Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review
Abstract
:1. Introduction
1.1. Background Information
1.2. Need for Sustainable Use of Water and Nitrogen Resources
2. Crop Water Use and Evapotranspiration Requirements in Potato
Location | Climate Type | Soil Type | Estimation Method | Variety | Year | Crop Stage | Seasonal | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SD | VG | TI | TB | MT | ||||||||
USA | Sub-humid climate | - | FAO Penman-Monteith | - | - | 0.5 | 1.2 | 0.8 | 0.83 | [34] | ||
Idaho, USA | Cold winter temperate | - | ASCE Penman-Monteith | - | - | 0.31 | 0.64 | 0.77 | 0.72 | 0.34 | 0.51 | [35] |
USA | Continental | - | ASCE Penman Monteith | Russet | - | 0.46 | 0.78 | 0.88 | 0.93 | 0.70 | 0.67 | [36] |
USA | Continental | - | ASCE Penman Monteith | Shepody | - | 0.3 | 0.93 | 0.2 | 0.71 | |||
Washington, USA | Arid steppe cold climate | Silt loam | ASCE Penman-Monteith | Alturas | 2018–2020 | 0.4 | 0.7 | 0.96 | 0.6 | 0.67 | [37] | |
Clearwater Russet | 0.4 | 0.71 | 0.96 | 0.6 | 0.67 | |||||||
Ranger Russet | 0.4 | 0.68 | 0.94 | 0.6 | 0.66 | |||||||
Russet Burbank | 0.4 | 0.7 | 0.93 | - | ||||||||
Umatilla Russet | 0.4 | 0.7 | 0.93 | 0.5 | 0.63 | |||||||
Quebec, Canada | Humid Continental | Loamy sand | Eddy Covariance | Reba | 2007 | 0.63 | 0.91 | 0.81 | 0.78 | 0.73 | [38] | |
India | Semi-arid, sub-tropical | Clay | Water balance Method | Kufri Pukraj | 2015–2016 | 0.69 | 1.2 | 0.9 | 0.91 | [41] | ||
2016–2017 | 0.51 | 1.1 | 1.1 | 0.88 | ||||||||
India | Sub-humid | Lysimeter | Kufri Jyoti | 1998–1999 | 0.4 | 0.85 | 1.3 | 0.6 | 0.78 | [48] | ||
Limpopo, South Africa | Semi-arid, tropical | Sandy | Eddy Covariance | Mondial | 2020 | - | 1 | 1.2 | 1 | 0.9 | 0.99 | [39] |
North West, South Africa | - | 0.45 | 0.9 | 0.9 | - | 0.78 | ||||||
Brazil | Tropical | Sandy, Ultisol | FAO Penman–Monteith | Opaline | 2010 | 0.35 | 0.45 | 1.29 | 0.63 | 0.68 | [40] | |
Saudi Arabia | Arid | Lysimeter | 2012–2015 | 0.54 | 1.1 | 0.7 | 0.79 | [49] | ||||
Italy | Mediterranean, warm temperate | Silty loam | SIMDualKc Modelling | Spunta | 2009–2010 | 0.15 | 1.1 | 0.4 | 0.53 | [50] |
3. Relationship of Irrigation Rates with Potato Growth, Yield, and Quality
4. Impacts of Irrigation Methods on Yield and Yield Components of Potato
5. Water Use Efficiency (WUE) in Potatoes
6. Nitrogen Requirement in Potato Crops
7. Relationship of Nitrogen Rates with Potato Growth, Yield, and Quality
8. Impacts of N Fertilizer Application Methods on Yield and Yield Components of Potatoes
9. Nitrogen use Efficiency in Potato
10. Interactive Effects of Irrigation and Nitrogen Rates on Potato Tuber Yield, WUE, NUE, Plant Nitrogen Uptake, and Nitrate Leaching
Location | Potato Cultivar | Soil Type | N Source | N Application Method | Irrigation | Applied N Rates (kg/ha) | Nitrate N Leaching (kg/ha) | TNUp and TPNUp (kg/ha) | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | Amount (mm) | |||||||||||
Wisconsin, USA | Russet Burbank | Loamy sand | Starter dose = 34 kg/ha; 33% and 67% Supplemenal N as AS and AN, respectively | Sprinkler irrigation | 2001 | 2002 | Average TNUp | [136] | ||||
No SF | 34 | 39.7 | 75.8 | 76.3 | ||||||||
SF @9.35 L/ha | 34 | 42 | 68 | 74.1 | ||||||||
No SF | 168 | 50 | 90.4 | 120.1 | ||||||||
SF @9.35 L/ha | 168 | 47 | 86.2 | 131.4 | ||||||||
No SF | 303 | 120.2 | 105.3 | 135.7 | ||||||||
SF @9.35 L/ha | 303 | 64.1 | 83.9 | 148.2 | ||||||||
Minnesota, USA | Russet Burbank | Loamy sand | DAP; Urea; PCU | Solid-set overhead sprinkler irrigation | - | 2016–17 | Average TPNUp | [137] | ||||
Control | 0 | 25 | 110 | |||||||||
Split | 180 | 32 | 204 | |||||||||
Control release | 180 | 31 | 202 | |||||||||
Split | 270 | 40 | 260 | |||||||||
Control release | 270 | 35 | 253 | |||||||||
Conventional | - | 36 a | 209 | |||||||||
Reduced (15% less) | - | 30 b | 212 | |||||||||
Columbia Basin, USA | Russet Burbank | Quincy fine sand and Taunton sandy loam | 1/3rd of total N applied at planting and remaining 2/3rd in six equal splits | - | Hermiston | Richland | [15] | |||||
168 | 91 e | 82 e | - | - | ||||||||
252 | 120 d | 110 d | - | - | ||||||||
336 | 153 c | 142 c | - | - | ||||||||
420 | 192 b | 180 b | - | - | ||||||||
504 | 232 a | 220 a | - | - | ||||||||
1 day interval | 400 | - | 150 b | 142 b | - | - | ||||||
2 day interval | 500 | - | 150 b | 142 b | - | - | ||||||
3 day interval | 600 | - | 156 ab | 146 ab | - | - | ||||||
4 day interval | 700 | - | 162 a | 151 a | - | - | ||||||
5 day interval | 800 | - | 162 a | 151 a | - | - | ||||||
Quebec, Canada | Russet Burbank | Sandy loam | PCU and Urea | Band application at planting | Irrigated | 100 | 52.4 | - | - | [105] | ||
Irrigated | 150 | 90 | - | - | ||||||||
Irrigated | 200 | 125.7 | - | - | ||||||||
Non-irrigated | 100 | 58.9 | - | - | ||||||||
Non-irrigated | 150 | 53.4 | - | - | ||||||||
Non-irrigated | 200 | 65.6 | - | - | ||||||||
Prince Edward Island, Canada | Russet Burbank | Sandy loam | AN | Band application at planting | - | 2016 | TPNUp | [127] | ||||
0 | 83.6 bc | 111.0 b | ||||||||||
60 | 110.2 bc | 141.9 a | ||||||||||
120 | 177.8 ab | 175.4 a | ||||||||||
180 | 198.2 ab | 160.2 a | ||||||||||
240 | 219.3 a | 153.9 a | ||||||||||
Chayouzho-ngqi, China | Kexin-1 | Sandy loam | Urea | 30% of total N broadcasted at planting; remaining 70% N drip fertigated during plant growth | T1: 8 equal drip irrigations of 22.5 mm; T2: drip irrigation based on plant root distribution | TPNUp at harvest | [138] | |||||
2020 | 2021 | |||||||||||
T1: 180 | 300 | - | - | 152.78 b | 160.85 b | |||||||
T2: 180 | 300 | - | - | 188.61 a | 193.26 a | |||||||
Hohhot, China | Favorita | Sandy loam | Urea and PN | Broadcasting, sprinkler fertigation, ridge placement by hand | Apparent N loss | TPNUp | [130] | |||||
2016 (y1) | 2017 (y2) | 2016 | 2017 | |||||||||
Sprinkler fertigation | y1: 200.7 y2: 205 | 273 | 132.1 b | 148.9 a | 345.0 a | 246.0 a | ||||||
Furrow irrigation | y1: 601.8 y2: 593.7 | 273 | 237.5 a | 276.7 b | 162.0 b | 126.0 b |
Location | Irrigation Method | N Application Method | N Source | Irrigation Rate | N Rate (kg/ha) | Tuber Yield (Mg/ha) | WUE (kg/m3) | NUE (kg Yield/kg N) | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
California, USA | Line source sprinkle irrigation, target irrigation maintained soil moisture between FC and 65% of FC, High = 120% of target, Low = 80% of target | 170 kg/ha was applied before planting in all N treatments | AN fused with AS (26-0-0-14S) | Target | 170 | 54 | - | - | 317.6 | [132] | ||
Target | 225 | 55.9 | - | - | 248.4 | |||||||
Target | 280 | 66.2 | - | - | 236.4 | |||||||
High | 170 | 55.3 | - | - | 325.3 | |||||||
High | 225 | 57.5 | - | - | 255.6 | |||||||
High | 280 | 69 | - | - | 246.4 | |||||||
Low | 170 | 40.5 | - | - | 238.2 | |||||||
Low | 225 | 41.9 | - | - | 186.2 | |||||||
Low | 280 | 37.6 | - | - | 134.3 | |||||||
Ningxia, China (arid region) | Film drip irrigation, FI, 20% DI and 40% DI provided 2100, 1680, and 1260 m3/ha of water, respectively | Fertigation (split doses at seedling stage, tuber formation stage, tuber growth stage, and starch accumulation stage @1:2:2:1) | 46% urea | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | [139] | ||
FI | 270 | 52.49 | 51.42 | 25 | 24.4 | 194.4 | 190.3 | |||||
FI | 190 | 46.86 | 49.74 | 22.3 | 23.6 | 246.6 | 261.8 | |||||
FI | 110 | 54.53 | 53.64 | 25.9 | 25.5 | 495.7 | 487.6 | |||||
20% DI | 270 | 50.18 | 50.11 | 32.1 | 32.1 | 185.8 | 185.6 | |||||
20% DI | 190 | 48 | 49.5 | 30.7 | 31.7 | 252.6 | 260.5 | |||||
20% DI | 110 | 46.12 | 46.95 | 29.5 | 30.1 | 419.3 | 426.8 | |||||
40% DI | 270 | 49.42 | 49.45 | 41.1 | 41.2 | 183 | 183.1 | |||||
40% DI | 190 | 43.84 | 44.43 | 36.5 | 37 | 230.7 | 233.8 | |||||
40% DI | 110 | 39.96 | 39.89 | 33.3 | 33.2 | 363.3 | 362.6 | |||||
control | control | 35.79 | 39.79 | 17 | 18.9 | 238.6 | 265.3 | |||||
Médenine, South-Eastern Tunisia | Drip irrigation method | Fertigation | AN | 2010 | 2011 | 2010 | 2011 | 2010 | 2011 | [56] | ||
FI | 0 | 13.15 | 14.99 | 4.89 | 5.9 | - | - | |||||
FI | 100 | 15.07 | 17.83 | 5.6 | 7.02 | 19.2 | 28.4 | |||||
FI | 200 | 18.89 | 21.4 | 7.02 | 8.43 | 28.7 | 32.04 | |||||
FI | 300 | 22.72 | 25.12 | 8.45 | 9.89 | 31.9 | 33.7 | |||||
40% DI | 0 | 11.39 | 12.45 | 7.07 | 8.14 | - | - | |||||
40% DI | 100 | 12.05 | 14.15 | 7.48 | 9.25 | 6.6 | 17 | |||||
40% DI | 200 | 14.78 | 16.95 | 9.18 | 11.08 | 16.9 | 22.5 | |||||
40% DI | 300 | 15.94 | 19.7 | 9.9 | 12.88 | 15.1 | 24.1 | |||||
70% DI | 0 | 7.42 | 9.48 | 9.16 | 12.31 | - | - | |||||
70% DI | 100 | 8.53 | 11.53 | 10.53 | 14.97 | 11.1 | 14.2 | |||||
70% DI | 200 | 9.68 | 12.01 | 11.95 | 15.6 | 11.3 | 12.6 | |||||
70% DI | 300 | 9.24 | 11.91 | 11.41 | 15.47 | 6.0 | 8.1 | |||||
Nubaria region, Egypt | Drip irrigation method | Fertigation (applied at 6 day intervals in 15 equal doses starting two weeks after planting) | AN | 2010 | 2010 | 2010 | [55] | |||||
100% ETc | 160 | 29.68 | 9 | 176 | ||||||||
100% ETc | 220 | 37.87 | 11.6 | 165 | ||||||||
100% ETc | 280 | 43.76 | 13.3 | 151 | ||||||||
100% ETc | 340 | 47.84 | 14.6 | 136 | ||||||||
80% ETc | 160 | 27.32 | 10.4 | 162 | ||||||||
80% ETc | 220 | 35.25 | 13.5 | 154 | ||||||||
80% ETc | 280 | 39.53 | 15.1 | 136 | ||||||||
80% ETc | 340 | 44.56 | 17 | 127 | ||||||||
60% ETc | 160 | 22.53 | 11.4 | 132 | ||||||||
60% ETc | 220 | 27.92 | 14.2 | 120 | ||||||||
60% ETc | 280 | 33.95 | 17.2 | 116 | ||||||||
60% ETc | 340 | 31.32 | 15.9 | 88 | ||||||||
40% ETc | 160 | 19.37 | 14.8 | 112 | ||||||||
40% ETc | 220 | 25.52 | 19.5 | 109 | ||||||||
40% ETc | 280 | 23.18 | 17.7 | 78 | ||||||||
40% ETc | 340 | 20.16 | 15.4 | 55 |
11. Economics of Deficit Irrigation
12. Impacts of Deficit Irrigation on Soil Salinity in Potato Fields
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 June 2023).
- United States Department of Agriculture (USDA). Potatoes 2021 Summary; United States Department of Agriculture (USDA): Washington, DC, USA, 2022.
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional value of potatoes: Vitamin, phytonutrient, and mineral content. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 395–424. [Google Scholar]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The importance of nutrient management for potato production Part I: Plant nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
- Gondwe, R.L.; Kinoshita, R.; Suminoe, T.; Aiuchi, D.; Palta, J.P. Available soil nutrients NPK application impacts on yield quality nutrient composition of potatoes growing during the main season in Japan. Am. J. Potato Res. 2020, 97, 234–245. [Google Scholar] [CrossRef]
- Zotarelli, L.; Rens, L.R.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Fourman, D. Nitrogen fertilizer rate and application timing for chipping potato cultivar Atlantic. Agron. J. 2014, 106, 2215–2226. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Horneck, D.A.; Pavek, M.J.; Geary, B.D.; Olsen, N.L.; Ellsworth, J.W.; Newberry, G.D.; Miller, J.S.; Thornton, R.E.; Harding, G.W. Evaluation of potato production best management practices. Am. J. Potato Res. 2007, 84, 19–27. [Google Scholar] [CrossRef]
- Shock, C.C.; Pereira, A.B.; Eldredge, E.P. Irrigation best management practices for potato. Am. J. Potato Res. 2007, 84, 29–37. [Google Scholar] [CrossRef]
- Crosby, T.W.; Wang, Y. Effects of irrigation management on chipping potato (Solanum tuberosum L.) production in the upper Midwest of the U.S. Agronomy 2021, 11, 768. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Westermann, D.T. Nutritional requirements of potatoes. Am. J. Potato Res. 2005, 82, 301–307. [Google Scholar] [CrossRef]
- Majumdar, D. The Blue Baby Syndrome. Resonance 2003, 8, 20–30. [Google Scholar] [CrossRef]
- Hodges, T. Water nitrogen applications for potato: Commercial experimental rates compared to a simulation model. J. Sustain. Agric. 1999, 13, 79–90. [Google Scholar] [CrossRef]
- Woli, P.; Hoogenboom, G.; Alva, A. Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions. Agric. Water Manag. 2016, 171, 120–130. [Google Scholar] [CrossRef]
- Vashisht, B.B.; Nigon, T.; Mulla, D.J.; Rosen, C.; Xu, H.; Twine, T.; Jalota, S.K. Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: Field and simulation study. Agric. Water Manag. 2015, 152, 198–206. [Google Scholar] [CrossRef]
- Peralta, J.M.; Stockle, C.O. Dynamics of nitrate leaching under irrigated potato rotation in Washington State: A long-term simulation study. Agric. Ecosyst. Environ. 2002, 88, 23–34. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impacts on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Quan, N.; Lee, S.-C.; Chopra, C.; Nesic, Z.; Porto, P.; Pow, P.; Jassal, R.S.; Smukler, S.; Krzic, M.; Knox, S.H.; et al. Estimating net carbon and greenhouse gas balances of potato and pea crops on a conventional farm in western Canada. J. Geophys. Res. Biogeosciences 2023, 128, e2022JG007113. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Ghahderijani, M.; Sefeedpari, P. Energy consumption CO2 emissions analysis of potato production based on different farm size levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
- Burton, D.L.; Zebarth, B.J.; Gillam, K.M.; MacLeod, J.A. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil Sci. 2008, 88, 229–239. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, B.; Huang, W.; Wang, L.; Fang, X.; Xu, S.; Cui, S. Producing more potatoes with lower inputs greenhouse gases emissions by regionalized cooperation in China. J. Clean. Prod. 2021, 299, 126883. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Brunelle, T.; Dumas, P.; Souty, F.; Dorin, B.; Nadaud, F. Evaluating the impact of rising fertilizer prices on crop yields. Ag. Econ. 2015, 46, 653–666. [Google Scholar] [CrossRef]
- Terrell, B.L.; Johnson, P.N.; Segarra, E. Ogallala aquifer depletion: Economic impact on the Texas high plains. Water Policy 2002, 4, 33–46. [Google Scholar] [CrossRef]
- McGuire, V.L. Water-Level Changes Change in Water in Storage in the High Plains Aquifer Predevelopment to 2013; 2011-13; U.S. Geological Survey Scientific Investigations Report 2014–5218; U.S. Geological Survey: Reston, VI, USA, 2014; p. 14. [Google Scholar] [CrossRef]
- Steiner, J.L.; Devlin, D.L.; Perkins, S.; Aguilar, J.P.; Golden, B.; Santos, E.A.; Unruh, M. Policy technology management options for water conservation in the Ogallala aquifer in Kansas, U.S.A. Water 2021, 13, 3406. [Google Scholar] [CrossRef]
- Rhodes, E.C.; Perotto-Baldivieso, H.L.; Tanner, E.P.; Angerer, J.P.; Fox, W.E. The declining Ogallala aquifer and the future role of rangeland science on the North American High Plains. Rangel. Ecol. Manag. 2023, 87, 83–96. [Google Scholar] [CrossRef]
- Rodriguez, C.I.; Ruiz de Galarreta, V.A.; Kruse, E.E. Analysis of water footprint of potato production in the pampean region of Argentina. J. Clean. Prod. 2015, 90, 91–96. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Rigol-Sanchez, J.P.; Vallejos, A.; Andreu, J.M.; Ceron, J.C.; Molina-Sanchez, L.; Sola, F. Impacts of agricultural irrigation on groundwater salinity. Environ. Earth Sci. 2018, 77, 197. [Google Scholar] [CrossRef]
- Ajaz, A.; Datta, S.; Stoodley, S. High Plains aquifer–state of affairs of irrigated agriculture and role of irrigation in the sustainability paradigm. Sustainability 2020, 12, 3714. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Plauborg, F.; Andersen, M.N.; Sepaskhah, A.R.; Jensen, C.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Root distribution. Agric. Water Manag. 2011, 98, 1280–1290. [Google Scholar] [CrossRef]
- Djaman, K.; Koudahe, K.; Saibou, A.; Darapuneni, M.; Higgins, C.; Irmak, S. Soil water dynamics, effective rooting zone, and evapotranspiration of sprinkler irrigated potato in a sandy loam soil. Agronomy 2022, 12, 864. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. Crop Evapotranspiration: Guidelines for Computing Reference Crop Evapotranspiration; FAO Irrigation and Drainage Paper 56; UN-FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Wright, J.L. Conversion of Wright (1981) and Wright (1982) Alfalfa-Based Crop Coefficients for Use with the ASCE Standardized Penman-Monteith Reference Evapotranspiration Equation. Technical Note in ASCE Manual 2002, 70. p. 38. Available online: https://www.uidaho.edu/-/media/UIdaho-Responsive/Files/cals/centers/Kimberly/water-resources/Conversion-of-Wright-Kcs-2c.pdf?la=en&hash=EE59D20A6F6F36B8F013AE932E2005E1258B4B97 (accessed on 23 June 2023).
- United States Bureau of Reclamation (USBR). Agrimet Crop Coefficients: Potatoes. 2016. Available online: https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.html (accessed on 18 July 2023).
- Gonzalez, T.F.; Pavek, M.J.; Holden, Z.J.; Garza, R. Evaluating potato evapotranspiration and crop coefficients in the Columbia Basin of Washington state. Agric. Water Manag. 2023, 286, 108371. [Google Scholar] [CrossRef]
- Parent, A.-C.; Anctil, F. Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric. Water Manag. 2012, 113, 45–56. [Google Scholar] [CrossRef]
- Machakaire, A.T.B.; Steyn, J.M.; Franke, A.C. Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques. Agric. Water Manag. 2021, 255, 107029. [Google Scholar] [CrossRef]
- Carvalho, D.F.; de Silva, D.G.; da Rocha, H.S.; da Almeida, W.S.; de Sousa, E.d.S. Evapotranspiration and crop coefficient for potato in organic farming. Eng. Agric. 2013, 33, 201–211. [Google Scholar] [CrossRef]
- Kadam, S.A.; Gorantiwar, S.D.; Mandre, N.P.; Tale, D.P. Crop coefficient for potato crop evapotranspiration estimation by field water balance method in semi-arid region, Maharashtra, India. Potato Res. 2021, 64, 421–433. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Irrigation and Drainage Paper 33; FAO: Rome, Italy, 1979; p. 192. [Google Scholar]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Fandika, I.R.; Kemp, P.D.; Millner, J.P.; Horne, D.; Roskruge, N. Irrigation and nitrogen effects on tuber yield and water use efficiency of heritage and modern potato cultivars. Agric. Water Manag. 2016, 170, 148–157. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Pavlista, A.D. Scheduling reduced irrigation on ‘Atlantic’ potato for minimal effect. Am. J. Potato Res. 2015, 92, 673–683. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric. Water Manag. 2001, 50, 9–25. [Google Scholar] [CrossRef]
- Alataway, A.; Al-Ghobari, H.; Mohammad, F.; Dewidar, A. Lysimeter-based water use and crop coefficient of drip-irrigated potato in an arid environment. Agronomy 2019, 9, 756. [Google Scholar] [CrossRef]
- Paredes, P.; D’Agostino, D.; Assif, M.; Todorovic, M.; Pereira, L.S. Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach. Agric. Water Manag. 2018, 195, 11–24. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric. Water Manag. 2003, 59, 49–66. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Nishiyama, S.; Kang, Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Kumar, P.; Pandey, S.K.; Singh, B.P.; Singh, S.V.; Kumar, D. Effect of nitrogen rate on growth, yield, economics and crisps quality of Indian potato processing cultivars. Potato Res. 2007, 50, 143–155. [Google Scholar] [CrossRef]
- Erdem, T.; Erdem, Y.; Orta, H.; Okursoy, H. Water-yield relationships of potato under different irrigation methods and regimens. Sci. Agric. 2006, 63, 226–231. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Mokh, F.E.; Nagaz, K.; Masmoudi, M.M.; Mechlia, N.B. Yield water productivity of drip-irrigated potato under different nitrogen levels irrigation regime with saline water in arid Tunisia. Am. J. Plant Sci. 2015, 6, 501–510. [Google Scholar] [CrossRef]
- Alva, A.K.; Ren, H.; Moore, A.D. Water nitrogen management effects biomass accumulation partitioning in two potato cultivars. Am. J. Plant Sci. 2012, 3, 164–170. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Yactayo, W.; Gutiérrez, R.; Mares, V.; De Mendiburu, F.; Posadas, A.; Quiroz, R. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hort. 2014, 168, 202–209. [Google Scholar] [CrossRef]
- El-Abedin, T.K.Z.; Mattar, M.A.; Al-Ghobari, H.M.; Alazba, A.A. Water-saving irrigation strategies in potato fields: Effects on physiological characteristics and water use in arid region. Agronomy 2019, 9, 172. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Agharezaee, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars. Agric. Water Manag. 2014, 134, 126–136. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agric. Water Manag. 2012, 115, 276–284. [Google Scholar] [CrossRef]
- Mokh, F.E.; Nagaz, K.; Masmoudi, M.M.; Mechlia, N.B. Effects of surface subsurface drip irrigation regimes with saline water on yield water use efficiency of potato in arid conditions of Tunisia. J. Agric. Environ. Intern. Dev. 2014, 108, 227–246. [Google Scholar]
- O’Shaughnessy, S.A.; Andrade, M.A.; Colaizzi, P.D.; Workneh, F.; Rush, C.M.; Evett, S.R.; Kim, M. Irrigation management of potatoes using sensor feedback: Texas high plains. Trans. ASABE 2020, 63, 1259–1276. [Google Scholar] [CrossRef]
- Ojala, J.C.; Stark, J.C.; Kleinkopf, G.E. Influence of irrigation and nitrogen management on potato yield and quality. Am. Potato J. 1990, 67, 29–43. [Google Scholar] [CrossRef]
- Elhani, S.; Haddadi, M.; Csákvári, E.; Zantar, S.; Hamim, A.; Villányi, V.; Douaik, A.; Bánfalvi, Z. Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions. Agric. Water Manag. 2019, 224, 105745. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Agharezaee, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Water-saving irrigation strategies affect tuber water relations nitrogen content of potatoes. Int. J. Plant Prod. 2016, 10, 275–288. [Google Scholar]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Zhang, F.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Akkamis, M.; Caliskan, S. Responses of yield, quality and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Sci. Rep. 2023, 13, 9911. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.C.; McCann, I.R.; Westermann, D.T.; Izadi, B.; Tindall, T.A. Potato response to split nitrogen timing with varying amounts of excessive irrigation. Am. Potato J. 1993, 70, 765–777. [Google Scholar] [CrossRef]
- Silva, G.H.; Chase, R.W.; Hammerschmidt, R.; Vitosh, M.L.; Kitchen, R.B. Irrigation, nitrogen and gypsum effects on specific gravity and internal defects of Atlantic potatoes. Am. Potato J. 1991, 68, 751–765. [Google Scholar] [CrossRef]
- Al-Omran, A.; Louki, I.; Alkhasha, A.; Abd El-Wahed, M.H.; Obadi, A. Water saving and yield of potatoes under partial root-zone drying drip irrigation technique: Field and modelling study using SALTMED omdel in Saudi Arabia. Agronomy 2020, 10, 1997. [Google Scholar] [CrossRef]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects potato yield and yield components. Agric. Water Manag. 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Saffigna, P.G.; Tanner, C.B.; Keeney, D.R. Non-uniform infiltration under potato canopies caused by interception, stemflow, and hilling. Agron. J. 1976, 68, 337–342. [Google Scholar] [CrossRef]
- Badr, M.A.; Ali, E.; Salman, S.R. Effect of nitrogen application and fertigation scheduling on potato yield performance under drip irrigation system. Gesunde Pflanz 2023. [Google Scholar] [CrossRef]
- Starr, G.C.; Rowland, D.; Griffin, T.S.; Olanya, O.M. Soil water in relation to irrigation, water uptake and potato yield in a humid climate. Agric. Water Manag. 2008, 95, 292–300. [Google Scholar] [CrossRef]
- Zhou, Z.; Plauborg, F.; Parsons, D.; Andersen, M.N. Potato canopy growth, yield and soil water dynamics under different irrigation systems. Agric. Water Manag. 2018, 202, 9–18. [Google Scholar] [CrossRef]
- Silva, A.L.B.R.; Zotarelli, L.; Dukes, M.D.; van Santen, E.; Asseng, S. Nitrogen fertilizer rate and timing of application for potato under different irrigation methods. Agric. Water Manag. 2023, 283, 108312. [Google Scholar] [CrossRef]
- King, B.A.; Stark, J.C.; Wall, R.W. Comparison of site-specific and conventional uniform irrigation management for potatoes. App. Eng. Agric. 2006, 22, 677–688. [Google Scholar] [CrossRef]
- Yuan, T.; Fengmin, L.; Puhai, L. Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agric. Water Manag. 2003, 60, 217–226. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Argente García, J.E.; Skarmeta Gómez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Djaman, K.; O’Neill, M.; Owen, C.K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Irmak, S. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water 2018, 10, 405. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef]
- Kassaye, K.T.; Yilma, W.A.; Fisha, M.H.; Haile, D.H. Yield water use efficiency of potato under alternate furrows deficit irrigation. Int. J. Agron. 2020, 2020, e8869098. [Google Scholar] [CrossRef]
- Reddy, J.M.; Jumaboev, K.; Bobojonov, I.; Carli, C.; Eshmuratov, D. Yield and water use efficiency of potato varieties under different soil-moisture stress conditions in the Fergana Valley of Central Asia. Agroecol. Sustain. Food Syst. 2016, 40, 407–431. [Google Scholar] [CrossRef]
- Alva, A.K. Enhancing sustainable nutrient irrigation management for potatoes. J. Crop Improv. 2010, 24, 281–297. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Stark, J.C.; Kelling, K.A. Nutrient Management. In Potato Production Systems; Stark, J.C., Thornton, M., Nolte, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 155–202. [Google Scholar]
- Zotarelli, L.; Rens, L.R.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Burhans, D. Rate and timing of nitrogen fertilizer application on potato ‘FL1867’. Part I: Plant nitrogen uptake and soil nitrogen availability. Field Crops Res. 2015, 183, 246–256. [Google Scholar] [CrossRef]
- Love, S.L.; Stark, J.C.; Salaiz, T. Response of four potato cultivars to rate timing of nitrogen fertilizer. Am. J. Potato Res. 2005, 82, 21–30. [Google Scholar] [CrossRef]
- Makani, M.N.; Zotarelli, L.; Sargent, S.A.; Huber, D.J.; Sims, C.A. Nitrogen fertilizer rate affects yield and tuber quality of drip-irrigated tablestock potatoes (Solanum tuberosum L.) grown under subtropical conditions. Am. J. Potato Res. 2020, 97, 605–614. [Google Scholar] [CrossRef]
- Wang, C.; Zang, H.; Liu, J.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 37. [Google Scholar] [CrossRef]
- Alva, L. Potato Nitrogen Management. J. Veg. Crop Prod. 2004, 10, 97–132. [Google Scholar] [CrossRef]
- Ninh, H.T.; Grandy, A.S.; Wickings, K.; Snapp, S.S.; Kirk, W.; Hao, J. Organic amendment effects on potato productivity and quality are related to soil microbial activity. Plant Soil 2015, 386, 223–236. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M. Optimizing soil nitrogen balance in a potato cropping system through legume intercropping. Nutr. Cycl. Agroecosyst. 2020, 117, 43–59. [Google Scholar] [CrossRef]
- Whittaker, J.; Nyiraneza, J.; Zebarth, B.J.; Jiang, Y.; Burton, D.L. The effects of forage grasses and legumes on subsequent potato yield, nitrogen cycling, and soil properties. Field Crops Res. 2023, 290, 108747. [Google Scholar] [CrossRef]
- Wang, Y.; Naber, M.; Crosby, T.; Liang, G. Evaluating multiple diagnostic tools for monitoring in-season nitrogen status of chipping potatoes in the Upper Midwest of the U.S.A. Potato Res. 2022, 65, 31–50. [Google Scholar] [CrossRef]
- Bohman, B.J.; Rosen, C.J.; Mulla, D.J. Evaluation of variable rate nitrogen and reduced irrigation management for potato production. Agron. J. 2019, 111, 2005–2017. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Zewide, I.; Mohammed, A.; Solomon, T. Effect of different rates of nitrogen and phosphorus on yield and yield components of potato (Solanum tuberosum L.) at Masha district, Southwestern Ethiopia. Int. J. Soil Sci. 2012, 7, 146–156. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Braun, H.; Busato, C.; Cecon, P.R. Economic optimum nitrogen fertilization rates and nitrogen fertilization rate effects on tuber characteristics of potato cultivars. Potato Res. 2010, 53, 167–179. [Google Scholar] [CrossRef]
- Liu, K.; Du, J.; Zhong, Y.; Shen, Z.; Yu, X. The response of potato tuber yield, nitrogen uptake, soil nitrate nitrogen to different nitrogen rates in red soil. Sci. Rep. 2021, 11, 22506. [Google Scholar] [CrossRef] [PubMed]
- Cambouris, A.N.; Luce, M.S.; Zebarth, B.J.; Ziadi, N.; Grant, C.A.; Perron, I. Potato response to nitrogen sources and rates in an irrigated sandy soil. Agron. J. 2016, 108, 391–401. [Google Scholar] [CrossRef]
- Nyiraneza, J.; Cambouris, A.N.; Nelson, A.; Khakbazan, M.; Mesbah, M.; Perron, I.; Ziadi, N.; Lafond, J. Potato yield, net revenue and specific gravity responses to nitrogen fertilizer under different canadian agroecozones. Agronomy 2021, 11, 1392. [Google Scholar] [CrossRef]
- Clément, C.-C.; Cambouris, A.N.; Ziadi, N.; Zebarth, B.J.; Karam, A. Potato yield response and seasonal nitrate leaching as influenced by nitrogen management. Agronomy 2021, 11, 2055. [Google Scholar] [CrossRef]
- Bélanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Nitrogen fertilization irrigation affects tuber characteristics of two potato cultivars. Am. J. Potato Res. 2002, 79, 269–279. [Google Scholar] [CrossRef]
- Ruža, A.; Skrabule, I.; Vaivode, A. Influence of nitrogen on potato productivity and nutrient use efficiency. Proc. Latvian Acad. Sci. 2013, 67, 247–253. [Google Scholar] [CrossRef]
- Zaeen, A.A.; Sharma, L.K.; Jasim, A.; Bali, S.; Buzza, A.; Alyokhin, A. Yield and quality of three potato cultivars under series of nitrogen rates. Agrosyst. Geosci. Environ. 2020, 3, e20062. [Google Scholar] [CrossRef]
- Maggio, A.; Carillo, P.; Bulmetti, G.S.; Fuggi, A.; Barbieri, G.; De Pascale, S. Potato yield metabolic profiling under conventional organic farming. Eur. J. Agron. 2008, 28, 343–350. [Google Scholar] [CrossRef]
- Gao, X.; Shaw, W.S.; Tenuta, M.; Gibson, D. Yield nitrogen use of irrigated processing potato in response to placement timing source of nitrogen fertilizer in Manitoba. Am. J. Potato Res. 2018, 95, 513–525. [Google Scholar] [CrossRef]
- Hyatt, C.R.; Venterea, R.T.; Rosen, C.J.; McNearney, M.; Wilson, M.L.; Dolan, M.S. Polymer-coated urea maintains potato yields and reduces nitrous oxide emissions in a Minnesota loamy sand. Soil Sci. Soc. Am. J. 2010, 74, 419–428. [Google Scholar] [CrossRef]
- LeMonte, J.L.; Taysom, T.W.; Hopkins, B.G.; Jolley, V.D.; Webb, B.L. Residual soil nitrate and potato yield with polymer coated urea. Western Nutr. Manag. Conf. 2009, 8, 77–81. [Google Scholar]
- Kelling, K.A.; Wolkowski, R.P.; Ruark, M.D. Potato Response to Nitrogen Form and Nitrification Inhibitors. Am. J. Potato Res. 2011, 88, 459–469. [Google Scholar] [CrossRef]
- Souza, E.F.C.; Soratto, R.P.; Fernandes, A.M.; Rosen, C.J. Nitrogen Source and Rate Effects on Irrigated Potato in Tropical Sandy Soils. Agron. J. 2019, 111, 378–389. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Stachowski, P.; Sadan, H.A.; Prus, P.; Pal-Fam, F. Requirements and effects of surface drip irrigation of mid-early potato cultivar courage on a very light soil in central Poland. Agronomy 2021, 11, 33. [Google Scholar] [CrossRef]
- Khan, H.; Acharya, B.; Farooque, A.A.; Abbas, F.; Zaman, Q.U.; Esau, T. Soil and crop variability induced management zones to optimize potato tuber yield. App. Eng. Agric. 2020, 36, 499–510. [Google Scholar] [CrossRef]
- Errebhi, M.; Rosen, C.J.; Gupta, S.C.; Birong, D.E. Potato yield response and nitrate leaching as influenced by nitrogen management. Agron. J. 1998, 90, 10–15. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Getahun, B.B.; Kassie, M.M.; Visser, R.G.F.; van der Linden, C.G. Genetic diversity of potato cultivars for nitrogen use efficiency under contrasting nitrogen regimes. Potato Res. 2020, 63, 267–290. [Google Scholar] [CrossRef]
- Liang, K.; Jiang, Y.; Nyiraneza, J.; Fuller, K.; Murnaghan, D.; Meng, F.-R. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. Field Crops Res. 2019, 242, 107603. [Google Scholar] [CrossRef]
- Makani, M.N.; Sargent, S.A.; Zotarelli, L.; Huber, D.J.; Sims, C. Harvest Interval Has Greater Effect on Periderm Maturity and Storage Quality of Early-maturing, Tablestock Potato than Nitrogen Rate. HortScience 2017, 52, 1390–1395. [Google Scholar] [CrossRef]
- Stefaniak, T.R.; Fitzcollins, S.; Figueroa, R.; Thompson, A.L.; Carley, C.S.; Shannon, L.M. Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota. Agronomy 2021, 11, 255. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Leclerc, Y.; Moreau, G. Rate timing of nitrogen fertilization of Russet Burbank potato: Nitrogen use efficiency. Can. J. Plant Sci. 2004, 84, 845–854. [Google Scholar] [CrossRef]
- Rens, L.; Zotarelli, L.; Alva, A.; Rowland, D.; Liu, G.; Morgan, K. Fertilizer nitrogen uptake efficiencies for potato as influenced by application timing. Nutr. Cycl. Agroecosyst. 2016, 104, 175–185. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and profitable nitrogen fertilization management of potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Cooperband, L.R.; MacGuidwin, A.E. Strategies to reduce nitrate leaching into groundwater in potato grown in sandy soils: Case study from North Central, U.S.A. Am. J. Potato. Res 2010, 87, 229–244. [Google Scholar] [CrossRef]
- Jiang, Y.; Nyiraneza, J.; Khakbazan, M.; Geng, X.; Murray, B.J. Nitrate leaching and potato yield under varying plow timing and nitrogen rate. Agrosyst. Geosci. Environ. 2019, 2, 190032. [Google Scholar] [CrossRef]
- El-Sayed, M.M.; El-Desoky, A.I.; El-Monem, A.M.A.A.; Gameh, M.A. Deficit irrigation and nitrogen fertilizers effects on crop production and environment hazardous of nitrate leaching in Upper Egypt. Int. J. Environ. 2014, 3, 245–255. [Google Scholar]
- Eltarabily, M.G.; Burke, J.M.; Bali, K.M. Effect of deficit irrigation on nitrogen uptake of sunflower in the low desert region of California. Water 2019, 11, 2340. [Google Scholar] [CrossRef]
- Yang, W.; Jiao, Y.; Yang, M.; Wen, H.; Gu, P.; Yang, J.; Liu, L.; Yu, J. Minimizing soil nitrogen leaching by changing furrow irrigation into sprinkler fertigation in potato fields in the northwestern China plain. Water 2020, 12, 2229. [Google Scholar] [CrossRef]
- Waddell, J.T.; Gupta, S.C.; Moncrief, J.F.; Rosen, C.J.; Steele, D.D. Irrigation-; nitrogen-management impacts on nitrate leaching under potato. J. Environ. Qual. 2000, 29, 251–261. [Google Scholar] [CrossRef]
- Marsh, B. Irrigation and nitrogen fertilizer rate impacts on soil nitrate in potato production. Commun. Soil Sci. Plant Anal. 2019, 50, 1811–1820. [Google Scholar] [CrossRef]
- Li, W.; Xiong, B.; Wang, S.; Deng, X.; Yin, L.; Li, H. Regulation effects of water and nitrogen on the source-sink relationship in potato during the tuber bulking stage. PLoS ONE 2016, 11, e0146877. [Google Scholar] [CrossRef]
- Essah, S.Y.C.; Delgado, J.A.; Dillon, M.; Sparks, R. Cover crops can improve potato tuber yield and quality. HortTechnology 2012, 22, 185–190. [Google Scholar] [CrossRef]
- Stark, J.C.; Porter, G.A. Potato nutrient management in sustainable cropping systems. Am. J. Potato Res. 2005, 82, 329–338. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B.; Kelling, K.A. Surfactant impact on nitrogen utilization leaching in potatoes. Am. J. Pot. Res. 2009, 86, 383–390. [Google Scholar] [CrossRef]
- Bohman, B.J.; Rosen, C.J.; Mulla, D.J. Impact of variable rate nitrogen reduced irrigation management on nitrate leaching for potato. J. Environ. Qual. 2020, 49, 281–291. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Ma, Z.; Fan, M. Improving potato yield, water productivity and nitrogen use efficiency by managing irrigation based on potato root distribution. Int. J. Plant Prod. 2022, 16, 547–555. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, J.; Ma, Z.; Wei, X.; Sun, F.; Yang, Z. Water and nitrogen regulation effects and system optimization for potato (Solanum tuberosum L.) under film drip irrigation in the dry zone of Ningxia China. Agronomy 2023, 13, 308. [Google Scholar] [CrossRef]
- Kirda, C.R. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In Deficit Irrigation Practices; Water Reports 22; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; pp. 3–10. Available online: https://www.fao.org/3/y3655e/y3655e03.htm (accessed on 8 August 2023).
- Leskovar, D.I.; Xu, C.; Agehara, S.; Sharma, S.P.; Crosby, K. Irrigation strategies for vegetable crops in water-limited environments. J. Arid Land Stud. 2014, 24, 133–136. [Google Scholar]
- English, M.J.; Musich, J.T.; Murty, V.V.N. Deficit irrigation. In Management of Farm Irrigation Systems; Hoffman, G.J., Howell, T.A., Soloman, K.H., Eds.; ASAE: St. Joseph, MI, USA, 1990; pp. 631–663. [Google Scholar]
- English, M.; Raja, S.N. Perspectives on deficit irrigation. Agric. Water Manag. 1996, 32, 1–14. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2015, 36, 3. [Google Scholar] [CrossRef]
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G.; Qi, X.; et al. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water Manag. 2010, 98, 403–413. [Google Scholar] [CrossRef]
- Nagaz, K.; El Mokh, F.; Alva, A.K.; Masmoudi, M.M.; Mechlia, N.B. Potato response to different irrigation regimes using saline water. Irrig. Drain. 2016, 65, 654–663. [Google Scholar] [CrossRef]
- Qin, J.; Ramírez, D.A.; Xie, K.; Li, W.; Yactayo, W.; Jin, L.; Quiroz, R. Is partial root-zone drying more appropriate than drip irrigation to save water in China? A preliminary comparative analysis for potato cultivation. Potato Res. 2018, 61, 391–406. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G. Deficit irrigation of potato. In Deficit Irrigation Practices; Water Reports 22; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; pp. 47–55. [Google Scholar]
- Trifonov, P.; Lazarovitch, N.; Arye, G. Increasing water productivity in arid regions using low-discharge drip irrigation: A case study on potato growth. Irrig. Sci. 2017, 35, 287–295. [Google Scholar] [CrossRef]
- Karam, F.; Amacha, N.; Fahed, S.; El Asmar, T.; Domínguez, A. Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications. Agric. Water Manag. 2014, 142, 144–151. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Katerji, N.; van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 2003, 62, 37–66. [Google Scholar] [CrossRef]
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of Potato to Water Shortage: Irrigation Management and Enhancement of Tolerance to Drought and Salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Ghazouani, H.; Rallo, G.; Mguidiche, A.; Latrech, B.; Douh, B.; Boujelben, A.; Provenzano, G. Effects of saline and deficit irrigation on soil-plant water status and potato crop yield under the semiarid climate of Tunisia. Sustainability 2019, 11, 2706. [Google Scholar] [CrossRef]
Location | Soil Type | Variety | N Source | N Application Method | Timing | N Rates (kg/ha) | Total N Rate (kg/ha) | Tuber Yield (Mg/ha) | NUE | Reference | Remarks | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North Eastern Florida (Farm 1) | Alaquod Spodosol | FL 1867 (Chipping type) | Granular AN (34%N) for Pre-pl and Liquid UAN (32% N) for PE and TI | Band application | 2011 | 2012 | 2011 | 2012 | [89] | NUE is in kg plant biomass/kgN) and tuber yield is the total tuber yield | |||
Pre-pl:E:TI | 56:0:56 | 112 | 39.6 | 42 | 58 | 58.8 | |||||||
Pre-pl:E:TI | 56:0:112 | 168 | 47 | 45.7 | |||||||||
Pre-pl:E:TI | 56:56:56 | 168 | 43.1 | 44.8 | 39 | 43.1 | |||||||
Pre-pl:E:TI | 56:56:112 | 224 | 34.2 | 32.2 | |||||||||
Pre-pl:E:TI | 56:112:56 | 224 | 47.2 | 46 | 31.8 | 34.6 | |||||||
Pre-pl:E:TI | 56:112:112 | 280 | 28.6 | 28.7 | |||||||||
Pre-pl:E:TI | 56:168:56 | 280 | 44.1 | 43.3 | 27.3 | 28.5 | |||||||
Pre-pl:E:TI | 56:168:112 | 336 | 24.3 | 23.9 | |||||||||
Becker, Minnesota | Hubbard loamy sand (Frigid Entic Hapludolls) | Russet Burbank | 2016/17 | 2016/17 | [98] | Total tuber yield | |||||||
DAP | All DAP were band applied, all urea were applied via fertigation, UAN was applied in 4 equal splits | PL:E:PE | 45:0:0 | 45 | 54.3 | - | |||||||
DAP:Urea:UAN | PL:E:PE | 45:67:68 | 180 | 69.8 | - | ||||||||
DAP:PCU | PL:E:PE | 45:135:0 | 180 | 69.4 | - | ||||||||
DAP:Urea:UAN | PL:E:PE | 45:135:88 | 270 | 73.4 | - | ||||||||
DAP: PCU | PL:E:PE | 45:225:0 | 270 | 71.6 | - | ||||||||
DAP:Urea | PL:E:PE | 45:135: RES | 180+ RES | 72.3 | - | ||||||||
Prince Edward Island, Canada | Humid Haplorthods | Russet Burbank | AN (34% N) | Band application | Planting | 2014 | 2015 | 2014 | 2015 | [104] | Marketable yield | ||
0 | 0 | 24.3 | 44 | - | - | ||||||||
60 | 60 | 33.9 | 49.5 | - | - | ||||||||
120 | 120 | 36.9 | 53.5 | - | - | ||||||||
180 | 180 | 34.5 | 58.7 | - | - | ||||||||
240 | 240 | 33.5 | 53.1 | - | - | ||||||||
Sicily, Italy | Clay loam, Calcixerollic Xerochrepts | Spunta | AN | 2010 | 2011 | 2010 | 2011 | [125] | Marketable yield Agronomic NUE (kg tuber DW/kg N) | ||||
0 | 0 | 14.3 | 35.7 | - | - | ||||||||
E: 21 DAE | 50:50 | 100 | 35.9 | 47.7 | 73.3 | 95.8 | |||||||
E: 21 DAE | 100:100 | 200 | 46.7 | 47.6 | 43.7 | 47.1 | |||||||
E: 21 DAE | 150:150 | 300 | 48.7 | 53.3 | 28.7 | 35.1 | |||||||
E: 21 DAE | 200:200 | 400 | 48.5 | 54.6 | 23 | 27.6 | |||||||
South Sinai, Egypt | Sandy, Entisol-Typic Torripsamments | Cara | AS was soil applied for control, AN was drip fertigated for Equal and Wise; Total N ratio at ini, dev, mid, and late stages are 12.5, 25, 50, 12.5% | 2021 | 2021 | [74] | NUE is in kg yield/kg N | ||||||
Control | PL: 28 DAP | 120:120 | 240 | 23.1 | 96 | ||||||||
Equal | Weekly | 20 | 240 | 27.8 | 116 | ||||||||
Equal | Biweekly | 40 | 240 | 25.2 | 105 | ||||||||
Wise, weekly | ini:dev:mid:late | 7.5:15:30:7.5 | 240 | 32.4 | 135 | ||||||||
Wise, biweekly | ini:dev:mid:late | 15:30:60:15 | 240 | 30.3 | 126 | ||||||||
Control | PL: 28 DAP | 180:180 | 360 | 28.5 | 79 | ||||||||
Equal | Weekly | 30 | 360 | 37.8 | 105 | ||||||||
Equal | Biweekly | 60 | 360 | 35.1 | 98 | ||||||||
Wise, weekly | ini:dev:mid:late | 11.5:23:46:11.5 | 360 | 42.7 | 119 | ||||||||
Wise, biweekly | ini:dev:mid:late | 23:46:92:23 | 360 | 40.1 | 111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.; Darapuneni, M.; Stringam, B.L.; Lombard, K.; Djaman, K. Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review. Agronomy 2023, 13, 2566. https://doi.org/10.3390/agronomy13102566
Shrestha B, Darapuneni M, Stringam BL, Lombard K, Djaman K. Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review. Agronomy. 2023; 13(10):2566. https://doi.org/10.3390/agronomy13102566
Chicago/Turabian StyleShrestha, Bhimsen, Murali Darapuneni, Blair L. Stringam, Kevin Lombard, and Koffi Djaman. 2023. "Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review" Agronomy 13, no. 10: 2566. https://doi.org/10.3390/agronomy13102566
APA StyleShrestha, B., Darapuneni, M., Stringam, B. L., Lombard, K., & Djaman, K. (2023). Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review. Agronomy, 13(10), 2566. https://doi.org/10.3390/agronomy13102566