Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Study, Experimental Design and Treatments
2.2. Extraction of Phenolic Compounds from Grape Berries
2.3. Winemaking Procedure
2.4. Spectrophotometric Characterization of Grape Berries and Wine
2.5. High-Performance Liquid Chromatography (HPLC-DAD) Analyses in Grapes and Wines
2.5.1. HPLC-DAD Analysis of Organic Acids in Grape Berries
2.5.2. HPLC-DAD Analysis of Low-Molecular-Weight Phenolic Compounds of Grape Berries and Wine
2.5.3. HPLC-DAD Analysis of Anthocyanins from Grape Skins and Wine
2.6. Wine Sensory Evaluation
2.7. Statistics
3. Results
3.1. General Physical and Chemical Composition in Syrah Grapes from Different Rootstocks
3.2. Chemical Composition and Color Parameters in Syrah Wines
3.3. Sensory Analysis of Wines
3.4. Relationships between Chemical and Sensory Parameters in Syrah Wines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, J.B.; Egipto, R.; Laureano, O.; Castro, R.; Pereira, G.E.; Ricardo-da-Silva, J.M. Chemical composition and sensory profile of Syrah wines from semiarid tropical Brazil–Rootstock and harvest season effects. LWT—Food Sci. Technol. 2019, 114, 108415. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M. Evolution of flavanols, anthocyanins, and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening. J. Agric. Food Chem. 2004, 52, 1181–1189. [Google Scholar] [CrossRef]
- Chira, K.; Jourdes, M.; Teissedre, P. Cabernet Sauvignon red wine astringency quality control by tannin characterization and polymerization during storage. Eur. Food Res. Technol. 2012, 234, 253–261. [Google Scholar] [CrossRef]
- Van Leeuwen, R.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compost. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Serra, I.; Strever, A.; Myburgh, P.A.; Deloire, A. The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Corso, M.; Bonghi, C. Grapevine rootstock effects on abiotic stress tolerance. Plant Sci. Today. 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Romero, P.; Botía, P.; Del Amor, F.; Gil-Muñoz, R.; Flores, P.; Navarro, J. Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting conditions. Agric. Water Manag. 2019, 225, 105733. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimize fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Li, M.; Guo, Z.; Jia, N.; Yuan, J.; Han, B.; Yin, Y.; Sub, Y.; Liu, C.; Zhao, S. Evaluation of eight rootstocks on the growth and berry quality of “Marselan” grapevines. Sci. Hortic. 2019, 248, 58–61. [Google Scholar] [CrossRef]
- Camacho, I.; Batalha, M.; Kulkamp, A.; Caliari, V.; Barbosa, M. Adequacy of rootstock and planting spacing for cv. Sangiovese in high altitude region of Santa Catarina. Sci. Hortic. 2023, 320, 112173. [Google Scholar]
- Mantilla, S.M.O.; Collins, C.; Iland, P.G.; Kidman, C.M.; Ristic, R.; Boss, P.K.; Jordan, C.; Bastian, S.E. Shiraz (Vitis vinifera L.) berry and wine sensory profiles and composition are modulated by rootstocks. Am. J. Enol. Vitic. 2018, 69, 32–44. [Google Scholar] [CrossRef]
- Zombardo, A.; Crosatti, C.; Bagnaresi, P.; Bassolino, L.; Reshef, N.; Puccioni, S.; Faccioli, P.; Tafuri, A.; Delledonne, M.; Fait, A.; et al. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genom. 2020, 21, 468. [Google Scholar] [CrossRef] [PubMed]
- Miele, A.; Rizzon, L. Rootstock-scion interaction: Effect on the yield components of Cabernet Sauvignon grapevine. Rev. Bras. Frutic. 2017, 39. [Google Scholar] [CrossRef]
- Clingeleffer, P.; Morales, N.; Davis, H.; Smith, H. The significance of scion× rootstock interactions. OENO One 2019, 53, 335–346. [Google Scholar] [CrossRef]
- MMA (Ministerio de Medio Ambiente, Gobierno de Chile). Elaboración de una Base Digital del Clima Comunal de Chile: Línea Base (1980–2010) y Proyección al año 2050; MMA: Santiago, Chile, 2016; p. 99. [Google Scholar]
- OIV (Organisation Internationale de la Vigne et du Vin). Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2012; Volume 1 & 2. [Google Scholar]
- Izquierdo-Hernández, A.; Peña, A.; López, R.; Obreque, E. Comparative determination of anthocyanins, Low Molecular Weight Phenols, and flavanol fractions in Vitis vinifera L. cv Carménère skins and seeds by differential solvent extraction and High-Performance Liquid Chromatography. Anal. Lett. 2015, 49, 1127–1142. [Google Scholar] [CrossRef]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interprétation. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Stonestreet, E. Le dosage des anthocyanes dans le vin rouge. Bull. Soc. Chim. 1965, 9, 2649–2652. [Google Scholar]
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A new simplified method for measuring the color of wines. I. Red and rose wines. Am. J. Enol. Vitic. 1997, 48, 357–363. [Google Scholar] [CrossRef]
- Gil I Cortiella, M.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, A. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Peña-Neira, A.; Cáceres, A.; Pastenes, C. Low Molecular Weight Phenolic and Anthocyanin Composition of Grape Skins from cv. Syrah (Vitis vinifera L.) in the Maipo Valley (Chile): Effect of Clusters Thinning and Vineyard Yield. Food Sci. Technol. Int. 2007, 13, 153–158. [Google Scholar] [CrossRef]
- Fanzone, M.; Peña-Neira, A.; Gil, M.; Jofré, V.; Assof, M.; Zamora, F. Impact of phenolic and polysaccharidic composition on commercial value of Argentinean Malbec and Cabernet Sauvignon wines. Food Res. Int. 2012, 45, 402–414. [Google Scholar] [CrossRef]
- Lawless, H.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: New York, NY, USA, 2010; Volume 2. [Google Scholar]
- Shaffer, R.; Sampaio, T.; Pinkerton, J.; Vasconcelos, M.C. Grapevine Rootstocks for Oregon Vineyards; OSU Extension Publications: Columbus, OH, USA, 2004. [Google Scholar]
- Li, M.M.; Yuan, J.W.; Liu, C.J.; Han, B.; Huang, J.Z.; Guo, Z.J.; Zhao, S.I. Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei Province, China. J. Appl. Ecol. 2016, 27, 59–63. [Google Scholar]
- Gutiérrez-Gamboa, G.; Gómez-Plaza, E.; Bautista-Ortín, A.B.; Garde-Cerdán, T.; Moreno- Simunovic, Y.; Martínez-Gil, A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854. [Google Scholar] [CrossRef]
- Riaz, S.; Pap, D.; Uretsky, J.; Laucou, V.; Boursiquot, J.M.; Kocsis, L.; Andrew Walker, M. Genetic diversity and parentage analysis of grape rootstocks. Theor. Appl. Genet. 2019, 132, 1847–1860. [Google Scholar] [CrossRef]
- Rogiers, S.; Zelmari, A.; Coetzee, Z.; Walker, R.; Deloire, A.; Tyerman, S. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. [Google Scholar] [CrossRef]
- Duchêne, É.; Dumas, V.; Butterlin, G.; Jaegli, N.; Rustenholz, C.; Chauveau, A.; Bérard, A.; Le Paslier, M.C.; Gaillard, I.; Merdinoglu, D. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. Theor. Appl. Genet. 2020, 133, 993–1008. [Google Scholar] [CrossRef]
- Kodur, S. Effects of juice pH and potassium on juice and wine quality, and regulation of potassium in grapevines through rootstocks (Vitis): A short review. VITIS J. Grapevine Res. 2011, 50, 1–6. [Google Scholar]
- Fisarakis, I.; Nikolaou, N.; Tsikalas, P.; Therios, I.; Stavrakas, D. Effect of salinity and rootstock on concentration of potassium, calcium, magnesium, phosphorus, and nitrate–nitrogen in Thompson seedless grapevine. J. Plant Nutr. 2005, 27, 2117–2134. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.N.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef] [PubMed]
- Bindon, K.; Kassara, S.; Cynkar, W.; Robinson, E.; Scrimgeour, N.; Smith, P. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Ortín, A.; Martínez-Hernández, A.; Ruiz-García, Y.; Gil-Muñoz, R.; Gómez-Plaza, E. Anthocyanins influence tannin–cell wall interactions. Food Chem. 2016, 206, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Mullen, W.; Landrault, N.; Teissedre, P.L.; Lean, M.E.; Crozier, A. Variations in the profile and content of anthocyanins in wines made from Cabernet Sauvignon and hybrid grapes. J. Agric. Food Chem. 2002, 50, 4096–4102. [Google Scholar] [CrossRef]
- Sherman, E.; Greenwood, D.R.; Villas-Boâs, S.G.; Heymann, H.; Harbertson, J.F. Impact of grape maturity and ethanol concentration on sensory properties of Washington State Merlot wines. Am. J. Enol. Vitic. 2017, 68, 344–356. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Chira, K.; Zeng, L.; Le Floch, A.; Pechamat, L.; Jourdes, M.; Teissedre, P.L. Compositional and sensory characterization of grape proanthocyanidins and oak wood ellagitannin. Tetrahedron 2015, 71, 2999–3006. [Google Scholar] [CrossRef]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. Origin and regionality of wines—The role of molecular spectroscopy. Food Anal. Meth. 2017, 10, 3947–3955. [Google Scholar] [CrossRef]
- Kustos, M.; Gambetta, J.; Jeffery, D.; Heymann, H.; Goodman, S.; Bastian, S. A matter of place: Sensory and chemical characterization of fine Australian Chardonnay and Shiraz wines of provenance. Food Res. Int. 2020, 130, 108903. [Google Scholar] [CrossRef]
Parameters | 5C | GRAVESAC |
---|---|---|
Weight of 50 berries (g) | 56.10 ± 1.57 b | 62.08 ± 1.13 a |
Skins weight (g) | 6.30 ± 0.17 b | 7.04 ± 0.09 a |
Seeds weight (g) | 2.08 ± 0.07 | 1.98 ± 0.14 |
Soluble solids (°Brix) | 23.40 ± 0.40 | 23.01 ± 0.22 |
Titratable acidity (g tartaric acid L−1) | 6.15 ± 0.16 a | 5.55 ± 0.20 b |
pH Tartaric acid (mg kg−1) | 2.80 ± 0.03 2608.30 ± 43.50 | 2.85 ± 0.02 2425.38 ± 217.21 |
Malic acid (mg kg−1) | 1154.34 ± 92.96 a | 723.88 ± 72.43 b |
Citric acid (mg kg−1) | 51.84 ± 2.58 | 46.00 ± 4.54 |
Skins total phenols (mg GAE g−1) | 7.25 ± 0.49 a | 5.67 ± 0.20 b |
Seeds total phenols (mg GAE g−1) | 15.47 ± 1.16 | 17.96 ± 2.21 |
Skins tannins mg (-)-epicatechin g−1) | 10.26 ± 0.53 a | 8.33 ± 0.61 b |
Seeds tannins mg (-)-epicatechin g−1) | 65.41 ± 5.07 | 77.70 ± 9.28 |
Total anthocyanins (mg malvidin g−1) | 11.47 ± 0.61 | 11.30 ± 0.47 |
Parameters | 5C | GRAVESAC |
---|---|---|
pH | 3.16 ± 0.04 | 3.10 ± 0.02 |
Titratable acidity (g tartaric acid L−1) | 1.50 ± 0.19 b | 2.47 ± 0.20 a |
Alcohol content (% v/v) | 14.23 ± 0.10 a | 13.55 ± 0.12 b |
Volatile acidity (g acetic acid L−1) | 0.46 ± 0.03 | 0.39 ± 0.04 |
Free SO2 (mg L−1) | 27.25 ± 2.66 | 30.75 ± 1.89 |
Total SO2 (mg L−1) | 136.50 ± 8.01 | 125.75 ± 16.98 |
Fermentable sugars (g L−1) | 0.23 ± 0.03 a | 0.10 ± 0.03 b |
Reducing sugars (g L−1) | 4.01 ± 0.43 a | 2.52 ± 0.18 b |
Total phenols (mg GAE L−1) | 1268.74 ± 19.63 a | 715.47 ± 12.81 b |
Total tannins (mg (-)-epicatechin L−1) | 2587.21 ± 64.16 a | 1834.62 ± 243.12 b |
Total anthocyanins (mg malvidin L−1) | 786.72 ± 8.36 | 764.01 ± 9.49 |
Color intensity | 14.48 ± 0.51 | 12.86 ± 0.80 |
Tone | 0.54 ± 0.00 | 0.51 ± 0.01 |
L* | 61.28 ± 1.02 | 63.98 ± 1.83 |
C* | 44.99 ± 1.01 | 45.41 ± 2.63 |
h* | 357.95 ± 0.18 a | 355.33 ± 0.23 b |
TP | TT | TA | Flavanols | Flavonols | Glu-Ant | Ace-Ant | Cou-Ant | CI | Color | Astrin | Bitter | Body | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - |
TT | 0.74 * | 1 | - | - | - | - | - | - | - | - | - | - | - |
TA | 0.65 | 0.07 | 1 | - | - | - | - | - | - | - | - | - | - |
Flavanols | 0.95 * | 0.78 * | 0.64 | 1 | - | - | - | - | - | - | - | - | - |
Flavonols | 0.7 | 0.72 * | 0.29 | 0.84 * | 1 | - | - | - | - | - | - | - | - |
Glu-ant | 0.71 * | 0.63 | 0.55 | 0.68 | 0.24 | 1 | - | - | - | - | - | - | - |
Ace-ant | −0.02 | 0.18 | −0.16 | −0.12 | −0.46 | 0.58 | 1 | - | - | - | - | - | - |
Cou-ant | −0.58 | −0.42 | −0.14 | −0.56 | −0.78 * | 0.12 | 0.55 | 1 | - | - | - | - | - |
CI | 0.51 | 0.76 * | −0.05 | 0.63 | 0.79 * | 0.28 | −0.05 | −0.62 | 1 | - | - | - | - |
Color | 0.7 | 0.25 | 0.61 | 0.68 | 0.68 | 0.1 | −0.55 | −0.81 * | 0.3 | 1 | - | - | - |
Astrin | 0.78 * | 0.83 * | 0.17 | 0.79 * | 0.86 * | 0.31 | −0.28 | −0.76 * | 0.7 | 0.55 | 1 | - | - |
Bitter | −0.53 | −0.37 | −0.55 | −0.71 * | −0.72 * | −0.31 | 0.35 | 0.38 | −0.3 | −0.63 | −0.45 | 1 | - |
Body | 0.41 | 0.31 | 0.06 | 0.42 | 0.67 | −0.28 | −0.72 * | −0.83 * | 0.3 | 0.77 | 0.65 | −0.39 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller-Fuenzalida, F.; Cuneo, I.F.; Kuhn, N.; Peña-Neira, Á.; Cáceres-Mella, A. Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate. Agronomy 2023, 13, 2530. https://doi.org/10.3390/agronomy13102530
Heller-Fuenzalida F, Cuneo IF, Kuhn N, Peña-Neira Á, Cáceres-Mella A. Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate. Agronomy. 2023; 13(10):2530. https://doi.org/10.3390/agronomy13102530
Chicago/Turabian StyleHeller-Fuenzalida, Florencia, Italo F. Cuneo, Nathalie Kuhn, Álvaro Peña-Neira, and Alejandro Cáceres-Mella. 2023. "Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate" Agronomy 13, no. 10: 2530. https://doi.org/10.3390/agronomy13102530
APA StyleHeller-Fuenzalida, F., Cuneo, I. F., Kuhn, N., Peña-Neira, Á., & Cáceres-Mella, A. (2023). Rootstock Effect Influences the Phenolic and Sensory Characteristics of Syrah Grapes and Wines in a Mediterranean Climate. Agronomy, 13(10), 2530. https://doi.org/10.3390/agronomy13102530