Effects of Atom Search-Optimized Thornthwaite Potential Evapotranspiration on Root and Shoot Systems in Controlled Carica papaya Cultivation
Abstract
:1. Introduction
- Modification and optimization of the general Thornthwaite evapotranspiration model using physics-based (ASO and MVO) and evolutionary-based optimization (DE) concepts to make it site-specific and crop-specific. This resulted in a fitness function resembling PETTh-mod with average monthly possible sunshine hour, mean temperature, heat index, and extended heat index as the exogenous variables. Optimizing the Thornthwaite PET configuration has the potential to induce crop growth and sustainability in precision farming.
- Elucidation of electrophysiological signals from papaya stem as affected by environment temperature, which was confirmed to be the most sensitive when the ASO-based Thornthwaite PET-controlled environment parameters were physically configured. This action potential coming from the papaya stem membrane serves as an indication of its sensitivity to external stressors.
- Comparison of resulting papaya leaf structure and chlorophyll, and root and stem vascular vessels and external architecture as influenced by temperature inside a controlled environment preset by ASO, DE, and MVO. This would substantiate the generated global best combinations of environmental parameters by advanced physics-based metaheuristics and evolutionary computing models integrated with Thornthwaite PET.
- Establishing a temperature-controlled environment agriculture for the Sinta F1 papaya genotype by inducing its natural vegetative seedling growth for year-round production.
2. Materials and Methods
2.1. Plant Material and Cultivation Condition
2.2. Thornthwaite Evapotranspiration Optimization Using Advanced Metaheuristics
2.3. Papaya Electrophysiological Signal Extraction
2.4. Plant Phenotyping and Vascular Tissues Microscopy
2.5. Statistical Analysis
3. Results
3.1. Dynamic Relationships of Cultivation Temperature and Papaya Phenes
3.2. Differential Impacts of ASO, DE, and MVO-Optimized Thornthwaite Evapotranspiration Model to Papaya Seedling Phenes and Anatomy
3.3. Dynamics of Papaya Electrophysiological Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strock, C.F.; Burridge, J.D.; Niemiec, M.D.; Brown, K.M.; Lynch, J.P. Root Metaxylem and Architecture Phenotypes Integrate to Regulate Water Use under Drought Stress. Plant Cell Environ. 2021, 44, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, V.M.; Mora-Newcomer, E.; Gutiérrez-Soto, M.V. Biology of the Papaya Plant. In Genetics and Genomics of Papaya; Springer: New York, NY, USA, 2014; pp. 17–33. [Google Scholar]
- de Lima, R.S.N.; de Assis Figueiredo, F.A.M.M.; Martins, A.O.; de Deus, B.C.D.S.; Ferraz, T.M.; de Assis Gomes, M.D.M.; de Sousa, E.F.; Glenn, D.M.; Campostrini, E. Partial Rootzone Drying (PRD) and Regulated Deficit Irrigation (RDI) Effects on Stomatal Conductance, Growth, Photosynthetic Capacity, and Water-Use Efficiency of Papaya. Sci. Hortic. 2015, 183, 13–22. [Google Scholar] [CrossRef]
- Cabrera, J.A.; Ritter, A.; Raya, V.; Pérez, E.; Lobo, M.G. Papaya (Carica papaya L.) Phenology under Different Agronomic Conditions in the Subtropics. Agriculture 2021, 11, 173. [Google Scholar] [CrossRef]
- Olubode, O.O.; Odeyemi, O.M.; Aiyelaagbe, I.O.O. Influence of Environmental Factors and Production Practices on the Growth and Productivity of Pawpaw (Carica papaya L.) in South Western Nigeria—A Review. Fruits 2016, 71, 341–361. [Google Scholar] [CrossRef]
- Campostrini, E.; Schaffer, B.; Ramalho, J.D.C.; González, J.C.; Rodrigues, W.P.; da Silva, J.R.; Lima, R.S.N. Chapter 19—Environmental Factors Controlling Carbon Assimilation, Growth, and Yield of Papaya (Carica papaya L.) Under Water-Scarcity Scenarios. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García Tejero, I.F., Durán Zuazo, V.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 481–505. ISBN 978-0-12-813164-0. [Google Scholar]
- Sharma, V. Impact Climate Change on Crop Water Requirement of Different Orchard Crops for Agro-Climatic Condition of Udaipur, Rajasthan. Indian J. Ecol. 2020, 47, 12–16. [Google Scholar]
- Migliaccio, K.W.; Schaffer, B.; Crane, J.H.; Davies, F.S. Plant Response to Evapotranspiration and Soil Water Sensor Irrigation Scheduling Methods for Papaya Production in South Florida. Agric. Water Manag. 2010, 97, 1452–1460. [Google Scholar] [CrossRef]
- Snyder, R.L.; Marras, S.; Spano, D. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements. AGU Fall Meet. Abstr. 2013, 2013, GC13B-1068. [Google Scholar]
- Nistor, M.-M.; Mîndrescu, M.; Petrea, D.; Nicula, A.-S.; Rai, P.K.; Benzaghta, M.A.; Dezsi, Ş.; Hognogi, G.; Porumb-Ghiurco, C.G. Climate Change Impact on Crop Evapotranspiration in Turkey during the 21st Century. Meteorol. Appl. 2019, 26, 442–453. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate Changes and Potential Impacts on Postharvest Quality of Fruit and Vegetable Crops: A Review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Subedi, S. Climate Change Effects of Nepalese Fruit Production. MedCrave 2019, 9, 141–145. [Google Scholar] [CrossRef]
- Joshi, V.P.; Chauhan, P.M. Combating Climate Change through Off-Seasonally Raising Seedling of Papaya (Carica papaya L.) in Protected Environment. Res. Crop. 2016, 17, 298. [Google Scholar] [CrossRef]
- Carvalho, E.V.; Cifuentes-Arenas, J.C.; Raiol-Junior, L.L.; Stuchi, E.S.; Girardi, E.A.; Lopes, S.A. Modeling Seasonal Flushing and Shoot Growth on Different Citrus Scion-Rootstock Combinations. Sci. Hortic. 2021, 288, 110358. [Google Scholar] [CrossRef]
- Orlandi, F.; Bonofiglio, T.; Romano, B.; Fornaciari, M. Qualitative and Quantitative Aspects of Olive Production in Relation to Climate in Southern Italy. Sci. Hortic. 2012, 138, 151–158. [Google Scholar] [CrossRef]
- Mobe, N.T.; Dzikiti, S.; Dube, T.; Mazvimavi, D.; Ntshidi, Z. Modelling Water Utilization Patterns in Apple Orchards with Varying Canopy Sizes and Different Growth Stages in Semi-Arid Environments. Sci. Hortic. 2021, 283, 110051. [Google Scholar] [CrossRef]
- Kumar, S.; Dey, P. Effects of Different Mulches and Irrigation Methods on Root Growth, Nutrient Uptake, Water-Use Efficiency and Yield of Strawberry. Sci. Hortic. 2011, 127, 318–324. [Google Scholar] [CrossRef]
- Ghaderi, A.; Dasineh, M.; Shokri, M.; Abraham, J. Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology 2020, 7, 36. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Malik, A.; Maroufpoor, S. Modeling Long-Term Dynamics of Crop Evapotranspiration Using Deep Learning in a Semi-Arid Environment. Agric. Water Manag. 2020, 241, 106334. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. Swarm-Based Optimization as Stochastic Training Strategy for Estimation of Reference Evapotranspiration Using Extreme Learning Machine. Agric. Water Manag. 2021, 243, 106447. [Google Scholar] [CrossRef]
- Jia, Y.; Su, Y.; Zhang, R.; Zhang, Z.; Lu, Y.; Shi, D.; Xu, C.; Huang, D. Optimization of an Extreme Learning Machine Model with the Sparrow Search Algorithm to Estimate Spring Maize Evapotranspiration with Film Mulching in the semiarid Regions of China. Comput. Electron. Agric. 2022, 201, 107298. [Google Scholar] [CrossRef]
- Pandorfi, H.; Bezerra, A.C.; Atarassi, R.T.; Vieira, F.M.C.; Barbosa Filho, J.A.D.; Guiselini, C. Artificial Neural Networks Employment in the Prediction of Evapotranspiration of Greenhouse-Grown Sweet Pepper. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 507–512. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid Particle Swarm Optimization with Extreme Learning Machine for Daily Reference Evapotranspiration Prediction from Limited Climatic Data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Ma, X.; Fan, J.; Zhang, F. Daily Reference Evapotranspiration Prediction Based on Hybridized Extreme Learning Machine Model with Bio-Inspired Optimization Algorithms: Application in Contrasting Climates of China. J. Hydrol. 2019, 577, 123960. [Google Scholar] [CrossRef]
- Gao, L.; Gong, D.; Cui, N.; Lv, M.; Feng, Y. Evaluation of Bio-Inspired Optimization Algorithms Hybrid with Artificial Neural Network for Reference Crop Evapotranspiration Estimation. Comput. Electron. Agric. 2021, 190, 106466. [Google Scholar] [CrossRef]
- Hernández-Salazar, J.A.; Hernández-Rodríguez, D.; Hernández-Cruz, R.A.; Ramos-Fernández, J.C.; Márquez-Vera, M.A.; Trejo-Macotela, F.R. Estimation of the Evapotranspiration Using ANFIS Algorithm for Agricultural Production in Greenhouse. In Proceedings of the 2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT), Queretaro, Mexico, 27–28 November 2019; pp. 1–5. [Google Scholar]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Arcel, M.M.; Lin, X.; Huang, J.; Wu, J.; Zheng, S. The Application of LED Illumination and Intelligent Control in Plant Factory, a New Direction for Modern Agriculture: A Review. J. Phys. Conf. Ser. 2021, 1732, 012178. [Google Scholar] [CrossRef]
- Siropyan, M.; Celikel, O.; Pinarer, O. Artificial Intelligence Driven Vertical Farming Management System. In Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016; Ao, S.I., Douglas, C., Grundfest, W.S., Eds.; Newswood Limited: San Francisco, CA, USA, 2016. [Google Scholar]
- Hemming, S.; de Zwart, F.; Elings, A.; Righini, I.; Petropoulou, A. Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors 2019, 19, 1807. [Google Scholar] [CrossRef] [PubMed]
- Kasatkin, V.; Kasatkina, N.; Svalova, M. Intelligent Process Control System of Water Treatment for Nutrient Solutions of Drip Irrigation; Atlantis Press: Paris, France, 2019; pp. 289–292. [Google Scholar]
- Roy, D.K.; Lal, A.; Sarker, K.K.; Saha, K.K.; Datta, B. Optimization Algorithms as Training Approaches for Prediction of Reference Evapotranspiration Using Adaptive Neuro Fuzzy Inference System. Agric. Water Manag. 2021, 255, 107003. [Google Scholar] [CrossRef]
- Hekimoğlu, B. Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm. IEEE Access 2019, 7, 38100–38114. [Google Scholar] [CrossRef]
- Hao, Z.-F.; Guo, G.-H.; Huang, H. A Particle Swarm Optimization Algorithm with Differential Evolution. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 2, pp. 1031–1035. [Google Scholar]
- Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks. Electronics 2022, 11, 1287. [Google Scholar] [CrossRef]
- Gharehbaghi, A.; Kaya, B. Calibration and Evaluation of Six Popular Evapotranspiration Formula Based on the Penman-Monteith Model for Continental Climate in Turkey. Phys. Chem. Earth Parts A/B/C 2022, 127, 103190. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhao, L.; Han, L.; Hu, X.; Cai, H.; Gong, D.; Xing, L.; Chen, X.; Zhu, B.; et al. Estimation of Maize Evapotranspiration in Semi-Humid Regions of Northern China Using Penman-Monteith Model and Segmentally Optimized Jarvis Model. J. Hydrol. 2022, 607, 127483. [Google Scholar] [CrossRef]
- de Guia, J.D.; Concepcion, R.S.; Calinao, H.A.; Alejandrino, J.; Dadios, E.P.; Sybingco, E. Using Stacked Long Short Term Memory with Principal Component Analysis for Short Term Prediction of Solar Irradiance Based on Weather Patterns. In Proceedings of the 2020 IEEE Region 10 Conference (Tencon), Osaka, Japan, 16–19 November 2020; pp. 946–951. [Google Scholar]
- de Guia, J.D.; Concepcion, R.S., II; Calinao, H.A.; Tobias, R.R.; Dadios, E.P.; Bandala, A.A. Solar Irradiance Prediction Based on Weather Patterns Using Bagging-Based Ensemble Learners with Principal Component Analysis. In Proceedings of the 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 1–3 December 2020; pp. 1–6. [Google Scholar]
- Concepcion, R.; Alejandrino, J.; Mendigoria, C.H.; Dadios, E.; Bandala, A.; Sybingco, E.; Vicerra, R.R. Lactuca Sativa Leaf Extract Concentration Optimization Using Evolutionary Strategy as Photosensitizer for TiO2-Filmed Grätzel Cell. Optik 2021, 242, 166931. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. A Novel Atom Search Optimization for Dispersion Coefficient Estimation in Groundwater. Future Gener. Comput. Syst. 2019, 91, 601–610. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Ye, X.; Heidari, A.A.; Liang, G.; Chen, H.; Pan, Z. Differential Evolution-Assisted Salp Swarm Algorithm with Chaotic Structure for Real-World Problems. Eng. Comput. 2023, 39, 1735–1769. [Google Scholar] [CrossRef]
- Lynn, N.; Ali, M.Z.; Suganthan, P.N. Population Topologies for Particle Swarm Optimization and Differential Evolution. Swarm Evol. Comput. 2018, 39, 24–35. [Google Scholar] [CrossRef]
- Kumar, M.B.H.; Balasubramaniyan, S.; Padmanaban, S.; Holm-Nielsen, J.B. Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India. Energies 2019, 12, 2158. [Google Scholar] [CrossRef]
- Concepcion, R.; Lauguico, S.; Alejandrino, J.; Dadios, E.; Sybingco, E.; Bandala, A. Aquaphotomics Determination of Nutrient Biomarker for Spectrophotometric Parameterization of Crop Growth Primary Macronutrients Using Genetic Programming. Inf. Process. Agric. 2022, 9, 497–513. [Google Scholar] [CrossRef]
- Concepcion, R., II; Dadios, E.; Bandala, A.; Cuello, J.; Kodama, Y. Hybrid Genetic Programming and Multiverse-Based Optimization of Pre-Harvest Growth Factors of Aquaponic Lettuce Based on Chlorophyll Concentration. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 2128. [Google Scholar] [CrossRef]
Atom Search Optimizer | Differential Evolution | Multiverse Optimizer |
---|---|---|
No. of atoms: 150 | Population size: 150 | No. of universes: 150 |
Maximum iteration: 1000 | Maximum generation: 1000 | Maximum iteration: 1000 |
Inertia weight: 0.9 | Mutation rate: 0.9 | Expansion rate: 0.9 |
Acceleration coefficient: 0.8 | Mutation strategy: Uniform | Contraction rate: 0.8 |
Crossover rate: 0.8 | Gravity coefficient: 0.9 | |
Selection rate: 0.9 | No. of universes: 150 | |
Selection strategy: Tournament |
Treatment/Model | Pre-Harvest Growth Parameters | PETTh | PETTh-mod | |||
---|---|---|---|---|---|---|
N (h/day) | Tm (°C) | I | α | |||
Uncontrolled | 10.042 | 28.483 | 13.900 | −5.400 | 0.283 | - |
ASOTh | 10.033 | 31.664 | 14.100 | −5.528 | - | 6.420 × 10−3 |
DETh | 12.100 | 30.532 | 15.500 | −7.068 | - | 11.133 × 10−3 |
MVOTh | 11.217 | 28.909 | 14.200 | −5.718 | - | 23.723 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concepcion, R., II; Baun, J.J.; Janairo, A.G.; Bandala, A. Effects of Atom Search-Optimized Thornthwaite Potential Evapotranspiration on Root and Shoot Systems in Controlled Carica papaya Cultivation. Agronomy 2023, 13, 2460. https://doi.org/10.3390/agronomy13102460
Concepcion R II, Baun JJ, Janairo AG, Bandala A. Effects of Atom Search-Optimized Thornthwaite Potential Evapotranspiration on Root and Shoot Systems in Controlled Carica papaya Cultivation. Agronomy. 2023; 13(10):2460. https://doi.org/10.3390/agronomy13102460
Chicago/Turabian StyleConcepcion, Ronnie, II, Jonah Jahara Baun, Adrian Genevie Janairo, and Argel Bandala. 2023. "Effects of Atom Search-Optimized Thornthwaite Potential Evapotranspiration on Root and Shoot Systems in Controlled Carica papaya Cultivation" Agronomy 13, no. 10: 2460. https://doi.org/10.3390/agronomy13102460
APA StyleConcepcion, R., II, Baun, J. J., Janairo, A. G., & Bandala, A. (2023). Effects of Atom Search-Optimized Thornthwaite Potential Evapotranspiration on Root and Shoot Systems in Controlled Carica papaya Cultivation. Agronomy, 13(10), 2460. https://doi.org/10.3390/agronomy13102460