Biological Control as Part of the Soybean Integrated Pest Management (IPM): Potential and Challenges
Abstract
:1. Introduction
2. The Importance of Biocontrol Agents of Stink Bugs in Soybean Production
3. Recommendations of Soybean IPM to Preserve and Increase Biological Control in the Agroecosystem
- (a)
- Reduction in the number of pesticide applications during soybean growing seasons via the adoption of the economic threshold
- (b) Use of selective pesticides
- (c) Host plant resistance
- (d) Increased plant diversification on soybean farms
- (e) Other examples of sustainable IPM strategies
4. Final Considerations and Conclusions
Funding
Conflicts of Interest
References
- Bueno, A.F.; Colmenarez, Y.C.; Carnevalli, R.A.; Sutil, W.P. Benefits and perspectives of adopting soybean-IPM: The success of a Brazilian programme. Plant Health Cases 2023, 1–16. [Google Scholar] [CrossRef]
- Bueno, A.F.; Panizzi, A.R.; Hunt, T.E.; Dourado, P.M.; Pitta, R.M.; Gonçalves, J. Challenges for adoption of integrated pest management (IPM): The soybean example. Neotrop. Entomol. 2021, 50, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Sci. Food Agric. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Panizzi, A.R.; Corrêa-Ferreira, B.S. Dynamics in the insect fauna adaptation to soybean in the tropics. Trends Entomol. 1997, 1, 71–88. [Google Scholar]
- Ademokoya, B.; Athey, K.; Ruberson, J. Natural Enemies and Biological Control of Stink Bugs (Hemiptera: Heteroptera) in North America. Insects 2022, 13, 932. [Google Scholar] [CrossRef]
- Panizzi, A.R.; Slansky, F., Jr. Review of phytophagous pentatomids (Hemiptera: Pentatomidae) associated with soybean in the Americas. Fla. Entomol. 1985, 68, 184–203. [Google Scholar] [CrossRef]
- Bueno, A.F.; Bortolotto, O.C.; Pomari-Fernandes, A.; França-Neto, J.B. Assessment of a more conservative stink bug economic threshold for managing stink bugs in Brazilian soybean. Crop Prot. 2015, 71, 132–137. [Google Scholar] [CrossRef]
- Corrêa-Ferreira, B.S.; Azevedo, J. Soybean seed damage by different species of stink bugs. Agric. For. Entomol. 2002, 4, 145–150. [Google Scholar] [CrossRef]
- Jacquet, F.; Jeuffroy, M.H.; Jouan, J.; Le Cadre, E.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 2022, 42, 8. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A.F. Conservation biological control using selective insecticides: A valuable tool for IPM. Biocontrol 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Kuldna, P.K.; Peterson, H.; Poltimäe, J. An application of DPSIR framework to identify issues of pollinator loss. Ecol. Econ. 2009, 69, 32–42. [Google Scholar] [CrossRef]
- Sosa-Gómez, D.R.; Corrêa-Ferreira, B.S.; Kraemer, B.; Pasini, A.; Husch, P.E.; Delfino Vieira, C.E.; Reis Martinez, C.B.; Negrao Lopes, I.O. Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agric. For. Entomol. 2020, 22, 99–118. [Google Scholar] [CrossRef]
- Maciel, R.M.A.; Bueno, A.F. The Role of Integrated Pest Management for Sustainable Food Production: The Soybean Example. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Galanakis, C.M., Ed.; Springer Nature: Cham, Switzerland, 2022; pp. 117–139. [Google Scholar]
- Lee, R.; den Uyl, R.; Runhaar, H. Assessment of policy instruments for pesticide use reduction in Europe; learning from a systematic literature review. Crop Prot. 2019, 126, 104929. [Google Scholar] [CrossRef]
- van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- Bueno, A.F.; Sosa-Gómez, D.R.; Côrrea-Ferreira, B.S.; Moscardi, F.; Bueno, R.C.O.F. Soja: Manejo Integrado de Insetos e Outros Artrópodes-Praga; Hoffmann-Campo, C.B., Côrrea-Ferreira, B.S., Moscardi, F., Eds.; Embrapa: Brasília, Brazil, 2012; pp. 493–630. [Google Scholar]
- Borsari, A.C.P.; Vieira, L.C. Mercado e perspectivas dos bioinsumos no Brasil. In Bioinsumos na Cultura da Soja, 1st ed.; Meyer, M.C., Bueno, A.F., Mazaro, S.M.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 38–52. [Google Scholar]
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef]
- Rogers, E.B. Landscape Design: A Cultural and Architectural History; Harry, N., Ed.; Abrams: New York, NY, USA, 2001. [Google Scholar]
- Patterson, E.L. Agriculture, Landscape Architecture, & Ecological Design: A Foundation for Collaboration between Ecologists and Landscape Architects. Ph.D. Thesis, The University of Georgia, Athens, Georgia, 2004. [Google Scholar]
- Vargas, G.; Rivera-Pedroza, L.F.; Luis, F.; García, L.F.; Jahnke, S.M. Conservation Biological Control as an important tool in the Neotropical region. Neotrop. Entomol. 2022, 30, 134–151. [Google Scholar] [CrossRef]
- Norris, R.F.; Caswell-Chen, E.P.; Kogan, M. Concepts in Integrated Pest Management; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Jonsson, M.; Wratten, S.D.; Landis, D.A.; Gurr, G.M. Recent advances in conservation biological control of arthropods by arthropods. BioControl 2008, 45, 172–175. [Google Scholar] [CrossRef]
- Ehler, L. Conservation Biological Control: Past, Present, and Future; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Straub, C.S.; Finke, D.L.; Snyder, W.E. Are the conservation of natural enemy biodiversity and biological control compatible goals? BioControl 2008, 45, 225–237. [Google Scholar] [CrossRef]
- Janssen, A.; van Rijn, P. Pesticides do not signifcantly reduce arthropod pest densities in the presence of natural enemies. Ecol. Lett. 2021, 24, 2010–2024. [Google Scholar] [CrossRef]
- Carnevalli, R.A.; Oliveira, A.B.; Gomes, E.C.; Possamai, E.J.; Silva, G.C.; Reis, E.A.; Roggia, S.; Prando, A.M.; Lima, D. Resultados do Manejo Integrado de Pragas da Soja na Safra 2021/2022 no Paraná; Embrapa Soja: Londrina, Brazil, 2022; Documentos 448; p. 43. [Google Scholar]
- Tillman, P.G. Diversity of Stink Bug (Hemiptera: Pentatomidae) Egg Parasitoids in Woodland and Crop Habitats in Southwest Georgia, USA. Fla. Entomol. 2016, 99, 286–291. [Google Scholar] [CrossRef]
- Tillman, P.G.; Cottrell, T.E.; Grabarczyk, E.E. Black cherry as a host plant for stink bugs (Hemiptera: Pentatomidae) in agroecosystems in Georgia, USA. Fla. Entomol. 2022, 105, 79–86. [Google Scholar] [CrossRef]
- Ruberson, J.R.; Olson, D.M.; Thompson, M.D.; Ottens, R.J.; Toews, M.D.; Jones, S.; Mills, W.A. Importance of natural enemies for stink bug control. In Cotton Research-Extension Report; University of Georgia: Athens, GA, USA, 2010; pp. 126–135. [Google Scholar]
- Ruberson, J.R.; Ottens, J.R.; Thompson, M.D.; Shaw, S.R.; Olson, D.M.; Brown, S.; Edwards, P.; Harrison, E.; McGriff, E. Importance of Natural Enemies for Stink Bug Control. In Cotton Research-Extension Report; University of Georgia: Athens, GA, USA, 2011; pp. 92–97. [Google Scholar]
- Tillman, P.G. Natural Biological Control of Stink Bug (Heteroptera: Pentatomidae) Eggs in Corn, Peanut, and Cotton Farmscapes in Georgia. Environ. Entomol. 2011, 40, 303–314. [Google Scholar] [CrossRef]
- Buschman, L.L.; Whitcomb, W.H. Parasites of Nezara viridula (Hemiptera: Pentatomidae) and other Hemiptera in Florida. Fla Entomol. 1980, 63, 154–162. [Google Scholar] [CrossRef]
- Jones, W.A.; Shepard, B.M.; Sullivan, M.J. Incidence of parasitism of pentatomid (Heteroptera) pests of soybean in South Carolina with a review of studies in other states. J. Agric. Entomol. 1996, 13, 243–263. [Google Scholar]
- Krombein, K.V.; Hurd, P.D.J.; Smith, D.R.; Burks, B.D. Catalog of the Hymenoptera in America North of Mexico; Volume 1: Symphyta and Apocrita (Parasitica); Smithsonian Institution Press: Washington, DC, USA, 1979. [Google Scholar]
- Marsaro Júnior, A.L.; Costa, V.A.; Panizzi, A.R. First record of Hexacladia hilaris Burks (Hymenoptera: Encyrtidae) in Brazil and association with Chinavia erythrocnemis (Berg) (Heteroptera: Pentatomidae). EntomoBrasilis 2020, 13, e927. [Google Scholar] [CrossRef]
- Barakat, M.C.; Aquino, D.A.; Cingolani, M.F. Potential of Hexacladia smithii (Hymenoptera: Encyrtidae) to parasitize Piezodorus guildinii (Hemiptera Pentatomidae) adults. Bull. Insectology 2022, 75, 177–182. [Google Scholar]
- Corrêa-Ferreira, B.S.; Moscardi, F. Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. BioControl 1995, 5, 196–202. [Google Scholar]
- Nunes, M.C. Efeito do parasitismo de Hexacladia smithii Ashmead (Hymenoptera: Encyrtidae) na Capacidade Reprodutiva e no Dano de Euschistus Heros (Fabricius) (Hemiptera: Pentatomidae) Causado a Soja. Master’s Dissertation, Universidade Federal do Paraná, Curitiba, Brazil, 2000. [Google Scholar]
- Turchen, L.M.; Golin, V.; Favetti, B.M.; Butnariu, A.R.; Costa, V.A. Natural parasitism of Hexacladia smithii Ashmead (Hymenoptera: Encyrtidae) on Euschistus heros (F.) (Hemiptera: Pentatomidae): New record from Mato Grosso State, Brazil. Arq. Inst. Biol. 2015, 82, 1–3. [Google Scholar] [CrossRef]
- Paz-Neto, A.A.; Querino, R.B.; Margaría, C. Egg parasitoids of stink bugs (Hemiptera: Coreidae and Pentatomidae) on soybean and cowpea in Brazil. Fla. Entomol. 2015, 1, 929–932. [Google Scholar] [CrossRef]
- Golin, V.; Loiacono, M.S.; Margaría, C.B.; Aquino, D.A. Natural incidence of egg parasitoids of Edessa meditabunda (F.) (Hemiptera: Pentatomidae) on Crotalaria spectabilis in Campo Novo do Parecis, MT, Brazil. Neotrop. Entomol. 2011, 40, 617–618. [Google Scholar] [PubMed]
- Carvalho, E.S.M. Dichelops melacanthus (Dallas, 1851) (Heteroptera: Pentatomidae) no Sistema Plantio Direto no sul de Mato Grosso do Sul: Flutuação Populacional, Hospedeiros e Parasitismo. Master’s Dissertation, Universidade Federal da Grande Dourados, Dourados, Brazil, 2007. [Google Scholar]
- Godoy, K.B.; Galli, J.C.; Ávila, C.J. Parasitismo em ovos de percevejos da soja Euschistus heros (Fabricius) e Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) em São Gabriel do Oeste, MS. Cienc. Rural 2005, 35, 455–458. [Google Scholar] [CrossRef]
- Orr, D.B.; Russin, J.S.; Boethel, D.J.; Jones, W.A. Stink Bug (Hemiptera: Pentatomidae) Egg Parasitism in Louisiana Soybeans. Environ. Entomol. 1986, 15, 1250–1254. [Google Scholar] [CrossRef]
- Cingolani, M.F.; Greco, N.M.; Liljesthröm, G.G. Egg parasitism of Piezodorus guildinii and Nezara viridula (Hemiptera: Pentatomidae) in soybean, alfalfa and red clover. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2014, 46, 15–27. [Google Scholar]
- Tillman, P.G. Parasitism and predation of stink bug (Heteroptera: Pentatomidae) eggs in Georgia corn fields. Environ. Entomol. 2010, 39, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Sousa, K.K.A.; Silva, N.N.P.; Querino, R.B.; Silva, P.H.S.; Grazia, J. Diversity, seasonality, and egg parasitism of hemipteran (Coreidae and Pentatomidae) from a cowpea crop in northeastern Brazil. Fla. Entomol. 2019, 102, 29–35. [Google Scholar] [CrossRef]
- Bueno, A.F.; Parra, J.R.P.; Colombo, F.C.; Colmenarez, Y.C.; Narde, B.V.F.; Pereira, F.F. Manejo de pragas com parasitoides. In Bioinsumos na Cultura da Soja, 1st ed.; Meyer, M.C., Bueno, A.F., Mazaro, S.M.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 417–434. [Google Scholar]
- Koppel, A.L.; Herbert, D.A., Jr.; Kuhar, T.P.; Kamminga, K. Survey of stink bug (Hemiptera: Pentatomidae) egg parasitoids in wheat, soybean, and vegetable crops in southeast Virginia. Environ. Entomol. 2009, 38, 375–379. [Google Scholar] [CrossRef]
- Laumann, R.A.; Moraes, M.C.; Silva, J.P.; Vieira, A.M.; Silveira, S.D.; Borges, M. Egg parasitoid wasps as natural enemies of the neotropical stink bug Dichelops melacanthus. Pesqui. Agropecu. Bras. 2010, 45, 442–449. [Google Scholar] [CrossRef]
- Panizzi, A.R.; Lucini, T. What happened to Nezara viridula (L.) in the Americas? Possible reasons to explain populations decline. Neotrop. Entomol. 2016, 45, 619–628. [Google Scholar] [CrossRef]
- Foerster, L.A.; Queiroz, J.D. Incidência natural de parasitismo em ovos de pentatomídeos da soja no centro-sul do Paraná. An. Soc. Entomol. Bras. 1990, 19, 221–232. [Google Scholar] [CrossRef]
- Pacheco, D.J.P.; Corrêa-Ferreira, B.S. Parasitismo de Telenomus podisi Ashmead (Hymenoptera: Scelionidae) em populações de percevejos pragas da soja. An. Soc. Entomol. Bras. 2000, 29, 295–302. [Google Scholar] [CrossRef]
- Shields, M.W.; Johnson, A.C.; Pandey, S.; Cullen, R.; González-Chang, M.; Wratten, S.D.; Gurr, G.M. History, current situation and challenges for conservation biological control. BioControl 2019, 131, 25–35. [Google Scholar] [CrossRef]
- Conte, O.; Oliveira, F.T.; Harger, N.; Corrêa-Ferreira., B.S.; Roggia., S.; Prando, A.M.; Seratto, C.D. Resultados do Manejo Integrado de Pragas da Soja na safra 2015/16 no Paraná; EMBRAPA-CNPSo: Londrina, Brazil, 2016; Documentos 375; p. 59. [Google Scholar]
- Conte, O.; Oliveira, F.T.; Harger, N.; Corrêa-Ferreira., B.S.; Roggia., S.; Prando, A.M.; Seratto, C.D. Resultados do Manejo Integrado de Pragas da Soja na safra 2016/17 no Paraná; EMBRAPA-CNPSo: Londrina, Brazil, 2017; Documentos 394; p. 70. [Google Scholar]
- Conte, O.; Oliveira, F.T.; Harger, N.; Corrêa-Ferreira., B.S.; Roggia., S.; Prando, A.M.; Seratto, C.D. Resultados do Manejo Integrado de Pragas da Soja na safra 2017/18 no Paraná; EMBRAPA-CNPSo: Londrina, Brazil, 2018; Documentos 402; p. 66. [Google Scholar]
- Conte, O.; Oliveira, F.T.; Harger, N.; Corrêa-Ferreira, B.S.; Roggia, S.; Prando, A.M.; Possmai, E.J.; Reis, E.A.; Marx, E.F. Resultados do Manejo Integrado de Pragas da Soja na safra 2018/19 no Paraná; Embrapa Soja: Londrina, Brazil, 2019; Documentos 416; p. 63. [Google Scholar]
- Conte, O.; Possamai, E.J.; Silva, G.C.; Reis, E.A.; Gomes, E.C.; Corrêa-Ferreira, B.S.; Roggia, S.; Prando, A.M. Resultados do Manejo Integrado de Pragas da Soja na safra 2019/20 no Paraná; Embrapa Soja: Londrina, Brazil, 2020; Documentos 431; p. 66. [Google Scholar]
- Oliveira, A.B.; Gomes, E.C.; Possamai, E.J.; Silva, G.C.; Reis, E.A.; Roggia, S.; Prando, A.M.; Conte, O. Resultados do Manejo Integrado de Pragas da Soja na Safra 2020/2021 no Paraná; Embrapa Soja: Londrina, Brazil, 2022; Documentos 443; p. 68. [Google Scholar]
- Silva, G.V.; de Freitas Bueno, A.; Favetti, B.M.; Neves, P.M. Selectivity of chlorantraniliprole and lambda-cyhalothrin to the egg parasitoid Telenomus podisi (Hymenoptera: Platygastridae). Semin. Cien. Agrar. 2018, 39, 549–563. [Google Scholar] [CrossRef]
- Taguti, E.A.; Gonçalves, J.; Bueno, A.F.; Marchioro, S.T. Telenomus podisi parasitism on Dichelops melacanthus and Podisus nigrispinus eggs at different temperatures. Fla. Entomol. 2019, 102, 607–613. [Google Scholar] [CrossRef]
- Thomas, J.A.; Telfer, M.G.; Roy, D.B.; Preston, C.D.; Greenwood, J.J.; Asher, J.; Fox, R.; Clarke, R.T.; Lawton, J.H. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 2004, 303, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Scherber, C.; Reininghaus, H.; Brandmeier, J.; Everwand, G.; Gagic, V.; Greiwe, T.; Kormann, U.G.; Meyer, M.; Nagelsdiek, S.; Rösch, V.; et al. Insektenvielfalt und ökologische Prozesse in Agrar- und Waldlandschaften. Nat. Und Landsch. 2019, 6, 245–254. [Google Scholar] [CrossRef]
- Kreuss, A.; Tscharntke, T. Habitat fragmentation, species loss, and biological control. Science 1994, 264, 1581–1584. [Google Scholar] [CrossRef]
- Duffy, J.E. Biodiversity and ecosystem function: The consumer connection. Oikos 2002, 99, 201–219. [Google Scholar] [CrossRef]
- Bueno, A.F.; Batistela, M.J.; Bueno, R.C.O.F.; França-Neto, J.B.; Nishikawa, M.; Filho, A.L. Effects of integrated pest management, biological control and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot. 2011, 30, 937–945. [Google Scholar] [CrossRef]
- Lane, D.E.; Walker, T.J.; Grantham, D.G. IPM adoption and impacts in the United States. J. Integr. Pest Manag. 2023, 14, 1–6. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Sebos, I.; Triantafyllou, E.; Stamopoulos, D.; Dimas, P. Benefits and synergies in addressing climate change via the implementation of the Common Agricultural Policy in Greece. Appl. Sci. 2023, 13, 2216. [Google Scholar] [CrossRef]
- Ruttan, V.W. The transition to agricultural sustainability. Proc. Natl. Acad. Sci. USA 1999, 96, 5960–5967. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.F.; Paula-Moraes, S.V.; Gazzoni, D.L.; Pomari, A.F. Economic thresholds in soybean-integrated pest management: Old concepts, current adoption, and adequacy. Neotrop. Entomol. 2013, 42, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.N.; Fowler, H.G. Spatial and temporal population interactions between the parasitoids Cotesia flavipes and Tachinidae flies: Considerations on the adverse effects of biological control practice. J. Appl. Entomol. 2004, 128, 112–119. [Google Scholar] [CrossRef]
- Batistela, M.J.; Bueno, A.F.; Nishikawa, M.A.N.; Bueno, R.C.O.F.; Hidalgo, G.; Silva, L.; Corbo, E.; Silva, R.B. Re-evaluation of leaf-lamina consumer thresholds for IPM decision in short-season soybeans using artificial defoliation. Crop Prot. 2012, 32, 7–11. [Google Scholar] [CrossRef]
- Justus, C.M.; Paula-Moraes, S.V.; Pasini, A.; Hoback, W.W.; Hayashida, R.; Bueno, A.F. Simulated soybean pod and flower injuries and economic thresholds for Spodoptera eridania (Lepidoptera: Noctuidae) management decisions. Crop Prot. 2022, 155, 105936. [Google Scholar] [CrossRef]
- Bueno, A.F.; Carvalho, G.A.; Santos, A.C.; Sosa-Gómez, D.R.; Silva, D.M. Pesticide selectivity to natural enemies: Challenges and constraints for research and field recommendation. Cienc. Rural 2017, 47, e20160829. [Google Scholar] [CrossRef]
- Bueno, A.F.; Carvalho, G.A.; Nogueira, M.A.; Medeiros, F.H.V.; Medeiros, F.C.L.; Hungria, M.; Ardisson-Araújo, D.M.; Ribeiro, B.M.; Sosa-Gomez, D.R.; Hirose, E. Compatibilidade no uso de bioinsumos e insumos sintéticos no manejo da cultura da soja. In Bioinsumos na Cultura da Soja, 1st ed; Meyer, M.C., Bueno, A.F., Mazaro, S.M., Silva, J.C., Eds.; Embrapa: Londrina, Brazil, 2022; pp. 473–492. [Google Scholar]
- Carvalho, G.A.; Reis, P.R.; Grutzamacher, A.D.; Degrande, P.E.; Yamamoto, P.T.; Bueno, A.F. Seletividade de produtos fitossanitários: Uma estratégia viável para a agricultura sustentável. In Controle Biológico com Parasitoides e Predadores na Agricultura Brasileira, 1st ed.; Parra, J.R.P., Nava, D.E., Oliveira, R.C., Pinto, A.S., Diniz, A.J.F., Eds.; FEALQ: Piracicaba, Brazil, 2021; pp. 481–510. [Google Scholar]
- Degrande, P.E.; Reis, P.R.; Carvalho, G.A.; BELARMINO, L. Metodologia para avaliar o impacto de pesticidas sobre inimigos naturais. In Controle Biológico no Brasil: Parasitóides e Predadores, 1st ed.; Parra, J.R.P., Botelho, P.S., Corrêa-Ferreira, B.S., Bento, J.M., Eds.; Manole: São Paulo, Brazil, 2002; pp. 75–81. [Google Scholar]
- Gontijo, P.C.; Abbade Neto, D.O.; Oliveira, R.L.; Michaud, J.P.; Carvalho, G.A. Non-target impacts of soybean insecticidal seed treatments on the life history and behavior of Podisus nigrispinus, a predator of fall armyworm. Chemosphere 2018, 191, 342–349. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Grutzamacher, A.D.; Passos, L.C.; Oliveira, R.L. Physiological and ecological selectivity of pesticides for natural enemies of insects. In Physiological and Ecological Selectivity of Pesticides for Natural Enemies of Insetcs, 1st ed.; Sousa, B., Vázquez, L.L., Marucci, R.C., Eds.; Springer: New York, NY, USA, 2019; pp. 469–478. [Google Scholar]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Van Nouhuys, S.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Croft, B.A. Arthropod Biological Control Agents and Pesticides, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1990; 826p. [Google Scholar]
- Silva, D.M.; Carvalho, G.A.; Souza, W.R.; Bueno, A.F. Toxicity of insecticides to the egg parasitoids Telenomus podisi and Trissolcus teretis (Hymenoptera: Scelionidae). Rev. Bras. Entomol. 2022, 66, e2022003. [Google Scholar] [CrossRef]
- Stecca, C.S.; Bueno, A.F.; Pasini, A.; Silva, D.M.; Andrade, K.; Zirondi Filho, D.M. Impact of insecticides used in soybean crops to the egg parasitoid Telenomus podisi (Hymenoptera: Platygastridae). Neotrop. Entomol. 2018, 47, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Carmo, E.D.; Bueno, A.; Bueno, R.C. Pesticide selectivity for the insect egg parasitoid Telenomus remus. Biocontrol 2010, 55, 455–464. [Google Scholar] [CrossRef]
- Pazini, J.D.; Padilha, A.C.; Cagliari, D.; Bueno, F.A.; Rakes, M.; Zotti, M.J.; Martins, J.F.; Grützmacher, A.D. Differential impacts of pesticides on Euschistus heros (Hemiptera: Pentatomidae) and its parasitoid Telenomus podisi (Hym.: Platygastridae). Sci. Rep. 2019, 9, 6544. [Google Scholar] [CrossRef]
- Zantedeschi, R.; Grützmacher, A.D.; Pazini, J.D.; Bueno, A.F.; Machado, L.L. Selectivity of pesticides registered for soybean crop on Telenomus podisi and Trissolcus basalis. Pesqui. Agropecu. Trop. 2018, 48, 52–58. [Google Scholar] [CrossRef]
- Santos, L.V.; de Lima Alvarez, D.; Santos, L.M.; do Prado, J.C.; de Freitas Bueno, R.C.; Hoback, W.W. Selectivity and sub-lethal effect of pesticides on the immature and adult stages of Telenomus podisi (Hymenoptera: Scelionidae). Int. J. Trop. Insect Sci. 2022, 42, 1731–1736. [Google Scholar] [CrossRef]
- Silva, D.M.; Bueno, A.D. Toxicity of organic supplies for the egg parasitoid Telenomus podisi. Cienc. Rural 2014, 44, 11–17. [Google Scholar] [CrossRef]
- Costa, M.A.; Farias, E.S.; Andrade, E.D.; Carvalho, V.C.; Carvalho, G.A. Lethal, sublethal and transgenerational effects of insecticides labeled for cotton on immature Trichogramma pretiosum. J. Pest. Sci. 2023, 96, 119–127. [Google Scholar] [CrossRef]
- Santos, A.C.; Bueno, A.F.; Bueno, R.C.O.F. Seletividade de Defensivos Agrícolas aos Inimigos Naturais. In Controle Biológico de Pragas na Prática; Pinto, A.S., Nava, D.E., Rossi, M.M., Malerbo-Souza, D.T., Eds.; CP2: Piracicaba, Brazil, 2006; Volume 1, pp. 221–227. [Google Scholar]
- Bueno, A.F.; Freitas, S. Effect of the insecticides abamectin and lufenuron on eggs and larvae of Chrysoperla externa under laboratory conditions. BioControl 2004, 49, 277–283. [Google Scholar] [CrossRef]
- Caboni, P.; Sammelson, R.E.; Casida, J.E. Phenylpyrazole Insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with Fipronil. J. Agric. Food Chem. 2003, 51, 7055–7061. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Tanaka, T.; Inomata, A. Reproductive and neurobehavioral effects of ethiprole administered to mice in the diet. Birth Defects Res. 2017, 109, 1568–1585. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Suzuki, T.; Inomata, A. Reproductive and neurobehavioral effects of maternal exposure to ethiprole in F1-generation mice. Birth Defects Res. 2018, 110, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Qi, S.; He, J.; Bai, Y. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environ. Geochem. Health 2021, 43, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Abbate, S.; Silva, H.; Ribeiro, A.F.; Bentancur, O.; Castiglioni, E. Effectiveness of some insecticides against soybean stink bugs and side-effects on Telenomus podisi (Ashmead) and generalist predators. Int. J. Trop. Insect Sci. 2022, 42, 1813–1824. [Google Scholar] [CrossRef]
- Heimpel, G.E.; Mills, N.J. Biological Control: Ecology and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Moses-Gonzales, N.; Brewer, M.J. A Special Collection: Drones to Improve Insect Pest Management. J. Econ. Entomol. 2021, 114, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Corso, I.C. Uso de sal de Cozinha na Redução da Dose de Inseticida para Controle de Percevejos da Soja; Embrapa Soja: Londrina, Brazil, 1990. [Google Scholar]
- van Emden, H.F. Host-plant resistance. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Oxfordshire, UK, 2007; pp. 447–468. [Google Scholar]
- Stout, M.J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 2013, 20, 263–272. [Google Scholar] [CrossRef]
- Bansal, R.; Jun, T.H.; Mian, M.A.R.; Michel, A.P. Developing Host-Plant Resistance for Hemipteran Soybean Pests: Lessons from Soybean Aphid and Stink Bugs. In Soybean Pest Resistance; El-Shemy, H., Ed.; InTech: Rijeka, Croatia, 2013; pp. 19–46. [Google Scholar] [CrossRef]
- Rossetto, C.J.; Gallo, P.B.; Razera, L.F.; Bortoletto, N.; Igue, T.; Medina, P.F.; Tisseli Filho, O.; Aquilera, V.; Veiga, R.F.A.; Pinheiro, J.B. Mechanisms of resistance to stink bug complex in the soybean cultivar IAC-100. An. Soc. Entomol. Bras. 1995, 24, 517–522. [Google Scholar] [CrossRef]
- Lucini, T.; Panizzi, A.R.; Bueno, A.F. Evaluating resistance of the soybean block technology cultivars to the Neotropical brown stink bug, Euschistus heros (F.). J. Insect Physiol. 2021, 131, 104228. [Google Scholar] [CrossRef]
- Arias, C.A.A.; Hoffmann-Campo, C.B.; Corrêa-Ferreira, B.S.; Lopes, I.O.N. Auxílio da genética. Rev. Cultiv. Gd. Cult. 2018, 229, 12–14. [Google Scholar]
- Horikoshi, R.J.; Dourado, P.M.; Bernardi, O.; Willse, A.; Godoy, W.A.C.; Omoto, C.; Bueno, A.F.; Martinelli, S.; Berger, G.U.; Head, G.P.; et al. Regional pest suppression associated with adoption of Cry1Ac soybean benefits pest management in tropical agriculture. Pest Manag. Sci. 2022, 87, 4166–4172. [Google Scholar] [CrossRef]
- González, E.; Salvo, A.; Valladares, G. Arthropod communities and biological control in soybean fields: Forest cover at landscape scale is more influential than forest proximity. Agric. Ecosyst Environ. 2017, 239, 359–367. [Google Scholar] [CrossRef]
- Brasil. Lei nº 12.651, de 25 de maio de 2012. Código Florestal Brasileiro. Brasilia, Distrito Federal; 2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 23 April 2023).
- Jahnke, S.M.; Da Silva, G.S. Challenges in the applied use of parasitoids to control agricultural pests. In Biopesticides in Organic Farming; Recent Advances, 1st ed.; Awasthi, L.P., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 261–266. [Google Scholar]
- Podhrázská, J.; Kucera, J.; Doubrava, D.; Doležal, P. Functions of windbreaks in the landscape ecological network and methods of their evaluation. Forests 2021, 12, 67. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Woltz, J.M.; Isaacs, R.; Landis, D.A. Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric. Ecosyst. Environ. 2012, 152, 40–49. [Google Scholar] [CrossRef]
Species | 1 Host Species | 2 Stage(s) Attacked | Parasitism Rate | Country | Reference |
---|---|---|---|---|---|
Anastatus mirabilis (Walsh & Riley) (Hymenoptera: Eupelmidae) | E | E | 0.8% | USA | [29] |
Anastatus reduvii (Howard) (Hymenoptera: Eupelmidae) | Ch | E | 44% | USA | [30] |
Aridelus rufotestaceus Tobias (Hymenoptera: Braconidae) | E; Nv | N | No information | USA | [31,32] |
Gryon obesum Masner (Hymenoptera: Scelionidae) | E | E | 1.4% to 2.4% | USA | [33] |
E | E | 2.6% | USA | [29] | |
Hexacladia hilaris Burks (Hymenoptera: Encyrtidae) | Ch; Nv | N; A | No information | Brazil and USA | [34,35,36,37] |
Hexacladia smithii Ashmead (Hymenoptera: Encyrtidae) | E; Eh | A | 0.6% to 90% | Brazil and USA | [34,35,36,38,39,40,41] |
Em | A | No information | Brazil | [4] | |
Ooencyrtus anasae (Ashmead) (Hymenoptera: Encyrtidae) | Nv; Pz | E | No information | Brazil | [42] |
Ooencyrtus submetalicus (Howard) (Hymenoptera: Encyrtidae) | Nv | E | No information | USA | [34] |
Em | E | No information | Brazil | [43] | |
Telenomus edessae Brèthes (Hymenoptera: Scelionidae) | Em | E | 0.4% | Brazil | [39] |
Telenomus podisi Ashmead (Hymenoptera: Scelionidae) | Nv | E | No information | USA | [34] |
Nv | E | 11.5% to 100% | USA | [33] | |
Ch | E | 3.4% | Brazil | [39] | |
Dm | E | 25% to 50% | Brazil and USA | [39,44] | |
Eh | E | 43.4% | Brazil | [39] | |
Eh | E | 59.3% to 62.5% | Brazil | [45] | |
E | E | 77.8% | USA | [46] | |
E | E | 69% to 100% | USA | [33] | |
Pz | E | 20.9% | Brazil and USA | [39,47] | |
Pz | E | 23.8% to 39.5% | Brazil | [45] | |
Pz | E | No information | Brazil | [42] | |
Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae) | Nv | E | 74.5 | USA | [46] |
Nv | E | 25% to 100% | USA | [33] | |
Nv | E | 53.8% | Brazil and USA | [39,47] | |
Dm | E | 16.7% | |||
Eh | E | 10.6% | |||
Ch | E | 24% | |||
Pz | E | 22.8% | |||
Th | E | 23.1% | |||
E | E | 3% to 100% | USA | [33] | |
E | E | 18.6% | USA | [46] | |
Trissolcus brochymenae (Ashmead) (Hymenoptera: Scelionidae) | E | E | 7.4% | USA | [48] |
Trissolcus edessae Fouts (Hymenoptera: Scelionidae) | E | E | 19.3% | USA | [29] |
E | E | 6.6% | USA | [46] | |
E | E | 3.1% | USA | [29] | |
Ch | E | 35% | USA | [30] | |
Trissolcus elimatus (Johnson) (Hymenoptera: Scelionidae) | Em | E | No information | Brazil | [43] |
Trissolcus euschisti (Ashmead) (Hymenoptera: Scelionidae) | E | E | 20% | USA | [46] |
E | E | 3.4% | USA | [48] | |
E | 5.3% to 20% | USA | [33] | ||
E | E | 3.6% | USA | [29] | |
Em | E | No information | Brazil | [43] | |
Trissolcus teretis Johnson (Hymenoptera: Scelinonidae) | Pz | E | No information | Brazil | [42] |
Trissolcus thyantae Ashmead (Hymenoptera: Scelionidae) | E | E | 3.4% | USA | [48] |
E | E | 1.1% to 5.9% | USA | [48] | |
E | E | 5.9% | USA | [29] | |
Nv | E | 1.4% to 8.3% | USA | [33] | |
Trissolcus urichi (Crawford) (Hymenoptera: Scelionidae) | Em | E | 14.2% | Brazil | [39] |
Em | E | No information | Brazil | [43] | |
Nv; Eh; Pz | E | No information | Brazil and USA | [42,47] | |
Eh | E | No information | Brazil | [49] |
Pests | ET(s) | Reference |
---|---|---|
Defoliators (Lepidoptera, Coleoptera, and others) | (a) 30% defoliation (soybean in the vegetative stage) or (b) 15% defoliation (soybean in the reproductive stage) | [75] |
Pod feeders (Lepidoptera, Coleoptera, and others) | 25% of injured pods | [76] |
Spodoptera spp. | 10 caterpillars (≥1.5 cm)/meter | [69] |
Helicoverpa sp. and Chloridea virescens | (a) four caterpillars/meter (soybean in the vegetative stage) or (b) two caterpillars/meter (soybean in the reproductive stage) | [28] |
Stink bugs | (a) two stink bugs (≥0.5 cm)/meter (soybean for grain production) or (b) one stink bug (≥0.5 cm)/meter (soybean for seed production) | [7] |
Variable | Comparison | 2015/16 | 2016/17 | 2017/18 | 2018/19 | 2019/20 | 2020/21 |
---|---|---|---|---|---|---|---|
Number of insecticide applications during the soybean growing season to control stink bugs | IPM | 1.40 (123 growers) | 1.30 (141 growers) | 1.06 (196 growers) | 1.15 (241 growers) | 1.13 (255 growers) | 1.27 (191 growers) |
Non-IPM | 1.90 (314 growers) | 1.9 (390 growers) | 2.0 (615 growers) | 2.10 (773 growers) | 1.94 (553 growers) | 2.22 (518 growers) | |
Days until the first insecticide application to control stink bugs | IPM | 70.4 days | 78.4 days | 86.4 days | 82.3 days | 82.1 days | 83.3 days |
Non-IPM | 66.0 days | 69.5 days | 65.8 days | 63.1 days | 68.3 days | 62.6 days | |
Stink bug control costs * (% of the total number of insecticide applications) | IPM | 80.0 kg ha−1 (66.7%) | 89.7 kg ha−1 (65.0%) | 59.8 kg ha−1 (70.7%) | 85.2 kg ha−1 (67.7%) | 74.0 (68.5%) | 44.3 kg ha−1 (73.8%) |
Non-IPM | 120 kg ha−1 (50.0%) | 126.3 kg ha−1 (51.4%) | 115.5 kg ha−1 (58.8%) | 151.9 kg ha−1 (61.8%) | 115.6 kg ha−1 (64.2%) | 78.1 kg ha−1 (65.1%) | |
Yield (kg/ha) | IPM | 3426.0 | 3870.0 | 3702.0 | 3006.0 | 3864.0 | 3654.0 |
Non-IPM | 3282.0 | 3828.0 | 3624.0 | 2916.0 | 3804.0 | 3618.0 |
Treatment (g ha−1) | Parasitoid Development Stage | Reference | ||||
---|---|---|---|---|---|---|
Pupae | Adult | |||||
Sprayed Pupae | 1 DAE | 3 DAE | 1 DAS | 3 DAS | ||
Beta-cyfluthrin 7.5 | 1 | 1 | 1 | 1 | 1 | [86] |
Beta-cyfluthrin 12.5 + imidacloprid 100 | 1 | 1 | 1 | 4 | 4 | [86] |
Bifenthrin 5 | 1 | 1 | 1 | 4 | 4 | [86] |
Chlorantraniliprole 10/15/20/30/50 | 1 | 1/1/1/1/1 | 1/1/1/1/2 | - | - | [63,86] |
Chlorantraniliprole 7.5/10/20/30 + lambda-cyhalothrin 3.75/5/10/15 | 1/1/1/1 | 1/1/1/1 | 1/1/1/1 | 3/-/-/- | 3/-/-/- | [63,86] |
Chlorfluazuron 37.5 | 1 | 1 | 1 | 1 | 1 | [86] |
Chlorpyrifos 480/640/960 | 2-1-2 | 3-1-2 | 3-2-2 | 4-2 | 4-2 | [63,85,86] |
Deltamethrin 7.5 | 1 | 1 | 1 | 2 | 2 | [86] |
Ethiprole 100/33.3 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | [85] |
Flubendiamide 33.6 | 1 | 1 | 1 | 1 | 1 | [86] |
Lambda-cyhalothrin 7.5 | 1 | 1 | 1 | 3 | 3 | [86] |
Lufenuron 7.5 | 1 | 1 | 1 | 1 | 1 | [86] |
Methoxyfenozide 21.6 | 1 | 1 | 1 | 1 | 1 | [86] |
Novaluron 7.5 | 1 | 1 | 1 | 1 | 1 | [86] |
Spinetoran 3 | 1 | 1 | 1 | 1 | 1 | [86] |
Spinosad 24 | 1 | 1 | 1 | 1 | 1 | [86] |
Sulphoxaflor 13.3/20 + lambda-cyhalothrin 20/30 | 3/3 | 1/2 | 2/2 | 3/3 | 3/4 | [85] |
Tebufenozide 30 | 1 | 1 | 1 | 1 | 1 | [86] |
Teflubenzuron 7.5 | 1 | 1 | 1 | 1 | 1 | [86] |
Thiamethoxam 18.8/23.5/28.2 + lambda-cyhalothrin 14.1/17.7/21.2 | 2/2/1 | 1/1/1 | 1/1/1 | 3/4/4 | 4/4/4 | [85,86] |
Triflumuron 14.4 | 1 | 1 | 1 | 1 | 1 | [86] |
Zeta-cypermethrin 35 | 1 | 1 | 1 | 4 | 4 | [86] |
County, State, Country | Cultivar | Number of Insecticide Applications | Yield (kg/ha) | Tetrazolio Test (%) | |||
---|---|---|---|---|---|---|---|
Vigor | Viability | Damaged by Stink Bugs | Unviable Seeds | ||||
Andira, PR, Brazil | Block (BRS 391) | 2 | 4638 a | 78.9 a | 91.5 a | 65.3 b | 7.3 b |
Not Block (BRS 232) | 2 | 3222 b | 19.2 b | 58.9 b | 98.3 a | 37.5 a | |
Florínea, SP, Brazil | Block (BRS 391) | 1 | 5919 a | 86.4 a | 93.2 a | 20.5 b | 1.0 b |
Not Block (BRS 232) | 1 | 5281 b | 86.7 a | 94.5 a | 36.0 a | 3.4 a | |
Cândido Mota, SP, Brazil | Block (BRS 391) | 2 | 4485 a | 73.9 a | 90.7 a | 69.9 a | 7.5 a |
Not Block (BRS 232) | 4 | 4258 a | 73.7 a | 90.1 a | 63.7 a | 7.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, A.d.F.; Sutil, W.P.; Jahnke, S.M.; Carvalho, G.A.; Cingolani, M.F.; Colmenarez, Y.C.; Corniani, N. Biological Control as Part of the Soybean Integrated Pest Management (IPM): Potential and Challenges. Agronomy 2023, 13, 2532. https://doi.org/10.3390/agronomy13102532
Bueno AdF, Sutil WP, Jahnke SM, Carvalho GA, Cingolani MF, Colmenarez YC, Corniani N. Biological Control as Part of the Soybean Integrated Pest Management (IPM): Potential and Challenges. Agronomy. 2023; 13(10):2532. https://doi.org/10.3390/agronomy13102532
Chicago/Turabian StyleBueno, Adeney de F., Weidson P. Sutil, Simone M. Jahnke, Geraldo A. Carvalho, Maria Fernanda Cingolani, Yelitza C. Colmenarez, and Natália Corniani. 2023. "Biological Control as Part of the Soybean Integrated Pest Management (IPM): Potential and Challenges" Agronomy 13, no. 10: 2532. https://doi.org/10.3390/agronomy13102532
APA StyleBueno, A. d. F., Sutil, W. P., Jahnke, S. M., Carvalho, G. A., Cingolani, M. F., Colmenarez, Y. C., & Corniani, N. (2023). Biological Control as Part of the Soybean Integrated Pest Management (IPM): Potential and Challenges. Agronomy, 13(10), 2532. https://doi.org/10.3390/agronomy13102532