 | 100:120 | 60:60 | 80:60 | 0.0 | 0.0 | 5.0 | 5.0 |
CT + R | 206 | 100:120 | 60:60 | 80:60 | 3.0 | 3.0 | 0.0 | 0.0 |
CT + B + R | 214 | 100:120 | 60:60 | 80:60 | 3.0 | 3.0 | 5.0 | 5.0 |
Months | Mean Temperature (°C) | Rainfall (mm) | Evaporation (mm) |
---|---|---|---|
January | 16.7 | 7.7 | 37.9 |
February | 19.3 | 21.6 | 71.8 |
March | 23.2 | 46.3 | 102.8 |
April | 25.7 | 159.5 | 89.2 |
May | 26.9 | 345.3 | 96.5 |
June | 28.1 | 738.8 | 84.5 |
July | 28.3 | 773.2 | 94.2 |
August | 28.8 | 624.1 | 74.3 |
September | 27.9 | 566.8 | 80.9 |
October | 26.1 | 175.7 | 72.0 |
November | 22.4 | 52.3 | 62.9 |
December | 18.6 | 3.2 | 43.1 |
Treatment | Rice Grain Yield (t ha−1) | Wheat Grain Yield (t ha−1) | System Grain Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 3.98 a | 3.87 a | 3.93 A | 3.90 a | 3.34 a | 3.62 A | 7.88 a | 7.21 a | 7.55 A |
ZT + B | 3.91 a | 4.23 b | 4.07 A | 4.21 ab | 3.36 a | 3.79 A | 8.12 a | 7.59 b | 7.86 B |
ZT + R | 4.99 cd | 4.40 b | 4.70 B | 4.07 ab | 3.70 ab | 3.89 B | 9.06 c | 8.10 c | 8.58 C |
ZT + R + B | 4.53 c | 4.83 c | 4.68 B | 4.41 b | 4.63 c | 4.52 C | 8.94 c | 9.46 f | 9.20 E |
CT | 4.28 b | 5.05 c | 4.67 B | 3.83 a | 3.94 b | 3.89 B | 8.11 a | 8.99 e | 8.55 C |
CT + B | 4.29 b | 4.96 c | 4.63 B | 3.95 a | 3.53 a | 3.74 A | 8.24 b | 8.49 d | 8.37 C |
CT + R | 5.06 d | 5.27 d | 5.17 C | 3.99 a | 3.87 b | 3.93 B | 9.05 c | 9.14 e | 9.10 D |
CT + R + B | 5.01 d | 6.14 e | 5.58 D | 4.04 ab | 3.73 ab | 3.89 B | 9.05 c | 9.87 g | 9.46 E |
Treatment | Rice Straw Yield (t ha−1) | Wheat Straw Yield (t ha−1) | System Straw Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 4.98 a | 4.73 a | 4.86 A | 5.15 b | 4.82 b | 4.99 AB | 10.13 a | 9.55 a | 9.84 A |
ZT + B | 5.07 a | 5.52 b | 5.30 B | 4.76 a | 4.99 b | 4.88 A | 9.83 a | 10.51 b | 10.17 B |
ZT + R | 5.77 c | 6.01 c | 5.89 C | 5.39 c | 5.12 c | 5.26 B | 11.16 b | 11.13 c | 11.15 CD |
ZT + R + B | 6.35 d | 6.40 d | 6.38 D | 4.97 b | 5.06 bc | 5.02 AB | 11.32 b | 11.46 d | 11.39 D |
CT | 5.45 b | 6.07 c | 5.76 C | 4.83 a | 4.87 b | 4.85 A | 10.28 a | 10.94 c | 10.61 C |
CT + B | 5.45 b | 6.15 c | 5.80 C | 4.68 a | 4.53 a | 4.61 A | 10.13 a | 10.68 c | 10.41 BC |
CT + R | 6.37 d | 6.42 d | 6.40 D | 4.94 b | 4.91 b | 4.93 AB | 11.31 b | 11.33 cd | 11.32 D |
CT + R + B | 6.44 d | 6.89 e | 6.67 D | 4.88 b | 4.72 ab | 4.80 A | 11.32 b | 11.61 d | 11.47 D |
Treatment | Rice Straw N Uptake (kg ha−1) | Wheat Straw N Uptake (kg ha−1) | System Straw N Uptake (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 48.9 a | 47.5 ab | 48.2 A | 25.7 b | 26.9 ab | 26.3 B | 74.7 a | 74.4 a | 74.5 A |
ZT + B | 48.0 a | 46.8 a | 47.4 A | 29.4 c | 26.3 ab | 27.8 B | 77.4 b | 73.1 a | 75.2 A |
ZT + R | 61.3 d | 63.1 e | 62.2 D | 21.7 a | 33.0 c | 27.1 B | 83.1 c | 96.1 d | 89.4 C |
ZT + R + B | 52.4 b | 58.2 cd | 55.3 C | 30.8 c | 31.0 c | 30.9 C | 83.1 c | 89.2 c | 86.2 C |
CT | 50.5 ab | 49.0 b | 49.7 AB | 23.3 a | 24.3 a | 23.8 A | 73.8 a | 73.3 a | 73.5 A |
CT + B | 58.0 c | 45.1 a | 51.5 B | 25.2 ab | 27.3 b | 26.3 B | 83.3 c | 72.4 a | 77.8 B |
CT + R | 57.3 c | 63.1 e | 60.2 D | 29.3 c | 24.0 a | 26.6 B | 86.6 d | 87.0 c | 86.8 C |
CT + R + B | 63.6 de | 56.6 c | 60.1 D | 28.1 c | 27.6 b | 27.8 B | 91.7 e | 84.1 b | 88.0 C |
Rice grain N uptake (kg ha−1) | Wheat grain N uptake (kg ha−1) | System grain N uptake (kg ha−1) | |||||||
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 41.4 a | 42.6 b | 42.0 B | 76.5 b | 73.3 a | 74.9 B | 117.9 a | 115.9 a | 116.9 A |
ZT + B | 39.4 a | 39.4 a | 39.4 A | 85.0 c | 74.7 a | 79.8 C | 124.4 b | 114.1 a | 119.2 A |
ZT + R | 55.2 d | 55.9 d | 55.5 D | 68.3 a | 90.1 d | 79.4 C | 123.5 b | 146.0 c | 134.9 B |
ZT + R + B | 49.4 c | 54.5 d | 52.0 C | 84.2 c | 86.0 c | 85.1 D | 133.6 c | 140.5 c | 137.1 B |
CT | 44.9 b | 44.3 b | 44.6 B | 68.7 a | 72.6 a | 70.6 A | 113.6 a | 116.9 a | 115.2 A |
CT + B | 50.2 c | 41.2 a | 45.8 B | 76.2 b | 76.2 b | 76.3 B | 126.4 b | 117.4 a | 122.1 A |
CT + R | 51.6 c | 56.7 d | 54.2 CD | 79.2 b | 73.2 a | 76.2 B | 130.8 c | 129.9 b | 130.4 B |
CT + R + B | 57.0 d | 50.8 c | 54.0 C | 80.2 b | 76.4 b | 78.3 BC | 137.2 c | 127.2 b | 132.2 B |
Treatments | Rice Straw P Uptake (kg ha−1) | Wheat Straw P Uptake (kg ha−1) | System Straw P Uptake (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 10.0 b | 10.2 a | 10.1 A | 6.2 d | 5.1 bc | 5.7 B | 16.2 b | 15.3 ab | 15.8 B |
ZT + B | 12.4 d | 9.2 a | 10.8 B | 4.4 b | 4.4 b | 4.4 AB | 16.8 b | 13.6 a | 15.2 B |
ZT + R | 12.7 d | 18.0 d | 15.4 D | 3.1 a | 4.5 b | 3.8 A | 15.8 b | 22.5 c | 19.1 C |
ZT + R + B | 11.2 cd | 16.0 c | 13.5 D | 5.7 c | 6.5 c | 6.1 B | 16.9 b | 22.5 c | 19.6 C |
CT | 10.9 bc | 12.9 b | 11.9 C | 3.7 a | 3.8 ab | 3.8 A | 14.7 a | 16.7 b | 15.7 B |
CT + B | 8.9 a | 9.8 a | 9.5 A | 3.2 a | 2.8 a | 3.0 A | 12.0 a | 12.7 a | 12.5 A |
CT + R | 9.0 a | 12.3 b | 10.6 B | 3.4 a | 3.4 a | 3.5 A | 12.4 a | 15.8 ab | 14.1 A |
CT + R + B | 9.1 ab | 9.4 a | 9.3 A | 3.5 a | 3.9 ab | 3.7 A | 12.6 a | 13.3 a | 13.0 A |
Rice grain P uptake (kg ha−1) | Wheat grain P uptake (kg ha−1) | System grain P uptake (kg ha−1) | |||||||
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 9.6 a | 9.2 a | 9.4 A | 19.2 b | 16.8 a | 18.0 B | 28.8 a | 26.0 a | 27.4 A |
ZT + B | 11.6 b | 10.6 a | 11.1 B | 18.6 b | 17.9 a | 18.2 B | 30.2 b | 28.5 b | 29.3 AB |
ZT + R | 12.6 b | 14.1 bc | 13.4 BC | 20.8 c | 21.2 bc | 21.0 C | 33.3 cd | 35.4 d | 34.4 D |
ZT + R + B | 14.5 bc | 13.0 bc | 13.7 BC | 15.6 a | 22.6 c | 19.1 BC | 30.1 b | 35.6 d | 32.8 C |
CT | 11.7 b | 11.4 ab | 11.6 B | 16.1 a | 17.9 a | 17.0 A | 27.9 a | 29.3 b | 28.5 A |
CT + B | 13.4 b | 10.5 a | 12.0 B | 18.1 b | 18.7 ab | 18.4 | 31.5 bc | 29.3 b | 30.4 B |
CT + R | 13.4 b | 14.8 c | 14.1 C | 16.9 a | 15.8 a | 16.3 A | 30.2 b | 30.6 bc | 30.4 B |
CT + R + B | 15.4 c | 12.4 b | 13.9 BC | 19.7 bc | 19.2 b | 19.4 BC | 35.1 d | 31.6 c | 33.3 CD |
Treatments | Rice Straw K Uptake (kg ha−1) | Wheat Straw K Uptake (kg ha−1) | System Straw K Uptake (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 122.8 a | 133.0 b | 127.9 A | 30.0 cd | 29.7 c | 29.9 BC | 152.9 a | 162.7 b | 157.8 A |
ZT + B | 125.0 a | 120.6 a | 122.8 A | 30.8 d | 26.9 b | 28.8 B | 155.7 a | 147.5 a | 151.6 A |
ZT + R | 176.7 c | 148.6 c | 162.7 C | 25.1 b | 37.3 d | 31.0 C | 201.8 c | 185.9 c | 193.7 C |
ZT + R + B | 138.5 b | 173.5 e | 154.9 BC | 35.9 e | 37.5 d | 36.7 D | 164.4 a | 221.0 d | 191.6 C |
CT | 135.6 b | 122.6 a | 129.1 A | 20.5 a | 24.2 a | 22.3 A | 156.1 a | 146.9 a | 151.5 A |
CT + B | 175.7 c | 120.9 a | 147.1 B | 21.8 a | 23.0 a | 22.4 A | 197.6 bc | 143.9 a | 169.6 B |
CT + R | 166.5 c | 169.4 d | 168.4 CD | 23.2 ab | 23.5 a | 23.4 A | 189.7 b | 192.9 c | 191.8 C |
CT + R + B | 176.3 c | 164.2 d | 170.7 D | 28.3 c | 26.4 b | 27.3 B | 204.6 c | 190.7 c | 198.1 C |
Rice grain K uptake (kg ha−1) | Wheat grain K uptake (kg ha−1) | System grain K uptake (kg ha−1) | |||||||
2021 | 2022 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
ZT | 10.5 ab | 16.4 c | 13.5 AB | 17.0 ab | 16.2 a | 16.6 A | 27.6 a | 32.6 bc | 30.1 A |
ZT + B | 9.1 a | 14.0 b | 11.6 A | 19.6 bc | 16.7 a | 18.2 B | 28.7 a | 30.7 b | 29.7 A |
ZT + R | 18.5 de | 16.1 c | 17.3 C | 16.0 a | 19.8 b | 18.0 B | 34.4 c | 35.9 d | 35.3 B |
ZT + R + B | 15.3 c | 15.9 bc | 15.6 B | 20.8 c | 18.8 b | 19.8 B | 36.1 cd | 34.6 cd | 35.4 B |
CT | 13.6 bc | 14.7 b | 14.1 AB | 15.7 a | 16.9 a | 16.3 A | 29.3 ab | 31.6 b | 30.4 A |
CT + B | 17.0 d | 8.7 a | 12.5 A | 16.6 a | 17.1 ab | 16.9 A | 33.6 bc | 25.8 a | 29.4 A |
CT + R | 12.3 b | 19.1 d | 15.6 B | 18.8 bc | 16.6 a | 17.7 A | 31.1 b | 35.7 d | 33.2 B |
CT + R + B | 19.6 e | 15.2 bc | 17.3 C | 17.9 b | 18.5 b | 18.2 B | 37.4 d | 33.7 c | 35.5 B |
Soil pH (Soil:Water:1:2.5) | SOC (g kg−1) | Available N (kg ha−1) | Available P (kg ha−1) | Available K (kg ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depth (cm) | 5–10 | 20–40 | 5–10 | 20–40 | 5–10 | 20–40 | 5–10 | 20–40 | 5–10 | 20–40 | |
Treatment | |||||||||||
Post rice soil | |||||||||||
ZT | 5.5 ab | 6.5 bc | 11.4 a | 2.8 b | 142 a | 44 ab | 13 c | 4 ab | 128 ab | 77 b | |
ZT + B | 5.8 c | 6.6 c | 11.4 a | 2.9 b | 158 b | 47 b | 10 b | 5 b | 128 ab | 93 c | |
ZT + R | 6.1 d | 6.7 c | 11.9 ab | 3.9 c | 176 c | 47 b | 17 d | 7 c | 129 b | 113 d | |
ZT + R + B | 6.4 e | 6.9 d | 11.9 ab | 3.9 c | 174 c | 44 ab | 17 d | 7 c | 130 b | 114 d | |
CT | 5.6 b | 6.2 a | 11.4 a | 1.6 a | 158 b | 41 a | 5 a | 3 a | 123 a | 59 a | |
CT + B | 5.7 bc | 6.5 bc | 11.5 a | 2.9 b | 154 b | 41 a | 9 ab | 4 ab | 127 ab | 60 a | |
CT + R | 5.4 a | 6.4 b | 12.1 b | 2.7 b | 154 b | 47 b | 8 ab | 5 b | 127 ab | 90 c | |
CT + R + B | 5.7 bc | 6.6 c | 12.1 b | 2.9 b | 161 b | 41a | 10 b | 5 b | 129 b | 88 c | |
Post wheat soil | |||||||||||
ZT | 5.5 a | 6.4 ab | 11.5 bc | 2.7 b | 151 b | 76 d | 10 c | 3 a | 61 a | 85 c | |
ZT + B | 6.0 c | 6.7 c | 11.6 c | 3.0 b | 151 b | 44 b | 8 bc | 4 b | 58 a | 90 cd | |
ZT + R | 6.0 c | 6.4 a | 11.9 c | 3.7 c | 172 cd | 47 b | 15 d | 4 b | 148 f | 105 e | |
ZT + R + B | 6.1 c | 6.7 c | 12.1 c | 3.9 c | 174 d | 57 c | 15 d | 4 b | 149 f | 108 e | |
CT | 5.4 a | 6.3 a | 10.9 b | 1.6 a | 158 bc | 38 b | 4 a | 3 a | 106 d | 68 b | |
CT + B | 5.4 a | 6.4 ab | 11.1 b | 3.5 c | 167 c | 63 c | 6 ab | 3 a | 91 c | 62 a | |
CT + R | 5.7 b | 6.7 c | 11.7 c | 2.5 b | 176 d | 44 b | 6 ab | 3 a | 118 e | 96 d | |
CT + R + B | 5.4 a | 6.5 b | 11.7 c | 2.5 b | 177 d | 22 a | 8 bc | 4 b | 120 e | 117 f | |
Initial | 5.5 a | - | 8.7 a | - | 77 a | - | 10 c | - | 81 b | - |
Treatment | Gross Return (USD ha−1) | |||||
---|---|---|---|---|---|---|
Rice (2021) | Rice (2022) | Mean | Wheat (2021–22) | Wheat (2022–23) | Mean | |
ZT | 965 a | 987 a | 976 a | 982 a | 841 a | 912 a |
ZT + B | 948 a | 1079 b | 1013 a | 1060 b | 846 a | 955 a |
ZT + R | 1210 c | 1122 c | 1166 b | 1025 ab | 932 c | 980 b |
ZT + R + B | 1099 c | 1232 d | 1165 b | 1111 c | 1166 e | 1138 c |
CT | 1038 b | 1288 d | 1163 b | 965 a | 992 d | 980 b |
CT + B | 1040 b | 1265 d | 1153 b | 995 a | 889 b | 942 a |
CT + R | 1227 c | 1344 e | 1285 c | 1005 ab | 975 cd | 990 b |
CT + R + B | 1215 c | 1566 f | 1390 d | 1018 ab | 939 c | 980 b |
Net return (USD ha−1) | ||||||
ZT | 553 a | 568 a | 560 a | 645 ab | 504 a | 574 a |
ZT + B | 536 a | 660 b | 598 b | 723 c | 509 a | 617 b |
ZT + R | 798 e | 703 c | 750 d | 688 b | 594 c | 642 bc |
ZT + R + B | 686 c | 813 d | 749 d | 773 d | 829 d | 801 d |
CT | 575 b | 819 d | 697 c | 577 a | 605 c | 592 ab |
CT + B | 578 b | 796 d | 687 c | 607 a | 502 a | 555 a |
CT + R | 765 de | 875 e | 820 e | 617 a | 587 bc | 602 ab |
CT + R + B | 752 d | 1097 f | 925 f | 630 ab | 552 b | 592 ab |
Benefit–cost ratio | ||||||
ZT | 2.34 a | 2.36 a | 2.35 a | 2.91 b | 2.49 b | 2.70 b |
ZT + B | 2.30 a | 2.58 ab | 2.44 a | 3.14 bc | 2.51 b | 2.83 b |
ZT + R | 2.93 c | 2.68 b | 2.81 b | 3.04 b | 2.76 c | 2.90 b |
ZT + R + B | 2.66 b | 2.94 c | 2.80 b | 3.29 c | 3.46 d | 3.37 c |
CT | 2.24 a | 2.75 b | 2.50 a | 2.49 a | 2.56 b | 2.53 a |
CT + B | 2.25 a | 2.70 b | 2.48 a | 2.57 a | 2.29 a | 2.43 a |
CT + R | 2.65 b | 2.87 bc | 2.76 b | 2.59 a | 2.52 b | 2.55 a |
CT + R + B | 2.63 b | 3.34 d | 2.99 b | 2.63 a | 2.42 ab | 2.53 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padbhushan, R.; Sinha, A.K.; Kumar, U.; Bhattacharya, P.M.; Poddar, P. Plant Growth-Promoting Bacteria and Crop Residue in Rice–Wheat System Cultivated with Favorable Tillage Influence Crop Productivity, Nutrient Uptake, Soil Quality, and Profitability in the Terai Agro-Ecological Zone of West Bengal, India. Agronomy 2023, 13, 2454. https://doi.org/10.3390/agronomy13102454
Padbhushan R, Sinha AK, Kumar U, Bhattacharya PM, Poddar P. Plant Growth-Promoting Bacteria and Crop Residue in Rice–Wheat System Cultivated with Favorable Tillage Influence Crop Productivity, Nutrient Uptake, Soil Quality, and Profitability in the Terai Agro-Ecological Zone of West Bengal, India. Agronomy. 2023; 13(10):2454. https://doi.org/10.3390/agronomy13102454
Chicago/Turabian StylePadbhushan, Rajeev, Abhas Kumar Sinha, Upendra Kumar, Prateek M. Bhattacharya, and Parthendu Poddar. 2023. "Plant Growth-Promoting Bacteria and Crop Residue in Rice–Wheat System Cultivated with Favorable Tillage Influence Crop Productivity, Nutrient Uptake, Soil Quality, and Profitability in the Terai Agro-Ecological Zone of West Bengal, India" Agronomy 13, no. 10: 2454. https://doi.org/10.3390/agronomy13102454
APA StylePadbhushan, R., Sinha, A. K., Kumar, U., Bhattacharya, P. M., & Poddar, P. (2023). Plant Growth-Promoting Bacteria and Crop Residue in Rice–Wheat System Cultivated with Favorable Tillage Influence Crop Productivity, Nutrient Uptake, Soil Quality, and Profitability in the Terai Agro-Ecological Zone of West Bengal, India. Agronomy, 13(10), 2454. https://doi.org/10.3390/agronomy13102454