Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Site, and Condition
2.2. Experimental Design and Field Practice Management
2.2.1. Planting Density
2.2.2. Fertilizer Application
2.2.3. Planting and Field Management
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Growth Attributes
3.1.1. Stem Diameter
3.1.2. Plant Height
3.1.3. LAI
3.2. Biomass Yield
3.3. Quality Attributes
3.3.1. CP
3.3.2. ADF and NDF
3.3.3. Starch
3.3.4. WSC
3.3.5. Crude Protein Yield and Total Starch Yield
3.3.6. RFV
4. Discussion
4.1. Effects of Planting Density and Nitrogen Application on Growth Characteristics of Silage Maize
4.2. Response of Silage Maize Biomass Yield to Planting Density and Nitrogen Fertilizer
4.3. Effects of Planting Density and Nitrogen Fertilizer on the Quality of Silage Maize
4.4. Synergistic Balance of Quality Indexes and Biomass Yield in Silage Maize
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cusicanqui, J.A.; Lauer, J.G. Plant density and hybrid influence on corn forage yield and quality. Agron. J. 1999, 91, 911–915. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Wegenast, T.; Longin, C.F.; Xu, X.; Melchinger, A.E.; Chen, S. Effect of N supply on stalk quality in maize hybrids. Field Crops Res. 2010, 118, 208–214. [Google Scholar] [CrossRef]
- Jara Galeano, E.S.; Costa, C.M.; Orrico Junior, M.A.P.; Fernandes, T.; Retore, M.; Silva, M.S.J.; Orrico, A.C.A.; Lopes, L.S.; Garcia, R.A.; Machado, L.A.Z. Agronomic aspects, chemical composition and digestibility of forage from corn-crotalaria intercropping. J. Agric. Sci. 2021, 159, 580–588. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, H.; Liu, G.; You, Y.; Ma, L.; Liu, N.; Zhang, Y. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Res. 2021, 263, 108068. [Google Scholar] [CrossRef]
- Wang, W.; Shen, C.; Xu, Q.; Zafar, S.; Du, B.; Xing, D. Grain Yield, Nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer n inputs and planting density. Agronomy 2022, 12, 430. [Google Scholar] [CrossRef]
- Peng, S.; Khush, G.S.; Virk, P.; Tang, Q.; Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Su, B.; Song, Y.; Song, C.; Cui, L.; Yong, T.; Yang, W. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica 2014, 52, 332–340. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Latifmanesh, H.; Feng, X.; Cao, T.; Qian, C.; Deng, A.; Song, Z.; Zhang, W. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? J. Integr. Agric. 2018, 17, 1745–1757. [Google Scholar] [CrossRef]
- Salama, H.S.A. Yield and nutritive value of maize (Zea mays L.) forage as affected by plant density, sowing date and age at harvest. Ital. J. Agron. 2019, 14, 114–122. [Google Scholar] [CrossRef]
- Arpici, E.B.; Elk, N.; Bayram, G. Yield and quality of forage maize as influenced by plant density and nitrogen rate. Turk. J. Field Crops 2010, 15, 128–132. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Ma, B.; Wu, W.; Ahmad, I.; Zhu, G.; Yan, W.; Jiao, X. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef]
- Muchow, R.C.; Davis, R. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment II. Radiation interception and biomass accumulation. Field Crops Res. 1988, 18, 17–30. [Google Scholar] [CrossRef]
- Zhu, G.; Lu, H.; Shi, X.; Wang, Y.; Zhou, G. Nitrogen management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron. J. 2020, 112, 550–563. [Google Scholar] [CrossRef]
- Xu, G.; Lu, D.; Wang, H.; Li, Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agr. Water Manage. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Geng, J.; Ma, Q.; Zhang, M.; Li, C.; Liu, Z.; Lyu, X.; Zheng, W. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.; Zheng, G.; Yao, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; Zhu, X. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Res. 2021, 267, 108163. [Google Scholar] [CrossRef]
- Fatima, Z.; Abbas, Q.; Khan, A.; Hussain, S.; Ali, M.A.; Abbas, G.; Younis, H.; Nas, S.; Ismail, M.; Shahzad, M.I.; et al. Resource use efficiencies of C3 and C4 cereals under split nitrogen regimes. Agronomy. 2018, 8, 69. [Google Scholar] [CrossRef]
- Qu, S.; Shen, Y. Effect of nitrogen application and planting density on forage yield and quality in maize (Zea Mays L.). Jiangsu J. Agric. Sci. 2009, 25, 596–600. (In Chinese) [Google Scholar]
- Sheaffer, C.C.; Halgerson, J.L.; Jung, H.G. Hybrid and N Fertilization Affect Corn Silage Yield and Quality. J. Agron. Crop Sci. 2006, 192, 278–283. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Zhao, M.; Feng, Y.; Shi, Y.; Shen, H.; Hu, H.; Luo, Y.; Xu, L.; Kang, J.; Xing, A.; Wang, S.; et al. Yield and quality properties of silage maize and their influencing factors in China. Sci. China Life Sci. 2022, 65, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Douglas, L.A.; Riazi, A.; Smith, C.J. A Semi-Micro method for determining total nitrogen in soils and plant material containing nitrite and nitrate. Soil Sci. Soc. Am. J. 1980, 44, 431–433. [Google Scholar] [CrossRef]
- Zi, Y.; Ding, J.; Song, J.; Humphreys, G.; Peng, Y.; Li, C.; Zhu, X.; Guo, W. Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4548. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Simpson, R.; Oram, R.; Lowe, K.; Kelly, K.; Evans, K.; Humphreys, M. Seasonal variation in the herbage yield and nutritive value of perennial ryegrass (Lolium perenne L.) cultivars with high or normal herbage water-soluble carbohydrate concentrations grown in three contrasting Australian dairy environments. Aust. J. Exp. Agric. 1998, 38, 821–830. [Google Scholar] [CrossRef]
- Kuai, J.; Sun, Y.; Zhou, M.; Zhang, P.; Zuo, Q.; Wu, J.; Zhou, G. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 2016, 199, 89–98. [Google Scholar] [CrossRef]
- Liu, S.; Song, F.; Li, X.; Wang, Y.; Zhu, X. Effect of nitrogen application on nodal root characteristics and root lodging resistance in maize. Pak. J. Bot. 2018, 50, 949–954. [Google Scholar]
- Sever, K.; Bogdan, S.; Škvorc, Ž. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J. For. Res. 2022, 34, 167–176. [Google Scholar] [CrossRef]
- Soleymani, A.; Shahrajabian, M.H. Effect of irrigation intervals and plant density on yield and yield components of nuts sunflower in Isfahan region, Iran. Res. Crops 2011, 12, 723–727. [Google Scholar]
- Xue, J.; Gou, L.; Zhao, Y.; Yao, M.; Yao, H.; Tian, J.; Zhang, W. Effects of light intensity within the canopy on maize lodging. Field Crops Res. 2016, 188, 133–141. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, J.; Zhang, G.; Chen, J.; Xie, R.; Ming, B.; Hou, P.; Wang, K.; Li, S. Nitrogen split application can improve the stalk lodging resistance of maize planted at high density. Agriculture 2020, 10, 364. [Google Scholar] [CrossRef]
- Bhuvaneswari, G.; Sivaranjani, R.; Reetha, S.; Ramakrishnan, K. Application of nitrogen fertilizer on plant density, growth, yield and fruit of bell peppers (Capsicum annuum L.). Int. Lett. Nat. Sci. 2014, 13, 81–90. [Google Scholar] [CrossRef]
- Coser, A.C.; Martins, C.E.; Alvim, M.J.; Teixeira, F.V. Plant height and ground cover as indicators of forage yield in an elephant grass pasture. Rev. Bras. Zootecn. 1998, 27, 676–680. [Google Scholar]
- Gao, K.; Yu, Y.; Xia, Z.; Yang, G.; Xing, Z.; Qi, L.; Ling, L. Response of height, dry matter accumulation and partitioning of oat (Avena sativa L.) to planting density and nitrogen in Horqin Sandy Land. Sci. Rep. 2019, 9, 7961. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Han, Y.; Li, Y.; Wang, G.; Feng, L.; Fan, Z.; Du, W.; Yang, B.; Cao, G.; Mao, S. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Res. 2015, 184, 17–27. [Google Scholar] [CrossRef]
- Hassan, M.J.; Nawab, K.; Ali, A. Response of Specific Leaf Area (SLA), Leaf Area Index (LAI) and Leaf Area Ratio (LAR) of Maize (Zea mays L.) to plant density, rate and timing of nitrogen application. World Appl. Sci. J. 2013, 2, 235–243. [Google Scholar]
- Liu, T.; Gu, L.; Dong, S.; Zhang, J.; Liu, P.; Zhao, B. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Res. 2015, 170, 32–39. [Google Scholar] [CrossRef]
- Olsen, J.; Weiner, J. The influence of Triticum aestivum density, sowing pattern and nitrogen fertilization on leaf area index and its spatial variation. Basic Appl. Ecol. 2007, 8, 252–257. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Wang, K.; Xie, R.; Ming, B.; Wang, Y.; Zhang, G.; Liu, G.; Zhao, R.; Fan, P.; et al. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res. 2017, 212, 126–134. [Google Scholar] [CrossRef]
- Labra, M.H.; Struik, P.C.; Calderini, D.F.; Evers, J.B. Leaf Nitrogen traits in response to plant density and nitrogen supply in oilseed rape. Agronomy 2020, 10, 1780. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, D.; Liang, H.; Shi, W.; Chang, S.; Jia, Q.; Hou, F. Regulation of density and nitrogen fertilizer on physiological characteristics, yield, and quality of silage maize using a ridge-furrow rainfall harvesting system in Longdong Region, China. Pratacult. Sci. 2022, 39, 960–976. (In Chinese) [Google Scholar] [CrossRef]
- Ma, D.; Li, S.; Zhai, L.; Yu, X.; Xie, R.; Gao, J. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crops Res. 2020, 250, 107766. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, D.; Xie, R.; Ming, B.; Hou, P.; Xue, J.; Li, R.; Chen, J.; Wang, K.; Li, S. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron. J. 2020, 112, 4147–4158. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Yu, F.; Cao, X.; Liu, G.; Lv, A. Effect of nitrogen fertilizer on yield and quality of silage maize in bashang area of northwest Hebei Province. Feed Res. 2021, 44, 127–129. (In Chinese) [Google Scholar] [CrossRef]
- Coleman, S.W.; Moore, J.E. Feed quality and animal performance. Field Crops Res. 2003, 84, 17–29. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, G.; Fang, Y.; Hou, H.; Lei, K.; Ma, Y. Regulation of density and fertilization on crude protein synthesis in forage maize in a Semiarid Rain-Fed area. Agriculture 2023, 13, 715. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yu, C.; Zhang, J.; Shimojo, M.; Shao, T. The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Anim. Sci. J. 2015, 86, 69–76. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Ghasemzadeh, A.; Ramlan, M.F.; Sakimin, S.Z. Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. PeerJ 2018, 6, e5280. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Jia, Q.; Chang, S.; Shahzad, A.; Zhang, C.; Liu, Y.; Hou, F. Effects of planting density and nitrogen application on yield, quality and water use efficiency of silage maize in hexi irrigation region. Acta Agric. Boreali-Occid. Sin. 2021, 30, 60–73. (In Chinese) [Google Scholar] [CrossRef]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Huang, Z.; Dunkerley, D.; López-Vicente, M.; Wu, G. Trade-offs of dryland forage production and soil water consumption in a semi-arid area. Agr. Water Manage. 2020, 241, 106349. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.; Beauchemin, K. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy 2018, 8, 164. [Google Scholar] [CrossRef]
- Dong, W.; Han, X.; Liu, G.; Bao, J. Improving cellulosic ethanol fermentation efficiency by converting endogenous water-soluble carbohydrates into citric acid before pretreatment. Bioprocess Biosyst. Eng. 2019, 42, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bao, Y.; Yao, Y.; Li, Z.; Zhang, J.; Xu, Y.; Ye, J.; Cao, Y.; Shao, Y. Response of solublecarbohydrate in different ways degraded grassland to nitrogen addition. Chin. J. Grassl. 2020, 42, 135–140. (In Chinese) [Google Scholar] [CrossRef]
Treatments | Planting Density (ha−1) | Nitrogen Application Rate (ha−1) |
---|---|---|
D1 × N1 | 65,000 plant | 150 kg |
D1 × N2 | 65,000 plant | 230 kg |
D1 × N3 | 65,000 plant | 310 kg |
D2 × N1 | 80,000 plant | 150 kg |
D2 × N2 | 80,000 plant | 230 kg |
D2 × N3 | 80,000 plant | 310 kg |
D3 × N1 | 95,000 plant | 150 kg |
D3 × N2 | 95,000 plant | 230 kg |
D3 × N3 | 95,000 plant | 310 kg |
Treatments | Stem Diameter (mm plant−1) | Plant Height (cm plant−1) | LAI | ||||||
---|---|---|---|---|---|---|---|---|---|
Jointing Stage | Trumpet Stage | Maturity Stage | Jointing Stage | Trumpet Stage | Maturity Stage | Jointing Stage | Trumpet Stage | Maturity Stage | |
D1 × N1 | 24.55 a–d | 24.42 ab | 22.03 abc | 74.75 cd | 197 e | 257 de | 2.39 cd | 4.45 c | 4.70 d |
D1 × N2 | 24.87 ab | 24.06 abc | 22.13 abc | 79.55 bc | 203 cde | 285 ab | 2.35 d | 4.79 c | 6.15 abc |
D1 × N3 | 25.72 a | 25.28 a | 23.33 a | 78.55 bcd | 209 bcd | 276 abc | 2.65 bcd | 5.05 c | 4.75 d |
D2 × N1 | 22.90 b–e | 21.81 de | 21.16 c | 77.15 bcd | 201 de | 266 cd | 2.53 cd | 5.17 c | 5.03 cd |
D2 × N2 | 24.75 abc | 21.49 de | 21.83 bc | 79.60 bc | 210 bcd | 272 bcd | 3.00 bc | 6.25 b | 5.47 bcd |
D2 × N3 | 22.51 cde | 24.54 ab | 22.83 ab | 85.65 a | 222 a | 281 abc | 3.20 ab | 7.81 a | 6.68 a |
D3 × N1 | 22.39 de | 22.14 cde | 20.73 c | 72.65 d | 204 cde | 244 e | 2.90 bcd | 6.99 b | 5.96 abc |
D3 × N2 | 21.48 e | 20.48 e | 22.03 abc | 75.3 cd | 212 abc | 275 abc | 2.97 bcd | 6.99 b | 6.59 ab |
D3 × N3 | 23.79 a–d | 22.94 bcd | 22.03 abc | 81.85 ab | 219 ab | 288 a | 3.64 a | 7.96 a | 6.61 ab |
D | ** | ** | ns | * | * | ns | ** | ** | ** |
N | ns | ** | ** | ** | ** | ** | ** | ** | * |
D × N | ns | ns | ns | ns | ns | * | ns | * | * |
Treatments | CP (%) | ADF (%) | NDF (%) | Starch (%) | WSC (%) |
---|---|---|---|---|---|
D1 × N1 | 8.43 cd | 31.40 a | 52.93 a | 20.43 c | 9.40 cd |
D1 × N2 | 9.06 a | 29.16 bcd | 49.33 bc | 22.33 bc | 12.80 ab |
D1 × N3 | 8.96 ab | 28.96 bcd | 48.40 bc | 20.76 c | 11.30 bc |
D2 × N1 | 8.30 d | 28.66 cd | 49.60 b | 22.43 abc | 8.66 d |
D2 × N2 | 8.53 cd | 26.66 e | 46.96 c | 25.03 a | 11.30 bc |
D2 × N3 | 8.7 bc | 27.86 cde | 48.16 bc | 23.80 ab | 13.33 ab |
D3 × N1 | 8.33 cd | 29.46 bc | 49.30 bc | 20.53 c | 9.86 cd |
D3 × N2 | 8.5 cd | 27.36 de | 48.06 bc | 22.86 abc | 12.36 ab |
D3 × N3 | 8.63 bcd | 30.73 ab | 50.06 b | 21.03 c | 13.90 a |
D | ** | ** | * | ** | ns |
N | ** | ** | ** | * | ** |
D × N | ns | ** | * | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Ma, Q.; Ren, Z.; Zhu, G.; Zhu, X.; Zhou, G. Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits. Agronomy 2023, 13, 2785. https://doi.org/10.3390/agronomy13112785
Qian Y, Ma Q, Ren Z, Zhu G, Zhu X, Zhou G. Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits. Agronomy. 2023; 13(11):2785. https://doi.org/10.3390/agronomy13112785
Chicago/Turabian StyleQian, Yinsen, Quan Ma, Zhen Ren, Guanglong Zhu, Xinkai Zhu, and Guisheng Zhou. 2023. "Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits" Agronomy 13, no. 11: 2785. https://doi.org/10.3390/agronomy13112785
APA StyleQian, Y., Ma, Q., Ren, Z., Zhu, G., Zhu, X., & Zhou, G. (2023). Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits. Agronomy, 13(11), 2785. https://doi.org/10.3390/agronomy13112785