“Smart Agriculture” Information Technology and Agriculture Cross-Discipline Research and Development
1. Introduction
2. Results
3. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, C.; Hu, N.; Zou, Y.; Zhang, S.; Xu, S.; Yu, H. Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy 2022, 12, 1843. [Google Scholar] [CrossRef]
- Cai, C.; Tan, J.; Zhang, P.; Ye, Y.; Zhang, J. Determining Strawberries Varying Maturity Levels by Utilizing Image Segmenttion Methods of Improved DeepLabV3+. Agronomy 2022, 12, 1875. [Google Scholar] [CrossRef]
- Mu, Y.; Feng, R.; Ni, R.; Li, J.; Luo, T.; Liu, T.; Li, X.; Gong, H.; Guo, Y.; Sun, Y.; et al. A Faster R-CNN-Based Model for the Identification of Weed Seedling. Agronomy 2022, 12, 2867. [Google Scholar] [CrossRef]
- Yu, H.; Che, M.; Yu, H.; Zhang, J. Development of Weed Detection Method in Soybean Fields Utilizing Improved DeepLabv3+ Platform. Agronomy 2022, 12, 2889. [Google Scholar] [CrossRef]
- Li, D.; Piao, X.; Lei, Y.; Li, W.; Zhang, L.; Ma, L. A Grading Method of Ginseng (Panax ginseng C. A. Meyer) Appearance Quality Based on an Improved ResNet50 Model. Agronomy 2022, 12, 2925. [Google Scholar] [CrossRef]
- Sumathi, V.; Mohamed, A.J. Smart Automation for Production of Panchagavya Natural Fertilizer. Agronomy 2022, 12, 3044. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, W.; Xiao, J.; Liu, X.; Pan, S.; Liang, Z. Rapid and Accurate Prediction of Soil Texture Using an Image-Based Deep Learning Autoencoder Convolutional Neural Network Random Forest (DLAC-CNN-RF) Algorithm. Agronomy 2022, 12, 3063. [Google Scholar] [CrossRef]
- Li, J.; Xue, Z.; Li, Y.; Bo, G.; Shen, F.; Gao, X.; Zhang, J.; Tan, T. Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy 2023, 13, 373. [Google Scholar] [CrossRef]
- Gong, H.; Liu, T.; Luo, T.; Guo, J.; Feng, R.; Li, J.; Ma, X.; Mu, Y.; Hu, T.; Sun, Y.; et al. Based on FCN and DenseNet Framework for the Research of Rice Pest Identification Methods. Agronomy 2023, 13, 410. [Google Scholar] [CrossRef]
- Ma, L.; Yu, Q.; Yu, H.; Zhang, J. Maize Leaf Disease Identification Based on YOLOv5n Algorithm Incorporating Attention Mechanism. Agronomy 2023, 13, 521. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Y.; Ji, W.; Zheng, P.; Yan, S.; Hou, S.; Cai, C. Evaluation of a Real-Time Monitoring and Management System of Soybean Precision Seed Metering Devices. Agronomy 2023, 13, 541. [Google Scholar] [CrossRef]
- Dai, Q.; Guo, Y.; Li, Z.; Song, S.; Lyu, S.; Sun, D.; Wang, Y.; Chen, Z. Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5. Agronomy 2023, 13, 988. [Google Scholar] [CrossRef]
- Zhelezova, S.; Pakholkova, E.; Veller, V.; Voronov, M.; Stepanova, E.; Zhelezova, A.; Sonyushkin, A.; Zhuk, T.; Glinushkin, A. Hyperspectral Non-Imaging Measurements and Perceptron Neural Network for Pre-Harvesting Assessment of Damage Degree Caused by Septoria/Stagonospora Blotch Diseases of Wheat. Agronomy 2023, 13, 1045. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, W.; Xu, C.; Xiong, A.; Zhang, M.; Goebel, R.; Bo, G. Current Optical Sensing Applications in Seeds Vigor Determination. Agronomy 2023, 13, 1167. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Joshua, E.; Rao, N.; Kim, T. Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production. Agronomy 2023, 13, 1169. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, M.; Wu, Y.; Gao, Y.; Tang, Y.; Chen, Z.; Hou, L.; Tian, H. Maize (Zea mays L.) Stem Target Region Extraction and Stem Diameter Measurement Based on an Internal Gradient Algorithm in Field Conditions. Agronomy 2023, 13, 1185. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Wang, Z.; Zhang, J.; Chen, G. Detection and Counting of Small Target Apples under Complicated Environments by Using Improved YOLOv7-tiny. Agronomy 2023, 13, 1419. [Google Scholar] [CrossRef]
- Kong, S.; Li, J.; Zhai, Y.; Gao, Z.; Zhou, Y.; Xu, Y. Real-Time Detection of Crops with Dense Planting Using Deep Learning at Seedling Stage. Agronomy 2023, 13, 1503. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Cao, H.; Yang, D.; Zhou, L.; Yu, H. Recognition of Edible Fungi Fruit Body Diseases Based on Improved ShuffleNetV2. Agronomy 2023, 13, 1530. [Google Scholar] [CrossRef]
- Byabazaire, J.; O’Hare, G.; Collier, R.; Kulatunga, C.; Delaney, D. A Comprehensive Approach to Assessing Yield Map Quality in Smart Agriculture: Void Detection and Spatial Error Mapping. Agronomy 2023, 13, 1943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Goebel, R.G.; Wu, Z. “Smart Agriculture” Information Technology and Agriculture Cross-Discipline Research and Development. Agronomy 2023, 13, 2536. https://doi.org/10.3390/agronomy13102536
Zhang J, Goebel RG, Wu Z. “Smart Agriculture” Information Technology and Agriculture Cross-Discipline Research and Development. Agronomy. 2023; 13(10):2536. https://doi.org/10.3390/agronomy13102536
Chicago/Turabian StyleZhang, Jian, Randy G. Goebel, and Zhihai Wu. 2023. "“Smart Agriculture” Information Technology and Agriculture Cross-Discipline Research and Development" Agronomy 13, no. 10: 2536. https://doi.org/10.3390/agronomy13102536
APA StyleZhang, J., Goebel, R. G., & Wu, Z. (2023). “Smart Agriculture” Information Technology and Agriculture Cross-Discipline Research and Development. Agronomy, 13(10), 2536. https://doi.org/10.3390/agronomy13102536