Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experiments
2.3. Sample Collection
2.4. Determination Parameters and Methods
2.4.1. Morphological Characteristics of Stems and Breaking Strength
2.4.2. Lignin Content
2.4.3. Silicon Content
2.4.4. Yield and Yield Components
2.5. Statistical Analysis
3. Results and Analysis
3.1. Effect of Silicon on Yield and Yield Components of Winter Wheat under Low-Light Stress
3.2. Effect of Silicon on the Silicon Content of Winter Wheat under Low-Light Stress
3.3. Effect of Silicon on the Resistance of Winter Wheat Stems to Lodging under Low-Light Stress
3.3.1. Plant Height and Center of Gravity
3.3.2. Thickness and Wall Thickness of the Second Internode at the Base of the Stem
3.3.3. Filling of the Second Internode at the Base of the Stem
3.3.4. Breaking Strength of the Second Internode at the Base of the Stem
3.4. Effect of Silicon on Lignin Content in Winter Wheat under Low-Light Stress
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shumayla; Sharma, S.; Kumar, R.; Mendu, V.; Singh, K.; Upadhyay, S.K. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs). Front. Plant Sci. 2016, 7, 1374. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.B.; Dan, L.; Chen, Y.L.; Tang, J.X. Trends of the sunshine duration and diffuse radiation percentage on sunny days in urban agglomerations of China during 1960–2005. J. Environ. Sci. 2015, 34, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Campuzano, G.; Miralles, D.J.; Slafer, G.A. Yield determination in triticale as affected by radiation in different development phases. Eur. J. Agron. 2008, 28, 597–605. [Google Scholar] [CrossRef]
- Guo, Z.J.; Yu, Z.W.; Wang, D.; Shi, Y.; Zhang, Y.L. Photosynthesis and winter wheat yield responses to supplemental irrigation based on measurement of water content in various soil layers. Field Crop. Res. 2014, 166, 102–111. [Google Scholar] [CrossRef]
- Liu, W.G.; Ren, M.L.; Liu, T.; Du, Y.L.; Zhou, T.; Liu, X.M.; Liu, J.; Hussain, S.; Yang, W.Y. Effect of shade stress on lignin biosynthesis in soybean stems. J. Integr. Agric. 2018, 17, 1594–1604. [Google Scholar] [CrossRef]
- Li, X.J.; Yang, Y.; Yao, J.L.; Chen, G.X.; Li, X.H.; Zhang, Q.F.; Wu, C.Y. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol. Biol. 2009, 69, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.M.; Zhang, W.J.; Ding, Y.F.; Zhang, J.W.; Cambula, E.D.; Weng, F.; Liu, Z.H.; Ding, C.Q.; Tang, S.; Chen, L.; et al. Shading contributes to the reduction of stem mechanical strength by decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 881. [Google Scholar] [CrossRef]
- Peng, D.L.; Chen, X.G.; Yin, Y.P.; Lu, K.L.; Yang, W.B.; Tang, Y.H.; Wang, Z.L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop. Res. 2014, 157, 1–7. [Google Scholar] [CrossRef]
- Luo, Y.L.; Chang, Y.L.; Li, C.H.; Wang, Y.Y.; Cui, H.X.; Jin, M.; Wang, Z.L.; Li, Y. Shading decreases lodging resistance of wheat under different planting densities by altering lignin monomer composition of stems. Front. Plant Sci. 2022, 13, 1056193. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.K.; Liang, Y.Y.; Han, Y.L.; Han, Y.L.; Tan, J.F. High potassium application rate increased grain Yield of shading-stressed winter wheat by improving photosynthesis and photosynthate translocation. Front. Plant Sci. 2020, 11, 134. [Google Scholar] [CrossRef]
- Naseer, M.A.; Hussain, S.; Nengyan, Z.; Ejaz, I.; Ahmad, S.; Farooq, M.; Ren, X.L. Shading under drought stress during grain filling attenuates photosynthesis, grain yield and quality of winter wheat in the Loess Plateau of China. J. Agron. Crop. Sci. 2022, 208, 255–263. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Guntzer, F.; Keller, C.; Meunier, J.D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef]
- Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 1994, 91, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Rea, R.S.; Islam, M.R.; Rahman, M.M.; Nath, B.; Mix, K. Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Silicon Application: A Review. Sustainability 2022, 14, 4525. [Google Scholar] [CrossRef]
- Zhao, D.Q.; Xu, C.; Luan, Y.T.; Shi, W.B.; Tang, Y.H.; Tao, J. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). Int. J. Biol. Macromol. 2021, 190, 769–779. [Google Scholar] [CrossRef]
- Radotić, K.; Djikanović, D.; Kalauzi, A.; Tanasijević, G.; Maksimović, V.; Maksimović, J.D. Influence of silicon on polymerization process during lignin synthesis. Implications for cell wall properties. Int. J. Biol. Macromol. 2022, 198, 168–174. [Google Scholar] [CrossRef]
- Rastogi, A.; Yadav, S.; Hussain, S.; Kataria, S.; Hajihashemi, S.; Kumari, P.; Yang, X.H.; Brestic, M. Does silicon really matter for the photosynthetic machinery in plants…? Plant Physiol. Bioch. 2021, 169, 40–48. [Google Scholar] [CrossRef]
- Liu, C.G.; Lu, W.K.; Ma, Q.N.; Ma, C.C. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J. Plant Nutr. 2017, 40, 2458–2467. [Google Scholar] [CrossRef]
- Zheng, M.J.; Chen, J.; Shi, Y.H.; Li, Y.X.; Yin, Y.P.; Yang, D.Q.; Luo, Y.L.; Pang, D.W.; Xu, X.; Li, W.Q.; et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci. Rep. 2017, 7, 41805. [Google Scholar] [CrossRef]
- Chen, G.Y. Study on determination method of si in rice and its plant by ICP-MS. Heilongjiang Agric. Sci. 2008, 4, 105–107. [Google Scholar]
- Carriedo, L.G.; Maloof, J.N.; Brady, S.M. Molecular control of crop shade avoidance. Curr. Opin. Plant Biol. 2016, 30, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shiran, B.; Wan, J.; Lewis, D.C.; Jenkins, C.L.; Condon, A.G.; Richards, R.A.; Dolferus, R. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 2010, 33, 926–942. [Google Scholar] [CrossRef] [PubMed]
- Acreche, M.M.; Briceño-Félix, G.; Sánchez, J.A.M.; Slafer, G.A. Grain number determination in an old and a modern mediterranean wheat as affected by pre-anthesis shading. Crop. Pasture Sci. 2009, 60, 271–279. [Google Scholar] [CrossRef]
- Suryanto, P.; Putra, E.T.S.; Kurniawan, S.; Suwignyo, B.; Sukirno, D.A.P. Maize response at three levels of shade and its improvement with intensive agro forestry regimes in Gunung Kidul, Java, Indonesia. Procedia Environ. Sci. 2014, 20, 370–376. [Google Scholar] [CrossRef]
- Asseng, S.; Kassie, B.T.; Labra, M.H.; Amador, C.; Calderini, D.F. Simulating the impact of source-sink manipulations in wheat. Field Crops Res. 2017, 202, 47–56. [Google Scholar] [CrossRef]
- Ji, X.H.; Liu, S.H.; Juan, H.; Bocharnikova, E.A.; Matichenkov, V.V. Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Environ. Sci. Pollut. R. 2017, 24, 10740–10748. [Google Scholar] [CrossRef]
- Hussain, S.; Iqbal, N.; Rahman, T.; Liu, T.; Brestic, M.; Safdar, M.E.; Asghar, M.A.; Farooq, M.U.; Shafiq, I.; Ali, A.; et al. Shade effect on carbohydrates dynamics and stem strength of soybean genotypes. Environ. Exp. Bot. 2019, 162, 374–382. [Google Scholar] [CrossRef]
- Berahim, Z.; Omar, M.H.; Zakaria, N.I.; Ismail, M.R.; Rosle, R.; Roslin, N.A.; Che’Ya, N.N. Silicon improves yield performance by enhancement in physiological responses, crop imagery, and leaf and culm sheath morphology in new rice line, PadiU Putra. BioMed Res. Int. 2021, 2021, 6679787. [Google Scholar] [CrossRef]
- Li, B.; Gao, F.; Ren, B.Z.; Dong, S.T.; Teng, P.; Zhao, B.; Zhang, J.W. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density. J. Integr. Agr. 2021, 20, 2077–2089. [Google Scholar] [CrossRef]
- Xue, J.; Gou, L.; Zhao, Y.S.; Yao, M.N.; Yao, H.S.; Tian, J.S.; Zhang, W.F. Effects of light intensity within the canopy on maize lodging. Field Crops Res. 2016, 188, 133–141. [Google Scholar] [CrossRef]
- Hussain, S.; Mumtaz, M.; Manzoor, S.; Li, S.X.; Ahmed, I.; Skalicky, M.; Brestic, M.; Rastogi, A.; Ulhassan, Z.; Shafiq, I.; et al. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol. Bioch. 2021, 159, 43–52. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani-Ueno, N. Transport of silicon from roots to panicles in plants. Plant Physiol. Biochem. 2011, 87, 377–385. [Google Scholar] [CrossRef]
- Hong, W.Y.; Chen, Y.J.; Huang, S.H.; Li, Y.Z.; Wang, Z.M.; Tang, X.R.; Pan, S.G.; Tian, H.; Mo, Z.W. Optimization of nitrogen–silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. Eur. J. Agron. 2022, 136, 126508. [Google Scholar] [CrossRef]
- Fallah, A. Silicon effect on lodging parameters of rice plants under hydroponic culture. Int. J. Agric. Sci. 2012, 2, 630–634. [Google Scholar]
- Kevers, C.; Prat, R.; Gaspar, T. Vitrification of carnation in vitro: Changes in cell wall mechanical properties, cellulose and lignin content. Plant Growth Regul. 1987, 5, 59–66. [Google Scholar] [CrossRef]
- Goujon, T.; Sibout, R.; Eudes, A.; MacKay, J.; Jouanin, L. Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol. Biochem. 2003, 41, 677–687. [Google Scholar] [CrossRef]
- Dauwe, R.; Morreel, K.; Goeminne, G.; Gielen, B.; Rohde, A.; Beeumen, J.V.; Ralgh, J.; Boudet, A.; Kopka, J.; Rochange, S.F.; et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J. 2007, 52, 263–285. [Google Scholar] [CrossRef]
- Hu, D.; Liu, X.B.; She, H.Z.; Gao, Z.; Ruan, R.W.; Wu, D.Q.; Yi, Z.L. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biol. Plant. 2017, 61, 138–146. [Google Scholar] [CrossRef]
- Teng, R.M.; Wang, Y.X.; Li, H.; Lin, S.J.; Liu, H.; Zhuang, J. Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze). Mol. Genet. Genom. 2021, 296, 165–177. [Google Scholar] [CrossRef]
- Zou, J.L.; Liu, W.G.; Yuan, J.; Jiang, T.; Ye, S.Q.; Deng, Y.C.; Yang, C.Y.; Luo, L.; Yang, W.Y. Relationship between lignin synthesis and lodging resistance at seedlings stage in soybean intercropping system. Acta Agron. Sin. 2015, 41, 1098–1104. [Google Scholar] [CrossRef]
- Wang, C.; Ruan, R.W.; Yuan, X.H.; Hu, D.; Yang, H.; Li, Y.; Ze, L.Y. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Prod. Sci. 2015, 18, 218–227. [Google Scholar] [CrossRef]
- Khan, A.; Liu, H.H.; Ahmad, A.; Xiang, L.; Ali, W.; Khan, A.; Kamran, M.; Ahmad, S.; Li, J.C. Impact of nitrogen regimes and planting densities on stem physiology, lignin biosynthesis and grain yield in relation to lodging resistance in winter wheat (Triticum aestivum L.). Cereal Res. Commun. 2019, 47, 566–579. [Google Scholar] [CrossRef]
- Kuai, J.; Sun, Y.Y.; Guo, C.; Zhao, L.; Zuo, Q.S.; Wu, J.S.; Zhou, G.S. Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Res. 2017, 200, 88–97. [Google Scholar] [CrossRef]
- Hu, Y.; Javed, H.H.; Asghar, M.A.; Peng, X.; Brestic, M.; Skalický, M.; Ghafoor, A.Z.; Cheema, H.N.; Zhang, F.; Wu, Y.C. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Front. Plant Sci. 2022, 13, 217. [Google Scholar] [CrossRef]
- Miao, W.; Li, F.C.; Lu, J.C.; Wang, D.L.; Chen, M.K.; Tang, L.; Xu, Z.J.; Chen, W.F. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin. Sci. Total Environ. 2023, 855, 158818. [Google Scholar] [CrossRef]
Treatment | Spike Number (m−2) | Grain Number per Spike | 1000-Grain Weight (g) | Grain Yield (kg·hm−2) | ||
---|---|---|---|---|---|---|
SN16 | S0 | C0 | 581.80 b | 37.73 b | 39.52 b | 7293.01 b |
C1 | 608.80 a | 38.48 a | 40.09 a | 7809.56 a | ||
S1 | C0 | 400.30 d | 31.57 d | 37.84 d | 4035.96 d | |
C1 | 427.90 c | 32.47 c | 38.85 c | 4481.96 c | ||
SN23 | S0 | C0 | 434.00 b | 51.45 b | 43.58 b | 8282.88 b |
C1 | 441.20 a | 53.84 a | 44.39 a | 8811.44 a | ||
S1 | C0 | 306.90 d | 43.63 d | 41.54 d | 4713.67 d | |
C1 | 314.70 c | 47.82 c | 42.81 c | 5457.66 c |
Treatment | Stem Diameter (mm) | ||||
---|---|---|---|---|---|
Anthesis Stage | Milk Stage | Dough Stage | |||
SN16 | S0 | C0 | 4.17 b | 4.14 b | 4.08 b |
C1 | 4.28 a | 4.25 a | 4.16 a | ||
S1 | C0 | 3.91 d | 3.83 d | 3.70 d | |
C1 | 4.09 c | 3.95 c | 3.94 c | ||
SN23 | S0 | C0 | 4.66 b | 4.60 b | 4.34 b |
C1 | 4.75 a | 4.67 a | 4.41 a | ||
S1 | C0 | 4.36 d | 4.32 d | 4.17 d | |
C1 | 4.47 c | 4.48 c | 4.30 c |
Treatment | Wall Thickness (mm) | ||||
---|---|---|---|---|---|
Anthesis Stage | Milk Stage | Dough Stage | |||
SN16 | S0 | C0 | 0.98 b | 0.89 b | 0.81 b |
C1 | 1.07 a | 1.01 a | 0.93 a | ||
S1 | C0 | 0.73 d | 0.68 d | 0.62 d | |
C1 | 0.85 c | 0.79 c | 0.74 c | ||
SN23 | S0 | C0 | 1.14 b | 1.08 b | 0.94 b |
C1 | 1.29 a | 1.17 a | 1.09 a | ||
S1 | C0 | 0.81 d | 0.73 d | 0.69 d | |
C1 | 0.98 c | 0.90 c | 0.85 c |
Treatment | Filling Degree (mg cm−1) | ||||
---|---|---|---|---|---|
Anthesis Stage | Milk Stage | Dough Stage | |||
SN16 | S0 | C0 | 22.28 b | 19.76 b | 12.71 b |
C1 | 23.53 a | 22.10 a | 16.71 a | ||
S1 | C0 | 13.01 d | 13.23 d | 9.91 d | |
C1 | 15.35 c | 15.64 c | 12.15 c | ||
SN23 | S0 | C0 | 36.65 b | 34.37 b | 25.18 b |
C1 | 37.14 a | 35.87 a | 27.30 a | ||
S1 | C0 | 25.15 d | 18.75 d | 15.65 d | |
C1 | 26.90 c | 24.73 c | 17.58 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Cui, H.; Wang, Y.; Li, C.; Wang, J.; Jin, M.; Luo, Y.; Li, Y.; Wang, Z. Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress. Agronomy 2023, 13, 2565. https://doi.org/10.3390/agronomy13102565
Chang Y, Cui H, Wang Y, Li C, Wang J, Jin M, Luo Y, Li Y, Wang Z. Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress. Agronomy. 2023; 13(10):2565. https://doi.org/10.3390/agronomy13102565
Chicago/Turabian StyleChang, Yonglan, Haixing Cui, Yuanyuan Wang, Chunhui Li, Jiayu Wang, Min Jin, Yongli Luo, Yong Li, and Zhenlin Wang. 2023. "Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress" Agronomy 13, no. 10: 2565. https://doi.org/10.3390/agronomy13102565
APA StyleChang, Y., Cui, H., Wang, Y., Li, C., Wang, J., Jin, M., Luo, Y., Li, Y., & Wang, Z. (2023). Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress. Agronomy, 13(10), 2565. https://doi.org/10.3390/agronomy13102565