Enhancing Crop Mapping Precision through Multi-Temporal Sentinel-2 Image and Spatial-Temporal Neural Networks in Northern Slopes of Tianshan Mountain
Abstract
:1. Introduction
- (1)
- Machine learning methods necessitate substantial effort in feature selection and design.
- (2)
- Semantic segmentation-based crop classification tasks have difficulty in obtaining sample labels, which does not satisfy the sample requirements of crop classification tasks over a wide area.
- (3)
- The majority of research predominantly focuses on the spectral-temporal data from individual crop pixels, often sidelining crucial spatial context.
- (4)
- Relying on fixed-size spatial data can compromise a model’s capacity to discern feature details.
- (1)
- Introduction of a ConvGRU-based multi-scale and multi-temporal classification framework, incorporating a module for multi-scale spatial feature extraction to integrate spatial context.
- (2)
- Utilization of the SPM module to prioritize pivotal spectral features and spatial context, enhancing classification precision.
- (3)
- In order to accurately map data sets characterized by varied features and time intervals are constructed. Subsequently, suitable data sets are identified, compared, and evaluated with commonly used methods.
- (4)
- The optimal model and dataset were used to map the large-scale crop distribution of cotton, corn, and winter wheat on the NSTM.
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Data
2.2.2. Sample Data
2.3. Methods
2.3.1. Data Processing
2.3.2. Feature Preparation
2.3.3. Model Construction
2.3.4. Evaluation Metrics
2.3.5. Train Details
3. Results
3.1. Datasets Comparison
3.2. Methods Comparison
3.3. Crop Distribution Analysis in NSTM
4. Discussion
4.1. Accuracy Assessment
4.2. Applications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2023. [Google Scholar]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Mutanga, O.; Dube, T.; Galal, O. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sens. Appl. Soc. Environ. 2017, 8, 231–239. [Google Scholar] [CrossRef]
- Sahle, M.; Yeshitela, K.; Saito, O. Mapping the supply and demand of Enset crop to improve food security in Southern Ethiopia. Agron. Sustain. Dev. 2018, 38, 7. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.M.; Abd El-Aziz, S.E.; Marei, S.S. A review: Application of remote sensing as a promising strategy for insect pests and diseases management. Environ. Sci. Pollut. Res. 2020, 27, 33503–33515. [Google Scholar] [CrossRef]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop yield assessment from remote sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spat. Inf. Sci. 2023, 26, 302–320. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme gradient boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Lu, L.; Xie, Y.; Chen, F.; Yin, F.; Li, Q. Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Comput. Electron. Agric. 2023, 205, 107577. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, P.; Chen, Z.; Bai, Y.; Zhao, Z.; Yang, X. A Triple-Stream Network With Cross-Stage Feature Fusion for High-Resolution Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, S.; Liu, J.; Sun, L.; Reymondin, L. Evaluation of five deep learning models for crop type mapping using sentinel-2 time series images with missing information. Remote Sens. 2021, 13, 2790. [Google Scholar] [CrossRef]
- Li, G.; Han, W.; Dong, Y.; Zhai, X.; Huang, S.; Ma, W.; Cui, X.; Wang, Y. Multi-Year Crop Type Mapping Using Sentinel-2 Imagery and Deep Semantic Segmentation Algorithm in the Hetao Irrigation District in China. Remote Sens. 2023, 15, 875. [Google Scholar] [CrossRef]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A dual attention convolutional neural network for crop classification using time-series Sentinel-2 imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Gallo, I.; Ranghetti, L.; Landro, N.; La Grassa, R.; Boschetti, M. In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series. ISPRS J. Photogramm. Remote Sens. 2023, 195, 335–352. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhong, R.; Xiong, X.; Guo, C.; Xu, J.; Zhu, Y.; Xu, J.; Ying, Y.; Ting, K.; Huang, J. Large-scale rice mapping using multi-task spatiotemporal deep learning and sentinel-1 sar time series. Remote Sens. 2022, 14, 699. [Google Scholar] [CrossRef]
- Khan, H.R.; Gillani, Z.; Jamal, M.H.; Athar, A.; Chaudhry, M.T.; Chao, H.; He, Y.; Chen, M. Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery. Sensors 2023, 23, 1779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef]
- Dupuis, A.; Dadouchi, C.; Agard, B. Performances of a Seq2Seq-LSTM methodology to predict crop rotations in Québec. Smart Agric. Technol. 2023, 4, 100180. [Google Scholar] [CrossRef]
- Jurado-Expósito, M.; López-Granados, F.; Atenciano, S.; Garcıa-Torres, L.; González-Andújar, J.L. Discrimination of weed seedlings, wheat (Triticum aestivum) stubble and sunflower (Helianthus annuus) by near-infrared reflectance spectroscopy (NIRS). Crop Prot. 2003, 22, 1177–1180. [Google Scholar] [CrossRef]
- Ghosh, P.; Mandal, D.; Bhattacharya, A.; Nanda, M.K.; Bera, S. Assessing crop monitoring potential of Sentinel-2 in a spatio-temporal scale. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 227–231. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Dai, Q.; Han, D. Analysis of NDVI data for crop identification and yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4374–4384. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Tian, X.; Bai, Y.; Li, G.; Yang, X.; Huang, J.; Chen, Z. An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery. Remote Sens. 2023, 15, 1990. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, arXiv:1805.07836. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919. [Google Scholar]
- Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585. [Google Scholar]
- Hu, T.; Hu, Y.; Dong, J.; Qiu, S.; Peng, J. Integrating sentinel-1/2 data and machine learning to map cotton fields in Northern Xinjiang, China. Remote Sens. 2021, 13, 4819. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
Sentinel-2 Bands | Central Wavelength (μm) | Resolution (m) | Description |
---|---|---|---|
Band 1 | 0.443 | 60 | Coastal aerosol |
Band 2 | 0.490 | 10 | Blue |
Band 3 | 0.560 | 10 | Green |
Band 4 | 0.665 | 10 | Red |
Band 5 | 0.705 | 20 | Vegetation Red Edge 1 |
Band 6 | 0.740 | 20 | Vegetation Red Edge 2 |
Band 7 | 0.783 | 20 | Vegetation Red Edge 3 |
Band 8 | 0.842 | 10 | NIR |
Band 8A | 0.865 | 20 | Vegetation Red Edge 4 |
Band 9 | 0.945 | 60 | Water vapor |
Band 11 | 1.610 | 20 | SWIR 1 |
Band 12 | 2.190 | 20 | SWIR 2 |
Number | Interval | Feature | Total Features | Period | Neighborhood Information |
---|---|---|---|---|---|
1 | 15 | NDVI | 12 | 12 | 5 × 5 Pixels, 3 × 3 Pixels |
2 | 30 | NDVI | 6 | 6 | |
3 | 15 | 12 Band | 144 | 12 | |
4 | 30 | 12 Band | 72 | 6 |
Number | Interval | Feature | Metrics | Cotton | Corn | Winter Wheat | Others |
---|---|---|---|---|---|---|---|
1 | 30 | NDVI | PA | 0.8964 | 0.8816 | 0.9410 | 0.7975 |
UA | 0.8383 | 0.8773 | 0.8862 | 0.8656 | |||
OA | 86.22% | ||||||
2 | 15 | NDVI | PA | 0.9096 | 0.8739 | 0.8511 | 0.8656 |
UA | 0.9158 | 0.8558 | 0.8889 | 0.8573 | |||
OA | 87.30% | ||||||
3 | 30 | 12 Band | PA | 0.8996 | 0.9217 | 0.9196 | 0.8593 |
UA | 0.8678 | 0.9328 | 0.9428 | 0.9208 | |||
OA | 91.13% | ||||||
4 | 15 | 12 Band | PA | 0.9418 | 0.9451 | 0.9340 | 0.8750 |
UA | 0.9012 | 0.9234 | 0.9463 | 0.9270 | |||
OA | 93.03% |
Model | Hyperparameters | Optimal Hyperparameters | Hyperparameter Search Range |
---|---|---|---|
RF | n_estimators | 300 | 100, 200, 300, 500, 1000 |
max_depth | 15 | 5, 10, 15, 20, 25 | |
LSTM | layers | 3 | 1, 3, 5, 7, 9 |
hidden size | 32 | 8, 16, 32, 64, 128 | |
Transformer | n_head | 3 | 1, 3, 5, 7 |
TransformerEncoderLayer | 5 | 3, 4, 5, 6 |
Methods | Metrics | Cotton | Corn | Winter Wheat | Others |
---|---|---|---|---|---|
RF | PA | 0.7978 | 0.8588 | 0.8415 | 0.8324 |
UA | 0.8055 | 0.8484 | 0.8292 | 0.8105 | |
OA | 0.8448 | ||||
KC | 0.8447 | ||||
F1 | 0.8551 | ||||
TempCNN | PA | 0.8796 | 0.9054 | 0.8603 | 0.8780 |
UA | 0.8219 | 0.8543 | 0.8749 | 0.8371 | |
OA | 0.8839 | ||||
KC | 0.8416 | ||||
F1 | 0.8657 | ||||
Transformer | PA | 0.8666 | 0.8804 | 0.8382 | 0.8713 |
UA | 0.8164 | 0.8547 | 0.8708 | 0.8164 | |
OA | 0.8856 | ||||
KC | 0.8504 | ||||
F1 | 0.8775 | ||||
LSTM | PA | 0.9088 | 0.8911 | 0.9374 | 0.8365 |
UA | 0.8797 | 0.8524 | 0.8036 | 0.9101 | |
OA | 0.9061 | ||||
KC | 0.8745 | ||||
F1 | 0.9089 | ||||
Proposed method | PA | 0.9418 | 0.9451 | 0.9340 | 0.8750 |
UA | 0.9012 | 0.9234 | 0.9463 | 0.9270 | |
OA | 0.9303 | ||||
KC | 0.9062 | ||||
F1 | 0.9286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Guo, Y.; Tian, X.; Bai, Y. Enhancing Crop Mapping Precision through Multi-Temporal Sentinel-2 Image and Spatial-Temporal Neural Networks in Northern Slopes of Tianshan Mountain. Agronomy 2023, 13, 2800. https://doi.org/10.3390/agronomy13112800
Zhang X, Guo Y, Tian X, Bai Y. Enhancing Crop Mapping Precision through Multi-Temporal Sentinel-2 Image and Spatial-Temporal Neural Networks in Northern Slopes of Tianshan Mountain. Agronomy. 2023; 13(11):2800. https://doi.org/10.3390/agronomy13112800
Chicago/Turabian StyleZhang, Xiaoyong, Yonglin Guo, Xiangyu Tian, and Yongqing Bai. 2023. "Enhancing Crop Mapping Precision through Multi-Temporal Sentinel-2 Image and Spatial-Temporal Neural Networks in Northern Slopes of Tianshan Mountain" Agronomy 13, no. 11: 2800. https://doi.org/10.3390/agronomy13112800
APA StyleZhang, X., Guo, Y., Tian, X., & Bai, Y. (2023). Enhancing Crop Mapping Precision through Multi-Temporal Sentinel-2 Image and Spatial-Temporal Neural Networks in Northern Slopes of Tianshan Mountain. Agronomy, 13(11), 2800. https://doi.org/10.3390/agronomy13112800