Effect of Multi-Walled Carbon Nanotubes on the Carbon and Nitrogen Cycling Processes in Saline Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Scheme
2.3. Research Methods
2.4. Metagenomic Analysis
2.5. Data Analysis
3. Research Results
3.1. Soil Characteristics and Greenhouse Gas Emissions Related to Carbon and Nitrogen Cycles in Saline Soil
3.2. Changes in Microbial Community Structure in Saline Soil
3.3. Changes of Microbial Carbon and Nitrogen Cycles Function in Saline Soil
3.3.1. Changes of Functional Genes Related to the Carbon Cycles in Saline Soil
3.3.2. Changes of Functional Genes Related to the Nitrogen Cycle in Saline Soil
3.3.3. Responses of Biotic and Abiotic Factors to Carbon and Nitrogen Cycles in Saline Soil
4. Discussion
4.1. Effects of MWCNTs Exposure on Carbon and Nitrogen Cycles in Saline Soil
4.2. Applicability Analysis of MWCNTs in Saline Soil
4.3. Advantages of Functionalized MWCNT-OH in Saline Soil
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Cao, X.; Li, Y.; Sun, Q.; Dai, L.; Li, J.; Guo, Z.; Zhang, L.; Ci, L. Functional Carbon Nanodots Improve Soil Quality and Tomato Tolerance in Saline-Alkali Soils. Sci. Total Environ. 2022, 830, 154817. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and Effective Microorganisms Promote Sesbania Cannabina Growth and Soil Quality in the Coastal Saline-Alkali Soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Tang, J.; Liu, B.; Lyu, H.; Duan, Y.; Yang, Y.; Wang, S.; Li, Z. Rhizosphere Enzyme Activities and Microorganisms Drive the Transformation of Organic and Inorganic Carbon in Saline–Alkali Soil Region. Sci. Rep. 2022, 12, 1314. [Google Scholar] [CrossRef]
- Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed]
- Carmen Martinez-Ballesta, M.; Zapata, L.; Chalbi, N.; Carvajal, M. Multiwalled Carbon Nanotubes Enter Broccoli Cells Enhancing Growth and Water Uptake of Plants Exposed to Salinity. J. Nanobiotechnol. 2016, 14, 42. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Yang, X.; Zhang, Y.; Hui, H.; Zhang, D.; Shu, J. Multi-Walled Carbon Nanotubes Enhanced the Antioxidative System and Alleviated Salt Stress in Grape Seedlings. Sci. Hortic. 2022, 293, 110698. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q. Graphene Ameliorates Saline-Alkaline Stress-Induced Damage and Improves Growth and Tolerance in Alfalfa (Medicago sativa L.). Plant Physiol. Biochem. 2021, 163, 128–138. [Google Scholar] [CrossRef]
- Ahmadian, K.; Jalilian, J.; Pirzad, A. Nano-Fertilizers Improved Drought Tolerance in Wheat under Deficit Irrigation. Agric. Water Manag. 2021, 244, 106544. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in Agri-Food Production: An Overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef]
- Esser, G.; Kattge, J.; Sakalli, A. Feedback of Carbon and Nitrogen Cycles Enhances Carbon Sequestration in the Terrestrial Biosphere. Glob. Change Biol. 2011, 17, 819–842. [Google Scholar] [CrossRef]
- Chung, H.; Son, Y.; Yoon, T.K.; Kim, S.; Kim, W. The Effect of Multi-Walled Carbon Nanotubes on Soil Microbial Activity. Ecotoxicol. Environ. Saf. 2011, 74, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.F.; Jaisi, D.P.; Elimelech, M. Toxicity of Functionalized Single-Walled Carbon Nanotubes on Soil Microbial Communities: Implications for Nutrient Cycling in Soil. Environ. Sci. Technol. 2013, 47, 625–633. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, X.; Liu, Y.; Cui, W.; Sun, Y.; Zhang, S.; Wang, F. Effects of Microplastics and Carbon Nanotubes on Soil Geochemical Properties and Bacterial Communities. J. Hazard. Mater. 2022, 433, 128826. [Google Scholar] [CrossRef]
- Hu, P.; An, J.; Faulkner, M.M.; Wu, H.; Li, Z.; Tian, X.; Giraldo, J.P. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. Acs Nano 2020, 14, 7970–7986. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Son, Y.; Yoon, T.K.; Kang, Y.J.; Kim, W.; Chung, H. High Concentrations of Single-Walled Carbon Nanotubes Lower Soil Enzyme Activity and Microbial Biomass. Ecotoxicol. Environ. Saf. 2013, 88, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Zhou, D.; Tong, M.; Kim, H. Effect of Bacteria on the Transport and Deposition of Multi-Walled Carbon Nanotubes in Saturated Porous Media. Environ. Pollut. 2016, 213, 895–903. [Google Scholar] [CrossRef]
- Zhang, M.; Bradford, S.A.; Simunek, J.; Vereecken, H.; Klumpp, E. Roles of Cation Valance and Exchange on the Retention and Colloid-Facilitated Transport of Functionalized Multi-Walled Carbon Nanotubes in a Natural Soil. Water Res. 2017, 109, 358–366. [Google Scholar] [CrossRef]
- Kerfahi, D.; Tripathi, B.M.; Singh, D.; Kim, H.; Lee, S.; Lee, J.; Adams, J.M. Effects of Functionalized and Raw Multi-Walled Carbon Nanotubes on Soil Bacterial Community Composition. PLoS ONE 2015, 10, e0123042. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, X.; Chen, A.; Chen, Y.; He, G.; Chen, H. Hydroxyl Functionalization of Single-Walled Carbon Nanotubes Causes Inhibition to the Bacterial Denitrification Process. Chem. Eng. J. 2015, 279, 47–55. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.; Pommerening, B.; Chaussod, R.; Brookes, P. Measurement of Soil Microbial Biomass C by Fumigation Extraction—An Automated Procedure. Soil Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial Diversity Drives Multifunctionality in Terrestrial Ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ma, T.; Wang, Y.; Jia, J.; Jia, Y.; Liang, C.; Feng, X. Assessing the Accumulation Efficiency of Various Microbial Carbon Components in Soils of Different Minerals. Geoderma 2022, 407, 115562. [Google Scholar] [CrossRef]
- Anderson, T.; Domsch, K. The Metabolic Quotient for Co2 (Qco2) as a Specific Activity Parameter to Assess the Effects of Environmental-Conditions, Such as Ph, on the Microbial Biomass of Forest Soils. Soil Biol. Biochem. 1993, 25, 393–395. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, M. Effect of Bio-Organic Fertilizers Partially Substituting Chemical Fertilizers on Labile Organic Carbon and Bacterial Community of Citrus Orchard Soils. Plant Soil 2023, 483, 255–272. [Google Scholar] [CrossRef]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of Biochar on Mineralisation of C and N from Soil and Willow Litter and Its Relationship with Microbial Community Biomass and Structure. Biol. Fertil. Soils 2014, 50, 695–702. [Google Scholar] [CrossRef]
- Dharni, S.; Sanchita; Unni, S.M.; Kurungot, S.; Samad, A.; Sharma, A.; Patra, D.D. In Vitro and in Silico Antifungal Efficacy of Nitrogen- Doped Carbon Nanohorn (NCNH) against Rhizoctonia Solani. J. Biomol. Struct. Dyn. 2016, 34, 152–162. [Google Scholar] [CrossRef]
- Jin, L.; Son, Y.; DeForest, J.L.; Kang, Y.J.; Kim, W.; Chung, H. Single-Walled Carbon Nanotubes Alter Soil Microbial Community Composition. Sci. Total Environ. 2014, 466, 533–538. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of Heavy Metal Pollution and the Effect on Bacterial Community in Acidic and Neutral Soils. Ecol. Indic. 2020, 117, 106626. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Lin, Q.; Yuan, M.; Xu, D.; Yu, H.; Hu, Y.; Duan, J.; Li, X.; He, Z.; et al. Responses of the Functional Structure of Soil Microbial Community to Livestock Grazing in the Tibetan Alpine Grassland. Glob. Change Biol. 2013, 19, 637–648. [Google Scholar] [CrossRef]
- Qin, F.H.; Zhou, Y.; Yuan, Z.; Jin, F.; Xi, L.C.; Mei, W.Y.; Qing, P.S.; Dong, J.X. Subchronic Oral Toxicity Evaluation of Lanthanum: A 90-Day, Repeated Dose Study in Rats. Biomed. Environ. Sci. 2018, 31, 363–375. [Google Scholar] [CrossRef]
- Su, H.; Zhang, D.; Antwi, P.; Xiao, L.; Zhang, Z.; Deng, X.; Lai, C.; Zhao, J.; Deng, Y.; Liu, Z.; et al. Adaptation, Restoration and Collapse of Anammox Process to La(III) Stress: Performance, Microbial Community, Metabolic Function and Network Analysis. Bioresour. Technol. 2021, 325, 124731. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.P.; Huda, S.; Kowalczyk, B.; Grzybowski, B.A. Controlled PH Stability and Adjustable Cellular Uptake of Mixed-Charge Nanoparticles. J. Am. Chem. Soc. 2013, 135, 6392–6395. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Schloter, M.; Brueggemann, N. Accumulation of NO2- during Periods of Drying Stimulates Soil N2O Emissions during Subsequent Rewetting. Eur. J. Soil Sci. 2018, 69, 936–946. [Google Scholar] [CrossRef]
- You, T.; Liu, D.; Chen, J.; Yang, Z.; Dou, R.; Gao, X.; Wang, L. Effects of Metal Oxide Nanoparticles on Soil Enzyme Activities and Bacterial Communities in Two Different Soil Types. J. Soils Sediments 2018, 18, 211–221. [Google Scholar] [CrossRef]
- Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2720–2764. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Zeng, G.; Gong, J.; Xiao, R.; Chen, M.; Tang, X.; Ye, S.; Shen, M. Effects of Hydroxyl, Carboxyl, and Amino Functionalized Carbon Nanotubes on the Functional Diversity of Microbial Community in Riverine Sediment. Chemosphere 2021, 262, 128053. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Costello, E.K.; Nemergut, D.R.; Cleveland, C.C.; Reed, S.C.; Weintraub, M.N.; Meyer, A.F.; Martin, A.M. Biogeochemical Consequences of Rapid Microbial Turnover and Seasonal Succession in Soil. Ecology 2007, 88, 1379–1385. [Google Scholar] [CrossRef]
- Yang, X.; Liu, D.; Fu, Q.; Li, T.; Hou, R.; Li, Q.; Li, M.; Meng, F. Characteristics of Greenhouse Gas Emissions from Farmland Soils Based on a Structural Equation Model: Regulation Mechanism of Biochar. Environ. Res. 2022, 206, 112303. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuels Bioprod. Biorefining Biofpr. 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Ge, Y.; Priester, J.H.; Mortimer, M.; Chang, C.H.; Ji, Z.; Schimel, J.P.; Holden, P.A. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil. Environ. Sci. Technol. 2016, 50, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
TOC (g/kg) | Total C (g/kg) | MBC (mg/kg) | Total N (g/kg) | MBN (mg/kg) | NO3− (mg/kg) | NH4+ (mg/kg) | N2O (kg/ha) | CO2 (kg/ha) | CH4 (kg/ha) | Exposure Time | |
---|---|---|---|---|---|---|---|---|---|---|---|
CK | 4.64 ± 0.53 a | 14.88 ± 0.28 c | 10.62 ± 1.23 b | 23.71 ± 0.15 b | 0.74 ± 0.04 a | 58.02 ± 0.32 ab | 1.01 ± 0.22 a | - | - | - | 7 day |
HMW1 | 3.75 ± 0.28 a | 26.69 ± 1.59 a | 20.56 ± 1.37 a | 29.39 ± 0.60 a | 2.36 ± 0.98 a | 56.47 ± 1.23 ab | 1.00 ± 0.07 a | - | - | - | |
HMW2 | 3.76 ± 0.20 a | 19.70 ± 1.39 b | 16.21 ± 3.72 ab | 23.75 ± 0.78 b | 1.50 ± 0.79 a | 60.76 ± 3.80 a | 1.10 ± 0.05 a | - | - | - | |
MW1 | 5.37 ± 1.20 a | 20.41 ± 0.76 b | 17.57 ± 2.71 ab | 24.44 ± 0.40 b | 2.83 ± 1.71 a | 53.16 ± 1.40 b | 1.26 ± 0.16 a | - | - | - | |
MW2 | 3.85 ± 0.24 a | 18.43 ± 1.40 bc | 14.62 ± 3.45 ab | 23.26 ± 0.36 b | 1.10 ± 0.68 a | 61.17 ± 2.32 a | 1.35 ± 0.16 a | - | - | - | |
CK | 5.08 ± 0.27 a | 13.22 ± 0.25 b | 12.52 ± 0.48 b | 25.03 ± 0.97 b | 0.81 ± 0.42 b | 72.47 ± 4.53 b | 0.32 ± 0.05 b | 0.58 ± 0.02 a | 757.94 ± 27.82 b | 1.18 ± 0.26 ab | 56 day |
HMW1 | 3.68 ± 0.27 b | 17.20 ± 0.23 a | 15.67 ± 0.53 a | 27.95 ± 0.61 a | 2.60 ± 0.43 a | 86.73 ± 3.72 a | 0.48 ± 0.05 a | 0.56 ± 0.01 a | 841.21 ± 48.83 a | 1.08 ± 0.08 b | |
HMW2 | 3.36 ± 0.33 b | 16.15 ± 0.58 b | 12.08 ± 2.46 b | 27.85 ± 0.32 a | 1.39 ± 0.76 b | 90.33 ± 3.86 a | 0.53 ± 0.07 a | 0.56 ± 0.01 a | 735.33 ± 176.75 ab | 1.09 ± 0.21 b | |
MW1 | 4.29 ± 0.41 ab | 15.88 ± 0.55 b | 15.33 ± 1.84 ab | 28.72 ± 0.38 a | 2.15 ± 0.99 ab | 87.25 ± 0.96 a | 0.55 ± 0.03 a | 0.58 ± 0.00 a | 726.06 ± 130.19 ab | 0.63 ± 0.35 b | |
MW2 | 3.49 ± 0.15 b | 15.73 ± 1.01 b | 12.28 ± 3.36 ab | 28.75 ± 0.82 a | 1.69 ± 0.47 b | 81.49 ± 2.11 a | 0.60 ± 0.02 a | 0.57 ± 0.01 a | 716.41 ± 73.59 b | 1.65 ± 0.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; Wei, C.; Hu, Y.; Zeng, W.; Ao, C.; Huang, J. Effect of Multi-Walled Carbon Nanotubes on the Carbon and Nitrogen Cycling Processes in Saline Soil. Agronomy 2023, 13, 2455. https://doi.org/10.3390/agronomy13102455
Zuo Y, Wei C, Hu Y, Zeng W, Ao C, Huang J. Effect of Multi-Walled Carbon Nanotubes on the Carbon and Nitrogen Cycling Processes in Saline Soil. Agronomy. 2023; 13(10):2455. https://doi.org/10.3390/agronomy13102455
Chicago/Turabian StyleZuo, Yutian, Chenchen Wei, Yue Hu, Wenzhi Zeng, Chang Ao, and Jiesheng Huang. 2023. "Effect of Multi-Walled Carbon Nanotubes on the Carbon and Nitrogen Cycling Processes in Saline Soil" Agronomy 13, no. 10: 2455. https://doi.org/10.3390/agronomy13102455
APA StyleZuo, Y., Wei, C., Hu, Y., Zeng, W., Ao, C., & Huang, J. (2023). Effect of Multi-Walled Carbon Nanotubes on the Carbon and Nitrogen Cycling Processes in Saline Soil. Agronomy, 13(10), 2455. https://doi.org/10.3390/agronomy13102455