Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Treatments
2.3. Plant Growth Assessment
2.4. Microtubers Mineral Composition
2.5. Total Sugar and Starch Analysis
2.6. Statistical Analysis
3. Results
3.1. Plant Growth Assessment
3.2. Effect of Bio-Fertilizers on Yield and Yield Components
3.3. Effect of Bio-Fertilizers on Mineral Content
3.4. Effect of Bio-Fertilizers on Sugar and Starch Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, U.; Sharma, L. A review of best management practices for potato crop using precision agricultural technologies. Smart Agric. Technol. 2023, 4, 100220. [Google Scholar] [CrossRef]
- Wijesinha-Bettoni, R.; Mouillé, B. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 2019, 96, 139–149. [Google Scholar] [CrossRef]
- Gong, H.; Igiraneza, C.; Dusengemungu, L. Major in vitro techniques for potato virus elimination and post eradication detection methods—A review. Am. J. Potato Res. 2019, 96, 379–389. [Google Scholar] [CrossRef]
- Buckseth, T.; Sharma, A.K.; Pandey, K.K.; Singh, B.P.; Muthuraj, R. Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci. Hortic. 2016, 204, 79–87. [Google Scholar] [CrossRef]
- Refaie, M.M.; Merghany, M.M.; Khalil, M.M.; Kabil, F.F. Microtuber and minituber manipulation for potato pre-basic seed production under Egyptian conditions. Plant Arch. 2020, 20, 2159–2164. [Google Scholar]
- Donnelly, D.J.; Coleman, W.K.; Coleman, S.E. Potato microtuber production and performance: A review. Am. J. Potato Res. 2003, 80, 103–115. [Google Scholar] [CrossRef]
- Wróbel, S. Assessment of potato microtuber and in vitro plantlet seed multiplication in field conditions—Growth, development and yield. Field Crops Res. 2015, 178, 26–33. [Google Scholar] [CrossRef]
- Radouani, A.; Lauer, F.I. Effect of NPK media concentrations on in vitro potato tuberization of cultivars ‘Nicola’ and ‘Russet’ burbank. Am. J. Potato Res. 2015, 92, 294–297. [Google Scholar] [CrossRef]
- Ozkaynak, E. Tuber size effects on yield and number of potato minitubers of commercial varieties in a greenhouse system. Turk. J. Field Crops 2021, 16, 123–128. [Google Scholar] [CrossRef]
- Diamante, I.; Gaile, Z. Assessment of potato plant development from minitubers. Agron. Res. 2018, 16, 1630–1641. [Google Scholar]
- Van der Veeken, A.J.H.; Lommen, W.J.M. How planting density affects number and yield of potato minitubers in a commercial glasshouse production system. Potato Res. 2009, 52, 105–119. [Google Scholar] [CrossRef]
- da Costa Mello, S.; Pierce, F.J.; Tonhati, R.; Almeida, G.S.; Neto, D.D.; Pavuluri, K. Potato response to Polyhalite as a potassium source fertilizer in Brazil: Yield and quality. HortScience 2018, 53, 373–379. [Google Scholar] [CrossRef]
- Yadav, K.K.; Sarkar, S. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
- Dos, S.; Viana, J.; Palaretti, L.F.; De Faria, R.T.; Delgado, Y.V.; Dalri, A.B.; Barbosa, J.A. Potato production affected by fertilization methods, masses of seed tubers and water regimes. Hortic. Bras. 2020, 38, 166–174. [Google Scholar]
- de Almeida, R.F.; de Oliveira, R.C.; Pereira, A.I.d.A.; Lana, R.M.Q.; Magno Queiroz Luz, J. Seed potato minitubers production in a reused substrate. Biosci. J. 2020, 36, 183–191. [Google Scholar] [CrossRef]
- Tessema, L.; Chindi, A.; Giorgis, G.W.; Solomon, A.; Shunka, E.; Seid, E. Determination of nutrient solutions for potato (Solanum tuberosum L.) seed production under aeroponics production system. Open Agric. 2017, 2, 155–159. [Google Scholar] [CrossRef]
- Munthali, C.; Kinoshita, R.; Onishi, K.; Rakotondrafara, A.; Mikami, K.; Koike, M.; Tani, M.; Palta, J.; Aiuchi, D. A model nutrition control system in potato tissue culture and its influence on plant elemental composition. Plants 2022, 11, 2–12. [Google Scholar] [CrossRef]
- Al Rubaye, A.T.; Abdul-Ratha, H.A.; Hadown, H.A. Effect of local and imported biofertilizers on growth and yield of potato. Iraqi J. Agric. Sci. 2019, 50, 431–445. [Google Scholar]
- Mukhongo, R.W.; Tumuhairwe, J.B.; Ebanyat, P.; AbdelGadir, A.A.H.; Thuita, M.; Masso, C. Combined application of biofertilizers and inorganic nutrients improves sweet potato yields. Front. Plant Sci. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; İkiz, B.; Gruda, N.S. Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Yilmaz, M.; Dere, S.; İkiz, B.; Gruda, N.S. Bio-fertilizers reduced the need for the mineral fertilizers in soilless grown capia pepper. Horticulturae 2023, 9, 188. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; İkiz, B.; Gruda, N.S. Biofertilizers improve the leaf quality of hydroponically grown baby spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Boubaker, H.; Daşgan, H.Y.; Tarchoun, N. Effects of the bio-fertilizers on potato mini tubers number and size produced from tissue culture plants. Int. J. Agric. Environ. Food Sci. 2021, 5, 514–523. [Google Scholar] [CrossRef]
- Lone, R.; Shuab, R.; Sharma, V.; Kumar, V.; Mir, R.; Koul, K.K. Effect of Arbuscular Mycorrhizal Fungi on growth and development of potato (Solanum tuberosum) plant. Asian J. Crop Sci. 2015, 7, 233–243. [Google Scholar] [CrossRef]
- Khosravifar, S.; Farahvash, F.; Aliasgharzad, N.; Yarnia, M.; Khoei, F.R. Effects of different irrigation regimes and two arbuscular mycorrhizal fungi on some physiological characteristics and yield of potato under field conditions. J. Plant Nutr. 2020, 43, 2067–2079. [Google Scholar] [CrossRef]
- Duffy, E.M.; Cassells, A.C. The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Appl. Soil Ecol. 2000, 15, 137–144. [Google Scholar] [CrossRef]
- Singh, M.; Biswas, S.K.; Nagar, D.; Lal, K.; Singh, J. Impact of bio-fertilizer on growth parameters and yield of potato. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1717–1724. [Google Scholar] [CrossRef]
- Susiana, P.; Rukmi, I.; Jannah, S.N. Applications of mycorrhiza on potato growth and productivity. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1217, p. 012143. [Google Scholar]
- Ergun, O.; Dasgan, H.Y.; Isik, O. Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. Acta Hortic. 2020, 1273, 169–176. [Google Scholar] [CrossRef]
- Al-Nazwani, M.S.; Aboshosha, S.S.; El-Saedy, M.A.M.; Ghareeb, R.Y.; Komeil, D.A. Antifungal activities of Chlorella vulgaris extract on black scurf disease, growth performance and quality of potato. Arch. Phytopathol. Plant Prot. 2021, 54, 2171–2190. [Google Scholar] [CrossRef]
- Singh, P.; Kardile, H.B.; Rawal, S.; Kumar, M.; Dua, V.K.; Sharma, J.; Kumar, S. Beneficial effects of bacterial endophytes isolated from potato roots and tubers on nutrient solubilization. Potato J. 2022, 49, 82–94. [Google Scholar]
- Neam, K.T.A.; Hassan, A.A.; Saleh, W.D.; Higazy, A.M. Effect of different biofertilizers on potato growth and quality. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 64–73. [Google Scholar]
- Ansari, A.A. Effect of vermicompost and vermiwash on the productivity of spinach (Spinacia oleracea), onion (Allium cepa) and potato (Solanum tuberosum). World J. Agric. Sci. 2008, 4, 554–557. [Google Scholar]
- Yourtchi, M.S.; Hadi, M.H.; Drazi, M.T. Effect of nitrogen fertilizer and vermicompost on vegetative growth, yield and NPK uptake by tuber of potato (Agria cv.). Int. J. Agric. Crop Sci. 2013, 5, 2033–2040. [Google Scholar]
- Sikder, R.K.; Rahman, M.M.; Bari, S.W.; Mehraj, H. Effect of organic fertilizers on the performance of seed potato. Trop. Plant Res. 2017, 4, 104–108. [Google Scholar] [CrossRef]
- Ashok, M.; Ghosal, D.; Mohanty, A.K.; Ananya, M.; Subhalaxmi, S. Impact of cutting and chemical treatments to seed potato on crop establishment and yield. J. Pharmacogn. Phytochem. 2021, 10, 2526–2530. [Google Scholar]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- Altuntas, O.; Dasgan, H.Y. Growth and nutrient element content in mycorrhizae colonized mint plants under saline conditions. Acta Hortic. 2019, 1257, 115–122. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An overview of the Kjeldahl method of nitrogen determination. Part II. sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Barton, C.J. Photometric analysis of phosphate rock. Anal. Chem. 1948, 20, 1068–1073. [Google Scholar] [CrossRef]
- Das, S.; Mitra, B.; Saha, A.; Mandal, S.; Paul, P.K.; El-Sharnouby, M.; Hassan, M.M.; Maitra, S.; Hossain, A. Evaluation of Quality Parameters of Seven Processing Type Potato (Solanum tuberosum L.) Cultivars in the Eastern Sub-Himalayan Plains. Foods 2021, 10, 1138. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; El-Greadly, N.H.; Gruda, N. Hormonal changes, growth and yield of tomato plants in response to chemical and bio-fertilization application in sandy soils. J. Appl. Bot. Food Qual. 2009, 82, 179–182. [Google Scholar]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Zewide, I.; Singh, S.; Kassa, H. Vermicompost and NP Fertilizers Jointly Enhance Growth and Biomass and Improve Quality of Potato Tubers. Russ. Agric. Sci. 2021, 47, 333–339. [Google Scholar] [CrossRef]
- Singh, B.K.; Pathak, A.K.; Boopathi, T.; Deka, B.C. Vermicompost and NPK fertilizer effects on morpho-physiological traits of plants, yield and quality of tomato fruits (Solanum lycopersicum L.). Veg. Crops Res. Bull. 2010, 73, 77–86. [Google Scholar] [CrossRef]
- Tikoria, R.; Kaur, A.; Ohri, P. Physiological, biochemical and structural changes in tomato plants by vermicompost application in different exposure periods under glass house conditions. Plant Physiol. Biochem. 2023, 197, 107656. [Google Scholar] [CrossRef] [PubMed]
- Sayğı, H. Effects of organic fertilizer application on strawberry (Fragaria vesca L.) cultivation. Agronomy 2022, 12, 1233. [Google Scholar] [CrossRef]
- Kilic, N.; Dasgan, H.Y.; Gruda, N.S. A Novel approach for organic strawberry cultivation: Vermicompost-based fertilization and microbial complementary nutrition. Horticulturae 2023, 9, 642. [Google Scholar] [CrossRef]
- Espinosa-Palomeque, B.; Cano-Ríos, P.; Salas-Pérez, L.; González-Rodríguez, G.; Reyes-González, A.; Ayala-Garay, A.V.; Preciado-Rangel, P. Vermicompost on the production and nutraceutical quality of jalapeño pepper fruits (Capsicum annuum L.). Terra Latinoam. 2020, 38, 795–803. [Google Scholar] [CrossRef]
- Manjunath, M.; Kumar, U.; Yadava, R.B.; Rai, A.B.; Singh, B. Influence of organic and inorganic sources of nutrients on the functional diversity of microbial communities in the vegetable cropping system of the Indo-Gangetic planis. Comptes Rendus Biol. 2018, 341, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.; Zaman, M.S.; Khalid, M.; Rehman, S.; Noor, A. Evaluation of economically important cultivars of seed potato for minituber production. J. Hortic. Sci. Technol. 2019, 2, 93–97. [Google Scholar] [CrossRef]
- Merga, B.; Dechassa, N. Growth and Productivity of Different Potato Cultivars. J. Agric. Sci. 2018, 11, 528–534. [Google Scholar] [CrossRef]
- Helaly, M.N.; Fouda, R.A.; Ramadan, E.A. Effect of bio-and mineral fertilizers on growth, yield and tuber quality of potato plants: 2-yield and tuber quality. J. Plant Prod. 2009, 34, 3547–3579. [Google Scholar] [CrossRef]
- Araújo, L.P.; de Oliveira, R.C.; Lana, R.M.Q.; Luz, J.M.Q.; Guimarães, J.P.A.; Alves, E.O. Accumulation of macronutrients and productivity of potato with foliar application of biofertilizer. Int. J. Agric. Nat. Resour. 2021, 48, 70–82. [Google Scholar]
- Sharma, A.; Pandey, K.K. Potato mini-tuber production through direct transplanting of in vitro plantlets in green or screen houses—A review. Potato J. 2013, 40, 95–103. [Google Scholar]
- Felenji, H.; Aharizad, S.; Afsharmanesh, G.R.; Ahmadizadeh, M. Evaluating correlation and factor analysis of morphological traits in potato cultivars in fall cultivation of jiroft area. Am.-Eur. J. Agric. Environ. Sci. 2011, 11, 679–684. [Google Scholar]
- Oliveira, R.C.; da Silva, J.R.R.; Lana, R.M.Q.; de Azevedo Pereira, A.I.; Castoldi, R.; de Camargo, R.; Luz, J.M.Q. Fertilizer application levels in potato crops and the diagnosis and recommendation integrated system (DRIS). Agronomy 2021, 11, 2–13. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Qin, R.; Noulas, C.; Sathuvalli, V.; Charlton, B.; Loka, D.A. Potassium: A Vital Macronutrient in Potato Production—A Review. Agronomy 2021, 11, 2–19. [Google Scholar] [CrossRef]
- Ali, M.M.E.; Petropoulos, S.A.; Selim, D.A.F.H.; Elbagory, M.; Othman, M.M.; Omara, A.E.-D.; Mohamed, M.H. Plant growth, yield and quality of potato crop in relation to potassium fertilization. Agronomy 2021, 11, 675. [Google Scholar] [CrossRef]
- Khan, M.Z.; Akhtar, M.E.; Mahmood-ul-Hassan, M.; Mahmood, M.M.; Safdar, M.N. Potato tuber yield and quality as affected by rates and sources of potassium fertilizer. J. Plant Nutr. 2012, 35, 664–677. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Bocianowski, J. Potassium fertilization as a driver of sustainable management of nitrogen in potato (Solanum tuberosum L.). Field Crops Res. 2020, 254, 107824. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Hegab, S.A.; Abd El Gawad, A.M.; Awad, M. Integrated Effect of filter mud cake combined with chemical and biofertilizers to enhance potato growth and its yield. J. Soil Sci. Plant Nutr. 2022, 22, 455–464. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
Media Characteristics | Results |
---|---|
Electrical conductivity | white peat (H2–H5) 35 mS/m (+/− 25%) |
pH | 5.5–6.5 |
fertilizers (NPK 14:10:18) | 1.0 kg/m3 |
Available Zn mg/kg | 28.7 |
Available Cu mg/kg | 16.0 |
Available Cd mg/kg | 0.53 |
Available Pb mg/kg | 12.8 |
Available Mo mg/kg | 0.11 |
porosity | 80–90% |
Fertigation Treatments (T) | Composition |
---|---|
T1:Control | 100% mineral nutrition [23] (mg L−1): Nitrogen (N) = 160, phosphorus (P) = 30, potassium (K) = 220, calcium (Ca) = 140, magnesium (Mg) = 40, iron (Fe) = 2.5, manganese (Mn) = 0.25, zinc (Zn) = 0.25, boron (B) = 0.20, copper (Cu) = 0.02, and molybdenum (Mo) = 0.04 |
T2:Mycorrhiza | 40%. mineral nutrition + 1000 spores of mycorrhiza inoculation during plantation for each pot: Mycorrhiza bio-fertilizer under the trade name “Endo Roots Soluble (ERS)®. Different mycorrhiza species as cocktail preparation: Glomus intraradices, Glomus aggregatum, Glomus mosseae, Glomus clarum, Glomus monosporus, Glomus deserticola, Glomus brasilianum, Glomus etunicatum, Gigaspora margarita [20,22]. |
T3:Microalgae | 40% mineral nutrition + microalgae: Microalgae Chlorella Vulgaris produced in the Cukurova University using 2 × 106 microalgae in 1 mL. This concentration was diluted 40 times with irrigation solution per 7 days [20,22]. |
T4:Bacteria | 40% mineral nutrition + bacteria: Rhizofill® was liquid bacteria bio-fertilizer used in the experiment. The bacteria fertilizer contained four different bacteria species as Bacillus subtilis (1 × 109), Bacillus megaterium (1 × 109), and Pseudomonas fluorescens (1 × 109). A total of 1 mL of Rhizofill in 1 L of irrigation solution was used per 7 days [20,22]. |
T5:Vermicompost | 40% mineral nutrition + vermicompost: The commercial name of Ekosolfarm® is the liquid vermicompost bio-fertilizer used in the experiment. The vermicompost composition had total organic matter of 10%, total nitrogen of 2%, organic nitrogen of 2%, water-soluble potassium pentaoxide (K2O) of 0.2%, free amino acids of 10%, and beneficial microorganisms. A total of 3 mL of vermicompost in 1 L of irrigation solution was used per 7 days [20,22]. |
Cultivar (Cv) | In Vitro Material (In Vitro) | Biofertilizer (B) | Cv × In Vitro | Cv × B | In Vitro × B | Cv × In Vitro × B | |
---|---|---|---|---|---|---|---|
Plant length | **** | **** | **** | **** | **** | * | * |
Branch number | **** | **** | **** | ** | ** | *** | **** |
Leaf number | **** | **** | ns | **** | * | * | * |
Stem diameter | **** | **** | **** | **** | **** | ns | * |
Chlorophyll | **** | **** | ns | **** | ns | ns | ns |
Shoot fresh w. | **** | **** | **** | **** | **** | **** | ** |
Shoot dry w. | **** | **** | **** | **** | **** | **** | **** |
Tuber dry w. | ns | **** | ns | ** | *** | ns | ns |
Tuber yield | **** | **** | **** | **** | **** | **** | **** |
Tuber no | **** | **** | **** | **** | **** | **** | **** |
Tuber diameter | **** | **** | **** | **** | ns | ** | ns |
Tuber weight | **** | **** | **** | **** | ** | **** | * |
Starch | **** | **** | **** | **** | **** | ns | ** |
Sugar | **** | ns | **** | ns | **** | **** | **** |
Nitrogen | **** | ** | **** | ns | **** | **** | **** |
Potassium | **** | **** | **** | **** | **** | **** | **** |
Calcium | **** | **** | **** | **** | **** | **** | **** |
Magnesium | **** | **** | **** | **** | **** | ** | **** |
Factor | Plant Length (cm) | Branch Number | Leaf Number | Stem Diameter (mm) | SPAD Chlorophyll | Shoot FW (g) | Shoot DW (g) | Tuber DM (%) | |
---|---|---|---|---|---|---|---|---|---|
Cultivar | |||||||||
Spunta | 81.66 a | 2.35 a | 21.85 a | 6.60 a | 36.70 a | 4.43 a | 0.435 a | 9.67 | |
Russet | 22.44 b | 1.38 b | 6.38 b | 2.80 b | 24.65 b | 0.86 b | 0.090 b | 9.41 | |
In vitro material | |||||||||
Microtuber | 54.15 a | 1.50 b | 9.48 b | 4.43 b | 23.88 b | 2.12 b | 0.20 b | 9.08 b | |
Plantlet | 49.94 b | 2.23 a | 18.75 a | 4.97 a | 37.46 a | 3.16 a | 0.33 a | 10.00 a | |
Biofertilizer | |||||||||
Control | 46.19 c | 1.44 b | 14.19 | 4.76 ab | 30.67 | 2.40 bc | 0.22 b | 9.36 | |
Mycorrhiza | 54.19 ab | 1.56 b | 14.13 | 4.77 ab | 31.28 | 2.68 b | 0.25 b | 9.01 | |
Microalgea | 52.50 ab | 1.81 b | 14.31 | 4.30 c | 29.67 | 2.12 c | 0.24 b | 10.12 | |
Bacteria | 51.75 b | 1.38 b | 14.06 | 4.53 bc | 30.89 | 2.51 b | 0.26 b | 9.30 | |
Vermicompost | 55.61 a | 3.13 a | 13.88 | 5.14 a | 30.85 | 3.52 a | 0.35 a | 9.91 | |
Cultivar × in vitro Material | |||||||||
Spunta | Microtuber | 85.40 a | 1.80 b | 13.70 b | 5.72 b | 28.63 b | 3.36 b | 0.290 b | 8.89 b |
Plantles | 77.91 b | 2.90 a | 30.00 a | 7.47 a | 44.77 a | 5.50 a | 0.579 a | 10.45 a | |
Russet | Microtuber | 22.90 c | 1.20 c | 5.25 d | 3.13 c | 19.14 c | 0.89 c | 0.102 c | 9.27 b |
Plantles | 21.98 c | 1.55 bc | 7.50 c | 2.47 d | 30.16 b | 0.82 c | 0.078 c | 9.55 b | |
Cultivar × Biofertilizer | |||||||||
Spunta | Control | 69.63 c | 1.50 def | 21.63 a | 6.56 b | 36.24 | 3.88 bc | 0.362 b | 9.34 bc |
Mycorrhiza | 84.38 b | 2.00 bcd | 21.63 a | 6.85 ab | 36.04 | 4.37 b | 0.409 b | 9.28 bc | |
Microalgea | 82.6 b | 2.63 b | 22.50 a | 5.70 c | 36.30 | 3.50 c | 0.410 b | 11.39 a | |
Bacteria | 82.13 b | 1.75 cde | 21.50 a | 6.43 b | 37.46 | 4.24 b | 0.386 b | 8.93 c | |
Vermicompost | 89.65 a | 3.88 a | 22.00 a | 7.45 a | 37.45 | 6.17 a | 0.605 a | 9.41 bc | |
Russet | Control | 22.75 d | 1.38 def | 6.75 b | 2.96 d | 25.10 | 0.92 d | 0.086 c | 9.37 bc |
Mycorrhiza | 24.00 d | 1.13 ef | 6.63 b | 2.69 d | 26.51 | 0.98 d | 0.086 c | 8.74 c | |
Microalgea | 22.50 d | 1.00 f | 6.13 b | 2.90 d | 23.04 | 0.74 d | 0.064 c | 8.85 c | |
Bacteria | 21.38 d | 1.00 f | 6.63 b | 2.64 d | 24.33 | 0.77 d | 0.127 c | 9.68 bc | |
Vermicompost | 21.56 d | 2.38 bc | 5.75 b | 2.84 d | 24.25 | 0.87 d | 0.089 c | 10.41 ab | |
In vitro material × Biofertilizer | |||||||||
Microtuber | Control | 49.63 | 1.38 d | 10.13 b | 4.67 | 23.60 | 2.14 d | 0.183 ef | 8.67 |
Mycorrhiza | 57.25 | 1.50 d | 9.63 b | 4.51 | 24.66 | 2.34 cd | 0.207 de | 8.84 | |
Microalgea | 54.88 | 1.25 d | 9.75 b | 4.05 | 21.68 | 1.28 e | 0.137 f | 10.29 | |
Bacteria | 53.63 | 1.13 d | 9.25 b | 4.13 | 24.23 | 2.06 d | 0.230 cde | 8.94 | |
Vermicompost | 55.38 | 2.25 bc | 8.63 b | 4.78 | 25.25 | 2.82 bc | 0.224 cde | 8.65 | |
Plantlet | Control | 42.75 | 1.50 d | 18.25 a | 4.85 | 37.74 | 2.66 bc | 0.265 cd | 10.04 |
Mycorrhiza | 51.13 | 1.63 cd | 18.63 a | 5.04 | 37.89 | 3.01 b | 0.289 bc | 9.19 | |
Microalgea | 51.12 | 2.38 b | 18.88 a | 4.54 | 37.66 | 2.96 b | 0.337 b | 9.95 | |
Bacteria | 49.88 | 1.63 cd | 18.87 a | 4.94 | 37.56 | 2.95 b | 0.283 bc | 9.67 | |
Vermicompost | 55.88 | 4.00 a | 19.13 a | 5.51 | 36.45 | 4.22 a | 0.470 a | 11.17 |
Factor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | In Vitro Material | Biofertilizer | Plant Length (cm) | Branch No per Plant | Leaf No per Plant | Stem Diameter (mm) | SPAD Chlorophyll | Shoot FW (g) | Shoot DW (g) | Tuber DM (%) |
Spunta | Microtuber | Control | 73.25 cd | 1.00 d | 14.25 b | 5.88 cd | 27.70 | 3.35 d | 0.287 ef | 8.73 |
Mycorrhiza | 90.25 a | 1.75 bcd | 13.25 b | 5.92 cd | 28.90 | 3.55 d | 0.313 e | 8.83 | ||
Microalgea | 89.50 a | 1.50 bcd | 14.75 b | 5.23 d | 27.00 | 1.93 e | 0.214 fg | 10.84 | ||
Bacteria | 84.75 ab | 1.25 cd | 13.25 b | 5.37 cd | 29.30 | 3.34 d | 0.283 ef | 8.36 | ||
Vermicompost | 89.25 a | 3.50 a | 13.00 b | 6.22 c | 30.25 | 4.65 bc | 0.355 de | 7.67 | ||
Plantlet | Control | 66.00 d | 2.00 bc | 29.00 a | 7.24 b | 44.78 | 4.40 c | 0.438 cd | 9.97 | |
Mycorrhiza | 78.50 bc | 2.25 b | 30.00 a | 7.78 b | 43.18 | 5.20 b | 0.506 c | 9.74 | ||
Microalgea | 75.50 c | 3.75 a | 30.25 a | 6.18 c | 45.60 | 5.08 bc | 0.606 b | 11.93 | ||
Bacteria | 79.50 bc | 2.25 b | 29.75 a | 7.50 b | 45.63 | 5.14 b | 0.490 c | 9.50 | ||
Vermicompost | 90.06 a | 4.25 a | 31.00 a | 8.68 a | 44.65 | 7.68 a | 0.866 a | 11.14 | ||
Russet | Microtuber | Control | 26.00 e | 1.75 bcd | 6.00 c-f | 3.45 e | 19.50 | 0.92 f | 0.080 i | 8.61 |
Mycorrhiza | 24.25 e | 1.25 cd | 6.00 c-f | 3.10 ef | 20.43 | 1.13 f | 0.101 hi | 8.84 | ||
Microalgea | 20.25 e | 1.00 d | 4.75 ef | 2.87 ef | 16.35 | 0.63 f | 0.060 i | 9.73 | ||
Bacteria | 22.50 e | 1.00 d | 5.25 def | 2.90 ef | 19.15 | 0.76 f | 0.177 gh | 9.52 | ||
Vermicompost | 21.50 e | 1.00 d | 4.25 f | 3.34 e | 20.25 | 0.98 f | 0.094 hi | 9.62 | ||
Plantlet | Control | 19.50 e | 1.00 d | 7.50 cd | 2.47 f | 30.70 | 0.93 f | 0.092 hi | 10.12 | |
Mycorrhiza | 23.75 e | 1.00 d | 7.25 cde | 2.29 f | 32.60 | 0.83 f | 0.072 i | 8.65 | ||
Microalgea | 24.75 e | 1.00 d | 7.50 cd | 2.92 ef | 29.73 | 0.85 f | 0.068 i | 7.96 | ||
Bacteria | 20.25 e | 1.00 d | 8.00 c | 2.37 f | 29.50 | 0.76 f | 0.076 i | 9.84 | ||
Vermicompost | 21.63 e | 3.75 a | 7.25 cde | 2.34 f | 28.25 | 0.76 f | 0.085 hi | 11.19 |
Factor | Sugar (mg kg−1) | Starch (mg kg−1) | Nitrogen (%) | Potassium (mg kg−1) | Magnesium (mg kg−1) | Calcium (mg kg−1) | |
---|---|---|---|---|---|---|---|
Cultivar | |||||||
Spunta | 0.262 a | 0.226 b | 3.18 b | 328.28 b | 20.82 a | 9.84 b | |
Russet | 0.231 b | 0.287 a | 3.41 a | 453.19 a | 17.82 b | 10.86 a | |
In vitro Material | |||||||
Microtuber | 0.244 | 0.234 b | 3.31 a | 350.54 b | 19.03 b | 10.61 a | |
Plantlet | 0.249 | 0.280 a | 3.28 b | 430.94 a | 19.61 a | 10.09 b | |
Biofertilizer | |||||||
Control | 0.258 a | 0.209 b | 3.11 d | 366.83 c | 17.63 d | 9.83 b | |
Mycorrhiza | 0.248 b | 0.227 b | 3.22 c | 361.23 c | 19.77 b | 10.99 a | |
Microalgea | 0.247 b | 0.269 a | 3.31 b | 365.54 c | 19.19 c | 10.89 a | |
Bacteria | 0.250 b | 0.284 a | 3.40 a | 415.20 b | 20.87 a | 10.16 b | |
Vermicompost | 0.229 c | 0.294 a | 3.43 a | 444.90 a | 19.15 c | 9.89 b | |
Cultivar × in vitro Material | |||||||
Spunta | Microtuber | 0.260 | 0.179 b | 3.17 | 333.84 c | 20.07 b | 9.80 c |
Plantles | 0.264 | 0.272 a | 3.19 | 322.72 c | 21.58 a | 9.88 bc | |
Russet | Microtuber | 0.228 | 0.289 a | 3.39 | 367.23 b | 17.99 c | 11.41 a |
Plantles | 0.233 | 0.288 a | 3.42 | 539.17 a | 17.65 c | 10.32 b | |
Cultivar × Biofertilizer | |||||||
Spunta | Control | 0.303 a | 0.125 e | 3.02 e | 340.40 e | 20.00 c | 9.60 cd |
Mycorrhiza | 0.264 b | 0.202 d | 3.03 e | 323.60 ef | 21.88 b | 11.30 a | |
Microalgea | 0.248 c | 0.249 c | 3.18 d | 296.13 f | 19.90 c | 10.61 ab | |
Bacteria | 0.271 b | 0.250 c | 3.33 c | 351.90 e | 23.00 a | 9.04 de | |
Vermicompost | 0.224 e | 0.301 a | 3.34 c | 329.38 ef | 19.34 cd | 8.66 e | |
Russet | Control | 0.212 f | 0.294 ab | 3.20 d | 393.25 d | 15.26 g | 10.06 bc |
Mycorrhiza | 0.232 de | 0.252 bc | 3.41 b | 398.87 d | 17.67 f | 10.68 ab | |
Microalgea | 0.245 c | 0.288 abc | 3.44 b | 434.95 c | 18.48 e | 11.18 a | |
Bacteria | 0.230 de | 0.320 a | 3.46 ab | 478.50 b | 18.74 de | 11.28 a | |
Vermicompost | 0.235 d | 0.286 abc | 3.52 a | 560.43 a | 18.95 de | 11.12 a | |
In vitro material × Biofertilizer | |||||||
Microtuber | Control | 0.253 d | 0.197 | 3.15 g | 337.93 ef | 17.09 e | 10.78 b |
Mycorrhiza | 0.242 ef | 0.196 | 3.24 ef | 307.75 fg | 19.66 c | 10.34 b | |
Microalgea | 0.212 g | 0.259 | 3.35 c | 287.60 g | 18.53 d | 11.59 a | |
Bacteria | 0.265 b | 0.262 | 3.34 c | 365.83 de | 21.11 a | 10.88 ab | |
Vermicompost | 0.248 de | 0.254 | 3.32 cd | 453.58 a | 18.75 d | 9.45 cd | |
Plantlet | Control | 0.263 bc | 0.222 | 3.08 h | 395.73 cd | 18.17 d | 8.88 d |
Mycorrhiza | 0.253 cd | 0.258 | 3.20 fg | 414.72 bc | 19.88 bc | 11.64 a | |
Microalgea | 0.281 a | 0.279 | 3.27 de | 443.48 ab | 19.85 c | 10.19 bc | |
Bacteria | 0.236 f | 0.307 | 3.45 b | 464.58 a | 20.62 ab | 9.44 cd | |
Vermicompost | 0.211 g | 0.333 | 3.54 a | 436.23 ab | 19.54 c | 10.33 b |
Factor | ||||||||
---|---|---|---|---|---|---|---|---|
Cultivar | In Vitro Material | Biofertilizer | Sugar (mg kg−1) | Starch (mg kg−1) | N (%) | K (mg kg−1) | Mg (mg kg−1) | Ca (mg kg−1) |
Spunta | Microtuber | Control | 0.276 bc | 0.109 k | 3.13 fg | 392.35 c | 19.57 ef | 11.39 bcd |
Mycorrhiza | 0.263 cd | 0.156 ijk | 3.05 hg | 316.80 efg | 20.88 cd | 10.18 fghi | ||
Microalgea | 0.220 h | 0.200 hij | 3.22 def | 261.30 h | 18.12 g | 11.06 cdef | ||
Bacteria | 0.287 b | 0.219 fgh | 3.22 def | 357.45 c–e | 23.25 a | 8.82 jk | ||
Vermicompost | 0.255 def | 0.211 ghi | 3.23 de | 341.30 d–f | 18.55 fg | 7.58 l | ||
Plantlet | Control | 0.331 a | 0.142 jk | 2.91 I | 288.45 gh | 20.45 de | 7.81 kl | |
Mycorrhiza | 0.265 cd | 0.248 d–h | 3.02 h | 330.40 efg | 22.88 a | 12.42 ab | ||
Microalgea | 0.275 bc | 0.301 bcd | 3.15 ef | 330.95 d–g | 21.68 bc | 10.15 fghi | ||
Bacteria | 0.256 de | 0.280 bcde | 3.45 bc | 346.35 c–f | 22.75 ab | 9.27 ij | ||
Vermicompost | 0.193 j | 0.390 a | 3.45 bc | 317.45 efg | 20.13 de | 9.74 hij | ||
Russet | Microtuber | Control | 0.230 gh | 0.284 bcde | 3.16 def | 283.50 gh | 14.62 I | 10.17 fghi |
Mycorrhiza | 0.222 h | 0.237 efgh | 3.44 bc | 298.70 f–h | 18.45 g | 10.51 d–h | ||
Microalgea | 0.205 ij | 0.318 bc | 3.48 b | 313.90 efg | 18.93 fg | 10.13 abc | ||
Bacteria | 0.243 efg | 0.304 bcd | 3.46 bc | 374.20 cd | 18.98 fg | 12.94 a | ||
Vermicompost | 0.242 efg | 0.297 bcde | 3.40 bc | 565.85 a | 18.96 fg | 11.31 cde | ||
Plantlet | Control | 0.195 j | 0.303 bcd | 3.24 d | 503.00 b | 15.89 h | 9.95 ghi | |
Mycorrhiza | 0.241 fg | 0.267 c–g | 3.38 c | 499.04 b | 16.89 h | 10.86 defg | ||
Microalgea | 0.285 b | 0.257 d–h | 3.40 bc | 556.00 a | 18.02 g | 10.23 e–i | ||
Bacteria | 0.216 hi | 0.335 ab | 3.47 bc | 582.80 a | 18.50 fg | 9.62 hij | ||
Vermicompost | 0.229 gh | 0.276 b–f | 3.63 aP | 550.00 aP | 18.95 fg | 10.93 defg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubaker, H.; Saadaoui, W.; Dasgan, H.Y.; Tarchoun, N.; Gruda, N.S. Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality. Agronomy 2023, 13, 2541. https://doi.org/10.3390/agronomy13102541
Boubaker H, Saadaoui W, Dasgan HY, Tarchoun N, Gruda NS. Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality. Agronomy. 2023; 13(10):2541. https://doi.org/10.3390/agronomy13102541
Chicago/Turabian StyleBoubaker, Hiba, Wassim Saadaoui, Hayriye Yildiz Dasgan, Neji Tarchoun, and Nazim S. Gruda. 2023. "Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality" Agronomy 13, no. 10: 2541. https://doi.org/10.3390/agronomy13102541
APA StyleBoubaker, H., Saadaoui, W., Dasgan, H. Y., Tarchoun, N., & Gruda, N. S. (2023). Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality. Agronomy, 13(10), 2541. https://doi.org/10.3390/agronomy13102541