RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. RZWQM2 Model Description
2.3. Meteorological Data and Climate Scenarios
2.4. Irrigation Practices and Economic Analysis
3. Results
3.1. Responses of Soil Water and Temperature to Future Climate Scenarios
3.2. Impacts of Future Climate Scenarios on Aboveground Biomass and Yield under Full Irrigation
3.3. Response of ETp and WUE to Future Climate Scenarios under Full Irrigation
3.4. Yield and IWUE Response to Different Irrigation Treatments under Future Climate Scenarios
3.5. Economic Analysis of Irrigation Strategy under Future Climate Scenarios
4. Discussion
4.1. Changes in Soil Water and Temperature under Future Climate Scenarios
4.2. Cotton Yield, ET and WUE under Future Climate Scenarios
4.3. Optimal Irrigation Strategy for Cotton under Future Climate Scenarios
4.4. Uncertainty in Optimizing Irrigation Amount under Future Climate Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crop. Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement, United Nations/Framework Convention on Climate Change. In Proceedings of the 1st Conference of the Parties, United Nations, Paris, France, 12 December 2015. [Google Scholar]
- Guo, Y.; Shen, Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Han, S.; Macadam, I.; Liu, D.L. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agric. Water Manag. 2014, 144, 42–53. [Google Scholar] [CrossRef]
- Adhikari, P.; Ale, S.; Bordovsky, J.P.; Thorp, K.R.; Modala, N.R.; Rajan, N.; Barnes, E.M. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manag. 2016, 164, 317–330. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Z.; Gui, D.; Gu, Z.; Ma, L.; Zeng, F.; Li, L. Simulating impacts of climate change on cotton yield and water requirement using RZWQM2. Agric. Water Manag. 2019, 222, 231–241. [Google Scholar] [CrossRef]
- Liu, J.; Du, H.; Wu, Z.; He, H.S.; Wang, L.; Zong, S. Recent and future changes in the combination of annual temperature and precipitation throughout China. Int. J. Climatol. 2017, 37, 821–833. [Google Scholar] [CrossRef]
- He, Q.; Zhou, G.; Lü, X.; Zhou, M. Climatic suitability and spatial distribution for summer maize cultivation in China at 1.5 and 2.0 °C global warming. Chin. Sci. Bull. 2019, 64, 690–697. [Google Scholar] [CrossRef]
- Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Müller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Change Biol. 2019, 25, 1428–1444. [Google Scholar] [CrossRef]
- Ye, Z.; Qiu, X.; Chen, J.; Cammarano, D.; Ge, Z.; Ruane, A.C.; Liu, L.; Tang, L.; Cao, W.; Liu, B.; et al. Impacts of 1.5 °C and 2.0 °C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 2020, 120, 126149. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Qiu, X.; Liu, B.; Chang, X.; Liu, L.; Zhang, X.; Cao, W.; Zhu, Y. Impacts of 1.5 and 2.0 °C global warming on rice production across China. Agric. For. Meteorol. 2020, 284, 107900. [Google Scholar] [CrossRef]
- Zeng, W.; Heilman, J.L. Sensitivity of evapotranspiration of cotton and sorghum in west Texas to changes in climate and CO2. Theor. Appl. Climatol. 1997, 57, 245–254. [Google Scholar] [CrossRef]
- Mo, X.; Guo, R.; Liu, S.; Lin, Z.; Hu, S. Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain. Clim. Change 2013, 120, 299–312. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Xing, F.; Han, Y.; Chen, F.; Zhang, L.; Li, Y.; Li, C. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 2017, 7, 6628. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Prasad, P.V.V.; Kakani, V.G. Crop responses to elevated carbon dioxide and interactions with temperature: Cotton. J. Crop Improv. 2005, 13, 157–191. [Google Scholar] [CrossRef]
- Zafar, S.A.; Noor, M.A.; Waqas, M.A.; Wang, X.; Shaheen, T.; Raza, M.; Rahman, M.U. Temperature extremes in cotton production and mitigation strategies. Past Present Future Trends Cotton Breed. 2018, 4, 65–91. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate change and drought: The soil moisture perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Dong, B.; Liu, M.; Jiang, J.; Shi, C.; Wang, X.; Qiao, Y.; Liu, Y.; Zhao, Z.; Si, F. Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields. Agric. Water Manag. 2014, 143, 93–101. [Google Scholar] [CrossRef]
- Feng, H. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales. Sci. Rep. 2016, 6, 32782. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I. Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef]
- Herold, N.; Kala, J.; Alexander, L.V. The influence of soil moisture deficits on Australian heatwaves. Environ. Res. Lett. 2016, 11, 064003. [Google Scholar] [CrossRef]
- Stéfanon, M.; Drobinski, P.; D’Andrea, F.; Lebeaupin-Brossier, C.; Bastin, S. Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim. Dynam. 2014, 42, 1309–1324. [Google Scholar] [CrossRef]
- Pablos, M.; Martínez-Fernández, J.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A. Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations. Remote Sens. 2016, 8, 587. [Google Scholar] [CrossRef]
- Paymard, P.; Yaghoubi, F.; Nouri, M.; Bannayan, M. Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor. Appl. Climatol. 2019, 138, 1361–1373. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, L.; Zhang, X.; Zhang, H.; Liu, L.; Xu, Y. Scenario dependence of future changes in climate extremes under 1.5 C and 2 C global warming. Sci. Rep. 2017, 7, srep46432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crop. Res. 2014, 163, 55–63. [Google Scholar] [CrossRef]
- Bunce, J.A. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 2004, 140, 1–10. [Google Scholar] [CrossRef]
- Dermody, O.; Weltzin, J.F.; Engel, E.C.; Allen, P.; Norby, R.J. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 2007, 301, 255–266. [Google Scholar] [CrossRef]
- Li, M.; Du, Y.; Zhang, F.; Fan, J.; Ning, Y.; Cheng, H.; Xiao, C. Modification of CSM-CROPGRO-Cotton model for simulating cotton growth and yield under various deficit irrigation strategies. Comput. Electron. Agric. 2020, 179, 105843. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Oweis, T.Y.; Farahani, H.J.; Hachum, A.Y. Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agric. Water Manag. 2011, 98, 1239–1248. [Google Scholar] [CrossRef]
- Thind, H.S.; Aujla, M.S.; Buttar, G.S. Response of cotton to various levels of nitrogen and water applied to normal and paired sown cotton under drip irrigation in relation to check-basin. Agric. Water Manag. 2008, 95, 25–34. [Google Scholar] [CrossRef]
- Ünlü, M.; Kanber, R.; Koç, D.L.; Tekin, S.; Kapur, B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a Mediterranean environment. Agric. Water Manag. 2011, 98, 597–605. [Google Scholar] [CrossRef]
- Kothari, K.; Ale, S.; Bordovsky, J.P.; Munster, C.L. Assessing the climate change impacts on grain sorghum yield and irrigation water use under full and deficit irrigation strategies. Trans. ASABE 2020, 63, 81–94. [Google Scholar] [CrossRef]
- Winter, J.M.; Lopez, J.R.; Ruane, A.C.; Young, C.A.; Scanlon, B.R.; Rosenzweig, C. Representing water scarcity in future agricultural assessments. Anthropocene 2017, 18, 15–26. [Google Scholar] [CrossRef]
- Mauget, S.; Leiker, G.; Nair, S. A web application for cotton irrigation management on the US Southern High Plains. Part I: Crop yield modeling and profit analysis. Comput. Electron. Agric. 2013, 99, 248–257. [Google Scholar] [CrossRef]
- Mauget, S.; Leiker, G.; Nair, S. A web application for cotton irrigation management on the US Southern High Plains. Part II: Application design. Comput. Electron. Agric. 2013, 99, 258–264. [Google Scholar] [CrossRef]
- Ko, J.; Ahuja, L.R.; Saseendran, S.A.; Green, T.R.; Ma, L.; Nielsen, D.C.; Walthall, C.L. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim. Change 2012, 111, 445–472. [Google Scholar] [CrossRef]
- Ma, L.; Ahuja, L.R.; Islam, A.; Trout, T.J.; Saseendran, S.A.; Malone, R.W. Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation. Agric. Water Manag. 2017, 180, 88–98. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Sima, M.W.; Trout, T.J.; Malone, R.W.; Wang, L. Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2. Agric. Water Manag. 2021, 246, 106672. [Google Scholar] [CrossRef]
- Chen, X.; Feng, S.; Qi, Z.; Sima, M.W.; Zeng, F.; Li, L.; Cheng, H.; Wu, H. Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2. Agriculture 2022, 12, 383. [Google Scholar] [CrossRef]
- Ahuja, L.; Rojas, K.W.; Hanson, J.D. Root Zone Water Quality Model: Modelling Management Effects on Water Quality and Crop Production; Water Resources Publication: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Gérardeaux, E.; Sultan, B.; Palaï, O.; Guiziou, C.; Oettli, P.; Naudin, K. Positive effect of climate change on cotton in 2050 by CO2 enrichment and conservation agriculture in Cameroon. Agron. Sustain. Dev. 2013, 33, 485–495. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Z.; Xue, L.; Bukovsky, M.; Helmers, M.J. Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Clim. Change 2015, 129, 323–335. [Google Scholar] [CrossRef]
- Rahman, M.H.U.; Ahmad, A.; Wang, X.; Wajid, A.; Nasim, W.; Hussain, M.; Ahmad, B.; Ahmad, I.; Ali, Z.; Ishaque, W.; et al. Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric. For. Meteorol. 2018, 253, 94–113. [Google Scholar] [CrossRef]
- Islam, A.; Ahuja, L.R.; Garcia, L.A.; Ma, L.; Saseendran, S.A.; Trout, T.J. Modeling the impact of climate change on irrigated maize production in theCentral Great Plains. Water Manag. 2012, 110, 94–108. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Mohanty, M.; Sinha, N.K.; Hati, K.M.; Reddy, K.S.; Chaudhary, R.S. Elevated temperature and carbon dioxide concentration effects on wheat productivity in Madhya Pradesh: A simulation study. J. Agrometeorol. 2015, 17, 185–189. [Google Scholar] [CrossRef]
- Broughton, K. The Integrated Effects of Projected Climate Change on Cotton Growth and Physiology. Ph.D. Thesis, University of Sydney, Sydney, Australia, 2015. [Google Scholar]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
- Deryng, D.; Elliott, J.; Folberth, C.; Müller, C.; Pugh, T.A.; Boote, K.J.; Conway, D.; Rosenzweig, C. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 2016, 6, 786–790. [Google Scholar] [CrossRef]
- Lenka, N.K.; Lenka, S.; Thakur, J.K.; Yashona, D.S.; Shukla, A.; Elanchezhian, R.; Singh, K.; Biswas, A.; Patra, A. Carbon dioxide and temperature elevation effects on crop evapotranspiration and water use efficiency in soybean as affected by different nitrogen levels. Agric. Water Manag. 2020, 230, 105936. [Google Scholar] [CrossRef]
- Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 2009, 103, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Markelz, R.C.; Strellner, R.S.; Leakey, A.D. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J. Exp. Bot. 2011, 62, 3235–3246. [Google Scholar] [CrossRef] [PubMed]
- Manderscheid, R.; Erbs, M.; Weigel, H.J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 2014, 52, 11–21. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. J. Plant Physiol. 2007, 143, 134–144. [Google Scholar] [CrossRef]
- Burkart, S.; Manderscheid, R.; Wittich, K.P.; Löpmeier, F.J.; Weigel, H.J. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Curr. Opin. Plant Biol. 2011, 13, 258–269. [Google Scholar] [CrossRef]
- Ambebe, T.F.; Dang, Q.-L. Low moisture availability reduces the positive effect of increased soil temperature on biomass production of white birch (Betula papyrifera) seedlings in ambient and elevated carbon dioxide concentration. Nord. J. Bot. 2010, 28, 104–111. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Gower, S.T.; Wang, C.; Cyr, P.; Veldhuis, H. Nitrogen dynamics of a boreal black spruce wildfire chronosequence. Biogeochemistry 2006, 81, 1–16. [Google Scholar] [CrossRef]
- Al-Kayssi, A.W.; Al-Karaghouli, A.A.; Hasson, A.M.; Beker, S.A. Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. J. Agric. Eng. Res. 1990, 45, 241–252. [Google Scholar] [CrossRef]
- Steiner, J.J.; Jacobsen, T.A. Time of planting and diurnal soil temperature effects on cotton seedling field emergence and rate of development. Crop Sci. 1992, 32, 238–244. [Google Scholar] [CrossRef]
- Quisenberry, J.E.; Gipson, J.R. Growth and Productivity of Cotton Grown from Seed Produced under Four Night Temperatures 1. Crop Sci. 1974, 14, 300–302. [Google Scholar] [CrossRef]
- Kerby, T.A.; Keeley, M.; Johnson, S. Weather and seed quality variables to predict cotton seedling emergence. Agron. J. 1989, 81, 415–419. [Google Scholar] [CrossRef]
- Attavanich, W.; McCarl, B.A. How is CO2 affecting yields and technological progress? A statistical analysis. Clim. Change 2014, 124, 747–762. [Google Scholar] [CrossRef]
- Williams, A.; White, N.; Mushtaq, S.; Cockfield, G.; Power, B.; Kouadio, L. Quantifying the response of cotton production in eastern Australia to climate change. Clim. Change 2015, 129, 183–196. [Google Scholar] [CrossRef]
- Luo, Q.; Bange, M.; Braunack, M.; Johnston, D. Effectiveness of agronomic practices in dealing with climate change impacts in the Australian cotton industry—A simulation study. Agric. Syst. 2016, 147, 1–9. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Thorp, K.R.; Morgan, K.; Kothari, K.; Ale, S. Assessing the impacts of future climate on cotton production in the Arizona low desert. Trans. ASABE 2020, 63, 1087–1098. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef]
- Hall, A.E. Crop Responses to Environment; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Walter, M.T.; Wilks, D.S.; Parlange, J.Y.; Schneider, R.L. Increasing evapotranspiration from the conterminous United States. J. Hydrometeorol. 2004, 5, 405–408. [Google Scholar] [CrossRef]
- Ko, J.; Piccinni, G. Characterizing leaf gas exchange responses of cotton to full and limited irrigation conditions. Field Crop. Res. 2009, 112, 77–89. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Q.; Zheng, J.H.; Liu, Z.H. Spatial and temporal distribution of water requirement of cotton in Xinjiang from 1963 to 2012. Acta Ecol. Sin. 2016, 36, 4122–4130. [Google Scholar]
- Wang, L. Impact and Adaptation of Climate Change on Cotton Production in Xinjiang; Northwest A&F University: Xianyang, China, 2021. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 2013, 3, 827–832. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jimenez-Berni, J.A.; Fereres, E. Water modelling approaches and opportunities to simulate spatial water variations at crop field level. Water Manag. 2020, 240, 106254. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth Syst. Dyn. 2018, 9, 543–562. [Google Scholar] [CrossRef]
- Ma, L.; Ahuja, L.R.; Nolan, B.T.; Malone, R.W.; Trout, T.J.; Qi, Z. Root zone water quality model (RZWQM2): Model use, calibration, and validation. Trans. ASABE 2012, 55, 1425–1446. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.L.; O’Leary, G.J.; Asseng, S.; Macadam, I.; Lines-Kelly, R. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 2018, 24, 2403–2415. [Google Scholar] [CrossRef]
- Yang, H.; Bozorov, T.A.; Chen, X.; Zhang, D.; Wang, J.; Li, X.; Gui, D.; Qi, Z.; Zhang, D. Yield comparisons between cotton variety Xin Nong Mian 1 and its transgenic ScALDH21 lines under different water deficiencies in a desert-oasis ecotone. Agronomy 2021, 11, 1019. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Nielsen, D.C.; Trout, T.J.; Ahuja, L.R. Quantifying corn yield and water use efficiency under growth stage–based deficit irrigation conditions. Pract. Appl. Agric. Syst. Models Optim. Use Ltd. Water 2014, 5, 1–24. [Google Scholar] [CrossRef]
- Islam, A.; Ahuja, L.R.; Garcia, L.A.; Ma, L.; Saseendran, S.A. Modeling the effect of elevated CO2 and climate change on reference evapotranspiration inthe semi–arid Central Great Plains. Trans. ASABE 2012, 55, 2135–2146. [Google Scholar] [CrossRef]
Climate Scenario | Description |
---|---|
BL0/380 | |
S1.5/380 | |
S2.0/380 | |
S1.5/490 | |
S2.0/650 |
Irrigation Level | Irrigation Date and Amount (mm) | |||||
---|---|---|---|---|---|---|
7 April | 14 June | 3 July | 15 July | 3 August | 4 September | |
Irr850 | 150 | 140 | 140 | 140 | 140 | 140 |
Irr750 | 150 | 120 | 120 | 120 | 120 | 120 |
Irr700 | 150 | 110 | 110 | 110 | 110 | 110 |
Irr650 | 150 | 100 | 100 | 100 | 100 | 100 |
Irr600 | 150 | 90 | 90 | 90 | 90 | 90 |
Irr550 | 150 | 80 | 80 | 80 | 80 | 80 |
Irr500 | 150 | 70 | 70 | 70 | 70 | 70 |
Irr450 | 150 | 60 | 60 | 60 | 60 | 60 |
Irr400 | 150 | 50 | 50 | 50 | 50 | 50 |
Irr350 | 150 | 40 | 40 | 40 | 40 | 40 |
Climate Scenario | Cotton Crop and Water Balance Parameters: Mean and (% Difference from Baseline) | |||||||
---|---|---|---|---|---|---|---|---|
Yield (Mg ha−1) | Ep (mm) | Ec (mm) | Tp (mm) | Tc (mm) | ETp (mm) | ETc (mm) | WUE (kg ha−1 mm−1) | |
BL0/380 | 3.77 c | 289 b | 141 c | 326 a | 294 a | 615 b | 435 a | 6.13 c |
S1.5/380 | 3.38 d | 313 a | 149 ab | 324 a | 286 a | 637 a | 435 a | 5.30 d |
S2.0/380 | 3.19 d | 321 a | 152 a | 324 a | 283 a | 645 a | 435 a | 4.95 d |
S1.5/490 | 4.11 b | 295 b | 145 bc | 320 ab | 288 a | 615 b | 433 a | 6.68 b |
S2.0/650 | 4.54 a | 289 b | 146 b | 307 b | 280 a | 596 b | 426 a | 7.61 a |
Treatment | Irrigation (m3 ha−1) | Water Cost ($ ha−1) | Gross Income ($ ha−1) | Net Income ($ ha−1) | Net Water Production ($ m−3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1.5/380 | S2.0/380 | S1.5/490 | S2.0/650 | S1.5/380 | S2.0/380 | S1.5/490 | S2.0/650 | S1.5/380 | S2.0/380 | S1.5/490 | S2.0/650 | |||
Irr850 | 5100 | 204 | 4344 | 4182 | 5282 | 5781 | 2140 | 1978 | 3078 | 3577 | 0.42 | 0.39 | 0.6 | 0.7 |
Irr750 | 4500 | 180 | 4379 | 4192 | 5331 | 5852 | 2199 | 2012 | 3151 | 3672 | 0.49 | 0.45 | 0.7 | 0.82 |
Irr700 | 4200 | 168 | 4408 | 4177 | 5358 | 5883 | 2240 | 2009 | 3190 | 3715 | 0.53 | 0.48 | 0.76 | 0.88 |
Irr650 | 3900 | 156 | 4389 | 4150 | 5343 | 5897 | 2233 | 1994 | 3187 | 3741 | 0.57 | 0.51 | 0.82 | 0.96 |
Irr600 | 3600 | 144 | 4324 | 4078 | 5331 | 5867 | 2180 | 1934 | 3187 | 3723 | 0.61 | 0.54 | 0.89 | 1.03 |
Irr550 | 3300 | 132 | 4198 | 3933 | 5196 | 5806 | 2066 | 1801 | 3064 | 3674 | 0.63 | 0.55 | 0.93 | 1.11 |
Irr500 | 3000 | 120 | 3893 | 3634 | 4906 | 5553 | 1773 | 1514 | 2786 | 3433 | 0.59 | 0.5 | 0.93 | 1.14 |
Irr450 | 2700 | 108 | 3365 | 3135 | 4350 | 5061 | 1257 | 1027 | 2242 | 2953 | 0.47 | 0.38 | 0.83 | 1.09 |
Irr400 | 2400 | 96 | 3531 | 2548 | 3531 | 4299 | 1435 | 452 | 1435 | 2203 | 0.6 | 0.19 | 0.6 | 0.92 |
Irr350 | 2100 | 84 | 2669 | 1925 | 2669 | 3272 | 585 | −159 | 585 | 1188 | 0.28 | −0.08 | 0.28 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Dong, H.; Feng, S.; Gui, D.; Ma, L.; Thorp, K.R.; Wu, H.; Liu, B.; Qi, Z. RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas. Agronomy 2023, 13, 2529. https://doi.org/10.3390/agronomy13102529
Chen X, Dong H, Feng S, Gui D, Ma L, Thorp KR, Wu H, Liu B, Qi Z. RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas. Agronomy. 2023; 13(10):2529. https://doi.org/10.3390/agronomy13102529
Chicago/Turabian StyleChen, Xiaoping, Haibo Dong, Shaoyuan Feng, Dongwei Gui, Liwang Ma, Kelly R. Thorp, Hao Wu, Bo Liu, and Zhiming Qi. 2023. "RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas" Agronomy 13, no. 10: 2529. https://doi.org/10.3390/agronomy13102529
APA StyleChen, X., Dong, H., Feng, S., Gui, D., Ma, L., Thorp, K. R., Wu, H., Liu, B., & Qi, Z. (2023). RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas. Agronomy, 13(10), 2529. https://doi.org/10.3390/agronomy13102529