The Future of Weed Science: Novel Approaches to Weed Management
1. Introduction
- Agronomic practices and the optimization of their performance;
- Precision agriculture and remote sensing to reduce herbicide use;
- Novel weed management techniques and approaches through the evaluation of robotics, UAV, deep learning, multispectral sensors, nanotechnology, etc.;
- The potential role of allelopathy in weed control;
- Nature-based products as novel herbicides
2. A Description of the Special Issue’s Main Findings
2.1. Agroecological Weed Management and Cultural Practices
2.2. Precision Agriculture, Remote Sensing-Based Methods and Frameworks and Novel Weed Management Techniques and Approaches
2.3. The Potential Role of Allelopathy and Nature-Based Compounds
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
List of Contributions
- Yurchak, V.L.; Leslie, A.W.; Hooks, C.R.R. Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn. Agronomy 2023, 13, 688. https://doi.org/10.3390/agronomy13030688
- Gazoulis, I.; Kanatas, P.; Antonopoulos, N.; Tataridas, A.; Travlos, I. False Seedbed for Agroecological Weed Management in Forage Cereal–Legume Intercrops and Monocultures in Greece. Agronomy 2023, 13, 123. https://doi.org/10.3390/agronomy13010123
- Saulic, M.; Oveisi, M.; Djalovic, I.; Bozic, D.; Pishyar, A.; Savić, A.; Prasad, P.V.; Vrbničanin, S. How Do Long Term Crop Rotations Influence Weed Populations: Exploring the Impacts of More than 50 Years of Crop Management in Serbia. Agronomy 2022, 12, 1772. https://doi.org/10.3390/agronomy12081772
- Pinke, G.; Giczi, Z.; Vona, V.; Dunai, É.; Vámos, O.; Kulmány, I.; Koltai, G.; Varga, Z.; Kalocsai, R.; Botta-Dukát, Z.; et al. Weed Composition in Hungarian Phacelia (Phacelia tanacetifolia Benth.) Seed Production: Could Tine Harrow Take over Chemical Management? Agronomy 2022, 12, 891. https://doi.org/10.3390/agronomy12040891
- Kanatas, P.; Gazoulis, I.; Antonopoulos, N.; Tataridas, A.; Travlos, I. The Potential of a Precision Agriculture (PA) Practice for In Situ Evaluation of Herbicide Efficacy and Selectivity in Durum Wheat (Triticum durum Desf.). Agronomy 2023, 13, 732. https://doi.org/10.3390/agronomy13030732
- Jin, X.; Liu, T.; Chen, Y.; Yu, J. Deep Learning-Based Weed Detection in Turf: A Review. Agronomy 2022, 12, 3051. https://doi.org/10.3390/agronomy12123051
- Scavo, A.; Mejías, F.J.R.; Chinchilla, N.; Molinillo, J.M.G.; Schwaiger, S.; Lombardo, S.; Macías, F.A.; Mauromicale, G. Wheat Response and Weed-Suppressive Ability in the Field Application of a Nanoencapsulated Disulfide (DiS-NH2) Bioherbicide Mimic. Agronomy 2023, 13, 1132. https://doi.org/10.3390/agronomy13041132
- Mwitta, C.; Rains, G.C.; Prostko, E. Evaluation of Diode Laser Treatments to Manage Weeds in Row Crops. Agronomy 2022, 12, 2681. https://doi.org/10.3390/agronomy12112681
- Słowiński, K.; Grygierzec, B.; Synowiec, A.; Tabor, S.; Araniti, F. Preliminary Study of Control and Biochemical Characteristics of Giant Hogweed (Heracleum sosnowskyi Manden.) Treated with Microwaves. Agronomy 2022, 12, 1335. https://doi.org/10.3390/agronomy12061335
- Kanatas, P.; Travlos, I.; Gazoulis, I.; Antonopoulos, N.; Tataridas, A.; Mpechliouli, N.; Petraki, D. Biostimulants and Herbicides: A Promising Approach towards Green Deal Implementation. Agronomy 2022, 12, 3205. https://doi.org/10.3390/agronomy12123205
- Pytlarz, E.; Gala-Czekaj, D. Seed Meals from Allelopathic Crops as a Potential Bio-Based Herbicide on Herbicide-Susceptible and -Resistant Biotypes of Wild Oat (Avena fatua L.). Agronomy 2022, 12, 3083. https://doi.org/10.3390/agronomy12123083
- Kanatas, P.; Zavra, S.-M.; Tataridas, A.; Gazoulis, I.; Antonopoulos, N.; Synowiec, A.; Travlos, I. Pelargonic Acid and Caraway Essential Oil Efficacy on Barnyardgrass (Echinochloa crus-galli (L.) P.Beauv.) and Johnsongrass (Sorghum halepense (L.) Pers.). Agronomy 2022, 12, 1755. https://doi.org/10.3390/agronomy12081755
- Antony, A.; Karuppasamy, R. Searching of Novel Herbicides for Paddy Field Weed Management—A Case Study with Acetyl-CoA Carboxylase. Agronomy 2022, 12, 1635. https://doi.org/10.3390/agronomy12071635
References
- Vijayakumar, V.; Ampatzidis, Y.; Schueller, J.K.; Burks, T. Smart spraying technologies for precision weed management: A review. Smart Agric. Technol. 2023, 6, 100337. [Google Scholar] [CrossRef]
- Riemens, M.; Sonderskov, M.; Moonen, A.-C.; Storkey, J.; Kudsk, P. An Integrated Weed Management framework: A pan-European perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Liebman, M.; Basche, A.D.; Nguyen, H.T.X.; Weiberger, D.A. How can cover crops contribute to weed management? A modelling approach illustrated with rye (Secale cereal) and Amaranthus tuberculatus. Weed Res. 2021, 62, 1–11. [Google Scholar] [CrossRef]
- Gu, C.; Bastiaans, L.; Anten, N.P.R.; Makowski, D.; van der Werf, W. Annual intercropping suppresses weeds: A meta-analysis. Agric. Ecosyst. Environ. 2021, 322, 107658. [Google Scholar] [CrossRef]
- Juwono, F.H.; Wong, W.K.; Verma, S.; Shekhawat, N.; Lease, B.A.; Apriono, C. Machine learning for weed-plant discrimination in agriculture 5.0: An in-depth review. Artif. Intell. Agric. 2023, 10, 13–25. [Google Scholar] [CrossRef]
- Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X. Applications of deep learning in precision weed management: A review. Comput. Electron. Agric. 2023, 206, 107698. [Google Scholar] [CrossRef]
- Forini, M.M.L.; Pontes, M.S.; Antunes, D.R.; de Lima, P.H.C.; Santos, J.S.; Santiago, E.F.; Grillo, R. Nano-enabled weed management in agriculture: From strategic design to enabled herbicidal activity. Plant Nano Biol. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Antonopoulos, N.; Kanatas, P.; Gazoulis, I.; Tataridas, A.; Ntovakos, D.; Ntaoulis, V.N.; Zavra, S.M.; Travlos, I. Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agric. Technol. 2023, 3, 100063. [Google Scholar] [CrossRef]
- Lenhoff, E.A.; Neher, P.; Indacochea, A.; Beck, L. Electricity as an effective weed control tool in non-crop areas. Weed Res. 2022, 62, 149–159. [Google Scholar] [CrossRef]
- Kanatas, P.; Antonopoulos, N.; Gazoulis, I.; Travlos, I. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 2021, 69, 704–718. [Google Scholar] [CrossRef]
- Choudhary, C.S.; Behera, B.; Raza, M.B.; Mrunalini, K.; Bhoi, T.K.; Lal, M.K.; Nongmaithem, D.; Pradhan, S.; Song, B.; Das, T.K. Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere 2023, 15, 100667. [Google Scholar] [CrossRef]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The Herbicidal Potential of Different Pelargonic Acid Products and Essential Oils against Several Important Weed Species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Win, P.-P.; Park, H.-H.; Kuk, Y.-I. Control Efficacy of Natural Products on Broadleaf and Grass Weeds Using Various Application Methods. Agronomy 2023, 13, 2262. [Google Scholar] [CrossRef]
- Abouziena, H.F.H.; Omar, A.A.M.; Sharma, S.D.; Singh, M. Efficacy comparison of some new natural-product herbicides for weed control at two growth stages. Weed Technol. 2009, 23, 431–437. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Duke, S.O. Rationale for a natural products approach to herbicide discovery. Pest Manag. Sci. 2012, 68, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, A.; Zulet-González, A.; Barco-Antoñanzas, M.; Eceiza, M.V.; Gil-Monreal, M.; Royuela, M. Physiological Approach to the Use of the Natural Compound Quinate in the Control of Sensitive and Resistant Papaver rhoeas. Plants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travlos, I.; Scavo, A.; Kanatas, P. The Future of Weed Science: Novel Approaches to Weed Management. Agronomy 2023, 13, 2787. https://doi.org/10.3390/agronomy13112787
Travlos I, Scavo A, Kanatas P. The Future of Weed Science: Novel Approaches to Weed Management. Agronomy. 2023; 13(11):2787. https://doi.org/10.3390/agronomy13112787
Chicago/Turabian StyleTravlos, Ilias, Aurelio Scavo, and Panagiotis Kanatas. 2023. "The Future of Weed Science: Novel Approaches to Weed Management" Agronomy 13, no. 11: 2787. https://doi.org/10.3390/agronomy13112787
APA StyleTravlos, I., Scavo, A., & Kanatas, P. (2023). The Future of Weed Science: Novel Approaches to Weed Management. Agronomy, 13(11), 2787. https://doi.org/10.3390/agronomy13112787