Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout
2.2. Field and Reference Measurements
2.2.1. Field Measurements
2.2.2. Characterization of the Climate and Grapevine Water Status
2.2.3. Reference Actual Crop Evapotranspiration Measurements
2.3. Developed Methodology
2.3.1. Data Processing and Analysis
2.3.2. Modeling Vineyard Actual Evapotranspiration under Non-Standard Conditions
- (a)
- A non-parametric kernel-based probabilistic model (Gaussian process regression model—GPR), using either an exponential kernel function or a squared exponential kernel function;
- (b)
- A support vector machine (SVM) regression model using either a linear kernel function, a quadratic kernel function, a cubic kernel function, or a medium Gaussian kernel function;
- (c)
- An ensemble of regression trees (ERT), either using least-squares boosting regression trees learners or using bootstrap-aggregating (bagging) regression trees learners.
2.4. Methodology to Evaluate the Predictive Accuracy of MLA Models in Estimating Actual Crop Evapotranspiration
2.4.1. Predictive Accuracy of MLA Models to Estimate Actual Crop Evapotranspiration
2.4.2. Predictive Accuracy of the FAO-56 Kc-ET0 Model to Estimate Actual Crop Evapotranspiration
2.4.3. Comparative Analysis of the Predictive Accuracy of MLA Models and the FAO-56 Kc-ET0 Method for Estimating Actual Crop Evapotranspiration
3. Results and Discussion
3.1. Characterization and Correlations of Actual Crop Evapotranspiration Predictors
3.2. Evaluation of MLA Models in Estimating Actual Crop Evapotranspiration
3.3. Evaluation of FAO-56 Kc-ET0 Method to Estimate Actual Crop Evapotranspiration
3.4. Comparison of the Prediction Accuracy of MLA and FAO-56 Kc-ET0 Method to Estimate Actual Crop Evpotranspiration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change. 2022. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap3_FINAL.pdf (accessed on 30 May 2023).
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Vaz, M.; Escalona, J.M.; Egipto, R.; Lopes, C.M.; Medrano, H.; Chaves, M.M. Modern viticulture in Southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agr. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Chaves, M.M.; Costa, J.M.; Zarrouk, O.; Pinheiro, C.; Lopes, C.M.; Pereira, J.S. Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? Plant Sci. 2016, 251, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, T.; Lebon, E.; Coupel-Ledru, A.; Marguerit, E.; Rossdeutsch, L.; Ollat, N. Adapting plant material to face water stress in vineyards: Which physiological targets for an optimal control of plant water status? OENO One 2017, 51, 167–179. [Google Scholar] [CrossRef]
- Levin, A.D.; Williams, L.E.; Mathews, M.A. A continuum of stomatal responses to water deficits among 17 wine grape cultivars (Vitis vinifera). Funct. Plant Biol. 2019, 47, 11–25. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M. Principles of Environmental Physics, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2013; ISBN 978-0-12-386910-4. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56, 1st ed.; FAO: Rome, Italy, 1998; Available online: http://www.fao.org/3/X0490E/X0490E00.htm (accessed on 4 May 2023).
- Pereira, A.R. The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agr. For. Meteorol. 2004, 125, 305–313. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agr. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Calculating the water requirements of irrigated crops in Australia using the Matt-Shuttleworth approach. Trans. ASABE 2009, 52, 1895–1906. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontína, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agr. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Schymanski, S.J.; Or, D. Leaf-scale experiments reveal an important omission in the Penman–Monteith equation. Hydrol. Earth Syst. Sci. 2017, 21, 685–706. [Google Scholar] [CrossRef]
- Forster, M.A.; Kim, T.D.H.; Kunz, S.; Abuseif, M.; Chulliparambil, V.R.; Srichandra, J.; Michael, R.N. Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration. Agr. For. Meteorol. 2022, 315, 108824. [Google Scholar] [CrossRef]
- Paço, T.A.; Ferreira, I.; Conceição, N. Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agr. Water Manag. 2006, 85, 305–313. [Google Scholar] [CrossRef]
- Picón-Toro, J.; González-Dugo, V.; Uriarte, D.; Mancha, L.A.; Testi, L. Effects of canopy size and water stress over the crop coefficient of a “Tempranillo” vineyard in south-western Spain. Irrig. Sci. 2012, 30, 419–432. [Google Scholar] [CrossRef]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agr. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Orgaz, F.; Testi, L.; Fereres, E. Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur. J. Agron. 2000, 13, 155–163. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Irmak, S.; Cuenca, R.H. Special issue on evapotranspiration measurement and modeling. Irrig. Sci. 2009, 28, 1–3. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N.; Lorenzi, F. Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agr. For. Meteorol. 2021, 128, 199–209. [Google Scholar] [CrossRef]
- Nyolei, D.; Diels, J.; Mbilinyi, B.; Mbungu, W.; van Griensven, A. Evapotranspiration simulation from a sparsely vegetated agricultural field in a semi-arid agro-ecosystem using Penman-Monteith models. Agr. For. Meteorol. 2021, 303, 108370. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. Sn Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K. Estimation of evapotranspiration with three different machine learning models and limited meteorological variables. Agronomy 2023, 13, 1048. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar]
- Dou, X.; Yang, Y. Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Comput. Electron. Agr. 2018, 148, 95–106. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agr. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Yamaç, S.S.; Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agr. Water Manag. 2020, 228, 105875. [Google Scholar] [CrossRef]
- WMO. Guide to Instruments and Methods of Observation. Measurement of Meteorological Variables; World Meteorological Organization: Geneva, Switzerland, 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=10179 (accessed on 10 May 2023).
- van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.-P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Ferreira, M.I. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 38. [Google Scholar] [CrossRef]
- Torres, A.F.; Walker, W.R.; McKee, M. Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agr. Water Manag. 2011, 98, 553–562. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, Y.; Wang, Z. Accessible remote sensing data based reference evapotranspiration estimation modelling. Agr. Water Manag. 2018, 210, 59–69. [Google Scholar] [CrossRef]
- Fernández-López, A.; Marín-Sánchez, D.; García-Mateos, G.; Ruiz-Canales, A.; Ferrández-Villena-García, M.; Molina-Martínez, J.M. A Machine Learning Method to Estimate Reference Evapotranspiration Using Soil Moisture Sensors. Appl. Sci. 2020, 10, 1912. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, G.; Hoedjes, J.; Ezzahar, J.; Duchemin, B.; Jacob, F. Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agr. Water Manag. 2008, 95, 309–321. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Monteiro, T.; Nadia Castanheira, N.; Paz, A.; Gonçalves, M.C.; Pereira, L.S. Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal. Agr. Water Manag. 2023, 279, 108209. [Google Scholar] [CrossRef]
Measurement | Periodicity and Data Integration | Units | Source |
---|---|---|---|
Stomatal conductance to water vapor (gsw) | Hourly from 8 a.m. to 7 p.m. | m·s−1 | Steady-state porometer (Model LI-1600, LI-COR, Lincoln, NE, USA |
Air temperature (Tair) | Every minute and averaged every 5 min | °C | Temperature and relative humidity probe, model CS215-PWS (Campbell Scientific, Logan, UT, USA) connected to a datalogger (CR1000, Campbell Scientific, Inc.) |
Air relative humidity (RH) | % | ||
Wind speed (U) | Every 1/10 s and averaged every minute | m·s−1 | 3D sonic anemometer (model Gill Windmaster Pro, Gill Instruments Limited, Hampshire, UK) |
Net radiation (Rn) | Every minute and averaged every 5 min | W·m−2 | Net radiometer, model NR2, (Delta-T Devices, Cambridge, UK) connected to a datalogger (CR1000, Campbell Scientific, Inc., Logan, UT, USA) |
Soil heat flux (G) | Every minute and averaged every 5 min | W·m−2 | Hukseflux heat flux plate, model HFP01 (Hukseflux Thermal Sensors, Delft, The Netherlands) connected to a datalogger (CR1000, Campbell Scientific, Inc., Logan, UT, USA) |
Vapor pressure deficit (VPD) | Every minute and averaged every 5 min | kPa | VPD = es − ea (2) (3) (4) es = (5) where (es) is the saturation and (ea) is the actual vapor pressure, for a given period [9] |
Rainfall (mm) | ||||
---|---|---|---|---|
Year (i − 1) | Year (i) | Accum | ||
Year (i) | Oct–Dec | Jan–May | Jun–Aug | Oct–Aug |
2019 | 204.4 | 133.6 | 3.4 | 341.4 |
2020 | 226.0 | 239.0 | 1.2 | 466.2 |
ΨPD (MPa) | ||
---|---|---|
DAY | Avg | SE |
20 August 2019 (before irrigation) | −0.60 | 0.012 |
22 August 2019 (after irrigation) | −0.52 | 0.021 |
24 July 2020 (after irrigation) | −0.42 | 0.020 |
29 July 2020 (before irrigation) | −0.55 | 0.017 |
31 July 2020 (after irrigation) | −0.47 | 0.017 |
Variable | Training and Testing Data Set | |||||
---|---|---|---|---|---|---|
Valid N | Mean | Min | Max | SD | CV | |
gsw (mol·H2O m−2·s−1) | 236 | 0.081 | 0.004 | 0.254 | 0.041 | 50.5 |
Rn − G (W·m−2) | 236 | 425.0 | 56.3 | 779.7 | 159.0 | 37.4 |
U (m·s−1) | 236 | 1.69 | 0.57 | 4.16 | 0.72 | 42.2 |
VPD (kPa) | 236 | 3.36 | 0.46 | 5.62 | 1.43 | 42.4 |
ETc act meas (mm·h−1) | 236 | 0.167 | 0.020 | 0.388 | 0.066 | 39.5 |
Variable | 2019 Validation Dataset | |||||
Valid N | Mean | Min | Max | SD | CV | |
gsw (mol·H2O m−2·s−1) | 174 | 0.085 | 0.014 | 0.249 | 0.050 | 58.6 |
Rn − G (W·m−2) | 174 | 455.5 | 189.1 | 767.5 | 159.1 | 34.9 |
U (m·s−1) | 174 | 1.81 | 0.52 | 4.45 | 0.83 | 45.6 |
VPD (kPa) | 174 | 3.47 | 0.41 | 5.70 | 1.58 | 45.6 |
ETc act meas (mm·h−1) | 174 | 0.176 | 0.025 | 0.369 | 0.072 | 41.0 |
Variable | 2020 Validation Dataset | |||||
Valid N | Mean | Min | Max | SD | CV | |
gsw (mol·H2O m−2·s−1) | 185 | 0.079 | 0.004 | 0.149 | 0.030 | 38.0 |
Rn − G (W·m−2) | 185 | 403.7 | 82.0 | 665.4 | 145.1 | 35.9 |
U (m·s−1) | 185 | 1.59 | 0.73 | 3.05 | 0.49 | 31.2 |
VPD (kPa) | 185 | 3.17 | 0.76 | 5.22 | 1.26 | 39.6 |
ETc act meas (mm·h−1) | 185 | 0.157 | 0.043 | 0.280 | 0.058 | 37.3 |
Machine Learning Algorithms | R2 |
---|---|
GPR Exponential kernel function | 0.992 |
GPR Squared Exponential kernel function | 0.899 |
SVM Linear kernel function | 0.746 |
SVM Quadratic kernel function | 0.819 |
SVM Cubic kernel function | 0.878 |
SVM Medium Gaussian kernel function | 0.925 |
Ensemble Boosted Trees | 0.934 |
Ensemble Bagged Trees | 0.910 |
Machine Learning Algorithms | Year Dataset | RMSE (mm·h−1) | |E| (%) |
---|---|---|---|
GPR Exponential kernel function | 2019 | 0.019 | 4.6 |
2020 | 0.026 | 1.8 | |
GPR Squared Exponential kernel function | 2019 | 0.020 | 6.3 |
2020 | 0.027 | 0.9 | |
SVM Linear kernel function | 2019 | 0.026 | 0.9 |
2020 | 0.042 | 1.1 | |
SVM Quadratic kernel function | 2019 | 0.022 | 1.9 |
2020 | 0.032 | 3.5 | |
SVM Cubic kernel function | 2019 | 0.022 | 4.9 |
2020 | 0.031 | 1.5 | |
SVM Medium Gaussian kernel function | 2019 | 0.019 | 5.4 |
2020 | 0.029 | 0.7 | |
Ensemble Boosted Trees | 2019 | 0.020 | 0.2 |
2020 | 0.030 | 5.1 | |
Ensemble Bagged Trees | 2019 | 0.020 | 4.5 |
2020 | 0.030 | 1.3 |
R2 | RMSE (mm·h−1) | |E| (%) | |||
---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | ||
FAO-56 Kc-ET0 | 0.736 | 0.043 | 0.083 | 37.0 | 22.6 |
GPR Exponential kernel function | 0.805 | 0.019 | 0.026 | 4.6 | 1.8 |
SVM Medium Gaussian kernel function | 0.812 | 0.019 | 0.030 | 5.4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egipto, R.; Aquino, A.; Costa, J.M.; Andújar, J.M. Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo. Agronomy 2023, 13, 2463. https://doi.org/10.3390/agronomy13102463
Egipto R, Aquino A, Costa JM, Andújar JM. Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo. Agronomy. 2023; 13(10):2463. https://doi.org/10.3390/agronomy13102463
Chicago/Turabian StyleEgipto, Ricardo, Arturo Aquino, Joaquim Miguel Costa, and José Manuel Andújar. 2023. "Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo" Agronomy 13, no. 10: 2463. https://doi.org/10.3390/agronomy13102463
APA StyleEgipto, R., Aquino, A., Costa, J. M., & Andújar, J. M. (2023). Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo. Agronomy, 13(10), 2463. https://doi.org/10.3390/agronomy13102463