The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs
Abstract
:1. Introduction
- (1)
- Improving kiwifruit yield and quality: by detecting sunscald under the interference of anthracnose, farmers could identify potentially problematic plants early and cool or irrigate the plants to avoid further damage, effectively improving kiwifruit yields and quality in the orchard.
- (2)
- Optimizing resource utilization: by accurately detecting sunscald in kiwifruit, farmers could avoid wasting resources such as water, nutrients, and pesticides on healthy plants, instead providing them to those already affected by sunscald. This will reduce the wastage of resources, lower costs, and contribute to the development of sustainable agriculture and the protection of the ecological environment.
- (3)
- Understanding plant physiological processes: the hyperspectral reflectance technique was used to provide information on the spectral responses of plant leaves in different bands and to extract the relevant bands. Analyzing and interpreting this information helps researchers to understand plants’ growth processes, metabolic activities, and response mechanisms and further advance the research and development of plant biology beyond visual methods.
- (4)
- Developing smart agriculture: this study emphasizes the implementation of plant status detection for early-stage sunscald and similar diseases, which can be implemented in combination with other modern agricultural technologies such as IoT, drones, and data analytics for smart agriculture applications.
- (5)
- Comparison and selection of models: comparing and evaluating the detection effects of various models based on four parts, including the data source, preprocessing, feature extraction algorithms, and classification algorithms, can provide researchers and decision makers with a basis for selecting the best model. This helps to identify the most suitable model to solve a particular problem and can identify directions for the optimization of the model to improve the algorithm further and enhance the model’s performance.
2. Materials and Methods
2.1. Study Area and Plant Material
2.2. Experiment Apparatus and Data Acquisition
2.3. Data Analysis
3. Theoretical Foundations
3.1. Reflection Curve Analysis
3.2. Preprocessing
3.3. Feature Extraction
3.4. Classification Algorithm
- (1)
- Multilayer perceptron (MLP), a representative artificial neural network [54]. The MLP was used for analysis and training, and its structure includes input, hidden, and output layers. Neurons within each layer calculate the output, , using the following equation:
- (2)
- Random forest (RF) is a classification algorithm based on the concept of ensemble learning [55], which makes a final prediction by constructing multiple decision trees and integrating the prediction results of each decision tree. The Gini coefficient method was used to divide the decision tree nodes and select a more appropriate way to classify the data. The equation for calculating the Gini coefficient is as follows:
- (3)
- Support vector machine (SVM) performs the classification of the data by constructing an optimal hyperplane [56]. The SVM algorithm was used for the processing and classification of the data. The SVM algorithm separated different types of data by constructing an optimal hyperplane and using a nonlinear function to map the data into a higher-dimensional space to classify the hyperspectral datasets. The SVM was also computed using Equations (3) and (4). However, unlike MLP, which uses an implicit layer structure, SVM finds decision boundaries by solving optimization problems to determine support vectors.
3.5. Model Evaluation
4. Tests and Results
4.1. Spectral Reflection Curve Analysis
4.2. Feature Extraction
4.3. Machine Learning
4.4. Deep Learning
4.5. Model Comparison and Analysis
5. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Faostat. Available online: https://www.fao.org/faostat/zh/#data/QCL (accessed on 1 May 2023).
- He, H.; Lin, G.; Chen, C.; Yang, Z.; Xu, J. Leveraging Advantages of University to Eradicate Poverty—Practice and Discussion on Targeted Poverty Alleviation Implemented by University of Science and Technology of China in Liuzhi Special District, Guizhou Province, China. Bull. Chin. Acad. Sci. 2020, 35, 371–377. [Google Scholar]
- Zhong, C.; Li, D. Poverty Alleviation Through Kiwifruit Scientific and Technological Achievements of Chinese Academy of Sciences. Bull. Chin. Acad. Sci. 2020, 35, 45–56. [Google Scholar]
- Zhong, M.; Zhang, W.; Zou, L.; Huang, Q.; Chen, L.; Huang, C.; Tao, J.; Xu, X. Diurnal Variation of Photosynthesis and Chlorophyll Fluore-Scence Characteristics in KiwifruitUnder High Temperature Condition. Acta Agric. Univ. Jiangxiensis 2018, 40, 7. [Google Scholar] [CrossRef]
- Dong, X.; Chen, Y.; Chen, L.; Yan, S.; Yu, H.; Zhang, C.; Ma, C.; Wang, L.; Xu, W.; Wang, S. Effect of high temperature and strong light after sustained heavy rainfall on the photosynthesisand root metabolism in kiwi trees. J. Fruit Sci. 2018, 35, 11. [Google Scholar] [CrossRef]
- Tarara, J.M.; Spayd, S.D. Tackling ‘sunburn’ in Red Wine Grapes Through Temperature and Sunlight Exposure. Good Fruit Grow. 2005, 56, 40–41. [Google Scholar]
- Parchomchuk, P.; Meheriuk, M. Orchard Cooling with Pulsed Overtree Irrigation to Prevent Solar Injury and Improve Fruit Quality of ‘Jonagold’ Apples. HortScience A Publ. Am. Soc. Hortic. Sci. 1996, 31, 802–804. [Google Scholar] [CrossRef]
- Rabinowitch, H.D.; Kedar, N.; Budowski, P. Induction of sunscald damage in tomatoes under natural and controlled conditions. Sci. Hortic. 1974, 2, 265–272. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F.; Wu, J.; Zhao, K.; Serbin, S.; Lee, J.E. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests. Remote Sens. Environ. 2016, 179, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.A.; Mogollon, R. Characterization of sun-injury and prediction of sunscald on Tackham’s Triumph’ pears using Vis-NIR spectroscopy. Postharvest Biol. Technol. 2022, 184, 111776. [Google Scholar] [CrossRef]
- Ambrózy, Z.S.; Daood, H.; Nagy, Z.S.; Ledo, D.H.; Helyes, L. Effect of net shading technology and harvest times on yield and fruit quality of sweet pepper. Appl. Ecol. Environ. Res. 2016, 14, 99–109. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, L.; You, W.; Liu, G.; Chen, X.; Liu, Z.; Li, R. Occurrence and control technology of sunburn of Actinidia arguta. China Fruits 2020, 5, 120–121. [Google Scholar] [CrossRef]
- Munne-Bosch, S.; Vincent, C. Physiological Mechanisms Underlying Fruit Sunburn. Crit. Rev. Plant Sci. 2019, 38, 140–157. [Google Scholar] [CrossRef]
- Schrader, L.; Sun, J.S.; Zhang, J.G.; Felicetti, D.; Tian, J. Heat and Light-Induced Apple Skin Disorders: Causes and Prevention. In Proceedings of the International Symposium on Enhancing Economic and Environmental Sustainability of Fruit Production in a Global Economy held at the 27th International Horticultural Congress, Seoul, Republic of Korea, 13–19 August 2006; pp. 51–58. [Google Scholar]
- Li, G.; Tang, L.; Zhang, X.; Dong, J.; Xiao, M. Factors affecting greenhouse microclimate and its regulating techniques: A review. In Proceedings of the 8th International Conference on Environment Science and Engineering (ICESE), Barcelona, Spain, 11–13 March 2018. [Google Scholar]
- Lal, N.; Sahu, N. Management Strategies of Sun Burn in Fruit Crops-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1126–1138. [Google Scholar] [CrossRef]
- Hao, Y.; Li, W.; Chang, Y. Summary on the Mechanism of Fruit Sunburn Development and Protective Methods. J. Shanxi Agric. Univ. 2006, 26, 4. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current state of hyperspectral remote sensing for early plant disease detection: A review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, B.; Xiong, G.; Li, G.; Li, B.; Tu, G.; Jiang, J. Identification of the pathogen of kiwifruit anthracnose in Fengxin County, Jiangxi Province. Acta Phytopathol. Sin. 2023, 1–4. [Google Scholar] [CrossRef]
- Grandón, S.; Sanchez-Contreras, J.; Torres, C.A. Prediction models for sunscald on apples (Malus domestica Borkh.) cv. Granny Smith using Vis-NIR reflectance. Postharvest Biol. Technol. 2019, 151, 36. [Google Scholar] [CrossRef]
- Ge, Y.; Tu, S. Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling. Anal. Lett. 2022, 56, 2040–2052. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, M.; Xu, Q.; Huang, X. Expectile regression neural network model with applications. Neurocomputing 2017, 247, 73–86. [Google Scholar] [CrossRef]
- Castaeda-Miranda, A.; Castao-Meneses, V.M. Internet of things for smart farming and frost intelligent control in greenhouses. Comput. Electron. Agric. 2020, 176, 105614. [Google Scholar] [CrossRef]
- Arora, S.; Taylor, J.W. Rule-based autoregressive moving average models for forecasting load on special days: A case study for France. Eur. J. Oper. Res. 2018, 266, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Huda, S.; Yearwood, J.; Jelinek, H.F.; Almogren, A. Multistage fusion approaches based on a generative model and multivariate exponentially weighted moving average for diagnosis of cardiovascular autonomic nerve dysfunction. Inf. Fusion 2018, 41, 105–108. [Google Scholar] [CrossRef]
- Barrow, D.K.; Kourentzes, N.; Sandberg, R.; Niklewski, J. Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Syst. Appl. 2020, 160, 113637. [Google Scholar] [CrossRef]
- Baffour, A.A.; Feng, J.; Taylorb, E.K. A hybrid artificial neural network-GJR modeling approach to forecasting currency exchange rate volatility. Neurocomputing 2019, 365, 285–301. [Google Scholar] [CrossRef]
- Castaneda-Miranda, A.; Castano-Meneses, V.M. Smart frost measurement for anti-disaster intelligent control in greenhouses via embedding IoT and hybrid AI methods. Measurement 2020, 164, 108043. [Google Scholar] [CrossRef]
- Pradeepkumar, D.; Ravi, V. Soft Computing Hybrids for FOREX Rate Prediction: A Comprehensive Review. Comput. Oper. Res. 2018, 99, 262–284. [Google Scholar] [CrossRef]
- Panigrahi, S.; Behera, H.S. A hybrid ETS ANN model for time series forecasting. Eng. Appl. Artif. Intell. 2017, 66, 49–59. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, S.; Gupta, D.; Gulzar, Y.; Juneja, S.; Alwan, A.A.; Nauman, A. An artificial intelligence-based stacked ensemble approach for prediction of protein subcellular localization in confocal microscopy images. Sustainability 2023, 15, 1695. [Google Scholar] [CrossRef]
- Gulzar, Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability 2023, 15, 1906. [Google Scholar] [CrossRef]
- Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. Enhancing image annotation technique of fruit classification using a deep learning approach. Sustainability 2023, 15, 901. [Google Scholar] [CrossRef]
- Dhiman, P.; Kaur, A.; Balasaraswathi, V.; Gulzar, Y.; Alwan, A.A.; Hamid, Y. Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review. Sustainability 2023, 15, 9643. [Google Scholar] [CrossRef]
- Hassan, F.; Hussain, S.F.; Qaisar, S.M. Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques. Inf. Fusion 2023, 92, 466–478. [Google Scholar] [CrossRef]
- Ihsan, M.F.; Sunyoto, A.; Arief, M.R. Gray Level Co-Occurrence Matrix Algorithm and Backpropagation Neural Networks for Herbal Plants Identification. In Proceedings of the 2022 5th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 August 2022; pp. 373–378. [Google Scholar]
- Abdulridha, J.; Ehsani, R.; Castro, A.D. Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique. Agriculture 2016, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Gomes, W.P.C.; Gonçalves, L.; da Silva, C.B.; Melchert, W.R. Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee. Comput. Electron. Agric. 2022, 198, 107097. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, R.; Cao, C. Orbita hyperspectral satellite image for land cover classification using random forest classifier. J. Appl. Remote Sens. 2021, 15, 014519. [Google Scholar] [CrossRef]
- Singh, A.K.; Sreenivasu, S.; Mahalaxmi, U.; Sharma, H.; Patil, D.D.; Asenso, E. Hybrid feature-based disease detection in plant leaf using convolutional neural network, bayesian optimized SVM, and random forest classifier. J. Food Qual. 2022, 2022, 2845320. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, F.; Sun, M.; Qu, J.; Xue, J. Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques. Comput. Intell. Neurosci. 2019, 2019, 9142753. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, Q.; Taha, M.F.; Xu, C.; Zhang, C. Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning. Plant Phenomics 2023, 5, 0022. [Google Scholar] [CrossRef]
- Maire, G.L.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar]
- Kawamura, K.; Watanabe, N.; Lee, H.J.; Inoue, Y.; Odagawa, S. Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a mixed sown pasture using partial least squares regression. Grassl. Sci. 2010, 56, 205–216. [Google Scholar] [CrossRef]
- Heim, R.H.-J.; Jürgens, N.; Große-Stoltenberg, A.; Oldeland, J. The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae). Remote Sens. 2015, 7, 16901–16914. [Google Scholar] [CrossRef] [Green Version]
- Monowar, M.M.; Hamid, M.A.; Kateb, F.A.; Ohi, A.Q.; Mridha, M. Self-Supervised Clustering for Leaf Disease Identification. Agriculture 2022, 12, 814. [Google Scholar] [CrossRef]
- Wang, X.; Xie, F.; Yang, Y.; Zhao, J.; Wu, G.; Wang, S. Rapid Diagnosis of Ductal Carcinoma In Situ and Breast Cancer Based on Raman Spectroscopy of Serum Combined with Convolutional Neural Network. Bioengineering 2023, 10, 65. [Google Scholar] [CrossRef]
- Pérez-Roncal, C.; López-Maestresalas, A.; Lopez-Molina, C.; Jarén, C.; Urrestarazu, J.; Santesteban, L.G.; Arazuri, S. Hyperspectral Imaging to Assess the Presence of Powdery Mildew (Erysiphe necator) in cv. Carignan Noir Grapevine Bunches. Agronomy 2020, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hu, Y.; Zheng, Z.; Qiao, Y.; Zhang, K.; Guo, T.; Chen, J. Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm. Agronomy 2022, 12, 2318. [Google Scholar] [CrossRef]
- Szkolnik, M. Techniques involved in greenhouse evaluation of deciduous tree fruit fungicides. Annu. Rev. Phytopathol. 1978, 16, 103–129. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, L.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar]
- Elavarasan, D.; Vincent PM, D.R.; Srinivasan, K.; Chang, C.Y. A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural Crop Yield Prediction Modeling. Agriculture 2020, 10, 400. [Google Scholar] [CrossRef]
- Guo, J.; Wang, K.; Jin, S. Mapping of Soil pH Based on SVM-RFE Feature Selection Algorithm. Agronomy 2022, 12, 2742. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2020, 21, 955–978. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. Int. J. Agric. Biol. Eng. 2020, 13, 136–142. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Peuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, Y. Research on PCA Data Dimension Reduction Algorithm Based on Entropy Weight Method. In Proceedings of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 23–25 October 2020. [Google Scholar]
- Balasundaram, D.; Burks, T.F.; Bulanon, D.M.; Schubert, T.; Lee, W.S. Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biol. Technol. 2009, 51, 220–226. [Google Scholar] [CrossRef]
- Mahum, R.; Munir, H.; Mughal, Z.-U.-N.; Awais, M.; Sher Khan, F.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. Int. J. 2022, 29, 303–326. [Google Scholar] [CrossRef]
- Abenina, M.I.A.; Maja, J.M.; Cutulle, M.; Melgar, J.C.; Liu, H. Prediction of potassium in peach leaves using hyperspectral imaging and multivariate analysis. AgriEngineering 2022, 4, 400–413. [Google Scholar] [CrossRef]
- Suresh Babu, C.; Thota, L.S. Optimum Learning Rate for Classification Problem with Mlp in Data Mining. Int. J. Adv. Eng. Technol. 2013, 6, 35. [Google Scholar]
- Perugachi-Diaz, Y.; Tomczak, J.M.; Bhulai, S. Deep learning for white cabbage seedling prediction. Comput. Electron. Agric. 2021, 184, 106059. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Maja, J.M.; Ehsani, R. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agric. 2011, 77, 127–134. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Chen, Y.; Rao, Y.; Zhang, X.; Jin, X. The Nondestructive Model of Near-Infrared Spectroscopy with Different Pretreatment Transformation for Predicting “Dangshan” Pear Woolliness Disease. Agronomy 2023, 13, 1420. [Google Scholar] [CrossRef]
- Harsányi, E.; Bashir, B.; Arshad, S.; Ocwa, A.; Vad, A.; Alsalman, A.; Bácskai, I.; Rátonyi, T.; Hijazi, O.; Széles, A. Data Mining and Machine Learning Algorithms for Optimizing Maize Yield Forecasting in Central Europe. Agronomy 2023, 13, 1297. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; De Bellis, L.; Luvisi, A. iPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability 2017, 9, 1010. [Google Scholar] [CrossRef] [Green Version]
- Andrea, L.; Yiannis, A.; Luigi, D.B. Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks. Sustainability 2016, 8, 831. [Google Scholar]
- Zhao, X.; Zhang, J.; Huang, Y.; Tian, Y.; Yuan, L. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis. Comput. Electron. Agric. 2022, 193, 106717. [Google Scholar] [CrossRef]
- Alhazmi, S. Different Stages of Watermelon Diseases Detection Using Optimized CNN. In Soft Computing: Theories and Applications: Proceedings of the SoCTA 2022, Online, 16–12 December 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 121–133. [Google Scholar]
- Daniya, T.; Vigneshwari, D.S. A Review on Machine Learning Techniques for Rice Plant Disease Detection in Agricultural Research. System 2019, 28, 49–62. [Google Scholar]
- Laine, A.-L. Plant disease risk is modified by multiple global change drivers. Curr. Biol. 2023, 33, R574–R583. [Google Scholar] [CrossRef]
- Sugiura, T. Three climate change adaptation strategies for fruit production. In Climate Smart Agriculture for the Small-Scale Farmers in the Asian and Pacific Region; NARO: Tsukuba, Japan, 2019; pp. 277–292. [Google Scholar]
- Fang, S.; Ru, Y.; Hu, C.; Yang, F. Planning of takeoff/landing site location, dispatch route, and spraying route for a pesticide application helicopter. Eur. J. Agron. 2023, 146, 126814. [Google Scholar] [CrossRef]
Statuses of Leaves | Number of Leaves |
---|---|
Healthy | 105 |
Early-stage sunscald | 90 |
Late-stage sunscald | 130 |
Anthracnose | 104 |
Total | 429 |
Dataset | Principal Component | Contribution Rate | Wavelengths (nm) |
---|---|---|---|
VIS | PC1 | 89.76% | 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
PC2 | 6.70% | 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | |
NIR | PC1 | 80.98% | 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 |
PC2 | 16.47% | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
Data | Model | Model Performance | |||
---|---|---|---|---|---|
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
Unprocessed | MLP | 49.61 | 67.08 | 50.14 | 46.29 |
RF | 72.09 | 72.97 | 72.08 | 71.85 | |
SVM | 74.42 | 74.08 | 74.12 | 73.76 | |
PCA-MLP | 37.98 | 47.96 | 39.43 | 34.11 | |
PCA-RF | 51.16 | 50.61 | 50.04 | 50.13 | |
PCA-SVM | 56.59 | 59.42 | 55.22 | 55.26 | |
RFE-MLP | 72.09 | 70.61 | 70.17 | 70.27 | |
RFE-RF | 71.32 | 70.43 | 70.68 | 70.34 | |
RFE-SVM | 72.87 | 70.09 | 68.61 | 68.70 | |
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
MS-processed | MLP | 86.05 | 88.68 | 85.98 | 86.73 |
RF | 95.35 | 94.49 | 94.97 | 94.64 | |
SVM | 96.90 | 96.32 | 96.95 | 96.60 | |
PCA-MLP | 66.67 | 73.26 | 66.62 | 63.51 | |
PCA-RF | 84.50 | 84.37 | 84.01 | 83.93 | |
PCA-SVM | 87.60 | 89.81 | 87.40 | 87.07 | |
RFE-MLP | 88.37 | 88.41 | 88.85 | 88.19 | |
RFE-RF | 93.02 | 93.25 | 92.65 | 92.89 | |
RFE-SVM | 97.67 | 97.87 | 97.72 | 97.77 | |
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
MAS-processed | MLP | 60.63 | 74.92 | 63.15 | 57.02 |
RF | 90.70 | 90.26 | 90.31 | 90.25 | |
SVM | 97.67 | 97.41 | 97.44 | 97.41 | |
PCA-MLP | 56.59 | 61.86 | 54.49 | 53.17 | |
PCA-RF | 87.60 | 87.99 | 87.20 | 87.26 | |
PCA-SVM | 82.17 | 80.63 | 81.67 | 80.73 | |
RFE-MLP | 89.92 | 90.55 | 89.11 | 89.46 | |
RFE-RF | 88.37 | 87.79 | 87.35 | 87.49 | |
RFE-SVM | 93.80 | 93.71 | 92.08 | 92.45 |
Data | Model | Model Performance | |||
---|---|---|---|---|---|
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
Unprocessed | MLP | 58.59 | 67.90 | 55.73 | 55.81 |
RF | 70.54 | 71.28 | 71.43 | 70.28 | |
SVM | 70.54 | 69.64 | 70.51 | 69.49 | |
PCA-MLP | 43.41 | 54.53 | 44.15 | 41.94 | |
PCA-RF | 55.81 | 57.04 | 56.18 | 55.57 | |
PCA-SVM | 59.69 | 66.62 | 57.13 | 51.96 | |
RFE-MLP | 72.09 | 73.46 | 69.00 | 69.25 | |
RFE-RF | 74.42 | 72.64 | 72.59 | 72.57 | |
RFE-SVM | 79.07 | 78.71 | 76.73 | 77.20 | |
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
MS-processed | MLP | 86.82 | 87.94 | 85.47 | 86.53 |
RF | 86.82 | 86.12 | 85.74 | 85.80 | |
SVM | 100.00 | 100.00 | 100.00 | 100.00 | |
PCA-MLP | 68.22 | 69.78 | 67.43 | 67.62 | |
PCA-RF | 84.50 | 84.16 | 83.71 | 83.84 | |
PCA-SVM | 78.29 | 78.01 | 78.12 | 77.83 | |
RFE-MLP | 84.50 | 83.26 | 84.16 | 83.41 | |
RFE-RF | 94.57 | 94.06 | 94.59 | 94.30 | |
RFE-SVM | 96.12 | 96.32 | 95.88 | 95.98 | |
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
MAS-processed | MLP | 94.57 | 95.83 | 94.66 | 95.21 |
RF | 90.70 | 90.32 | 91.06 | 90.30 | |
SVM | 96.12 | 95.88 | 96.15 | 95.86 | |
PCA-MLP | 71.32 | 75.53 | 71.91 | 72.51 | |
PCA-RF | 87.60 | 90.02 | 86.53 | 87.25 | |
PCA-SVM | 94.57 | 94.13 | 95.40 | 94.62 | |
RFE-MLP | 96.12 | 96.23 | 96.54 | 96.31 | |
RFE-RF | 93.80 | 93.70 | 94.23 | 93.81 | |
RFE-SVM | 98.45 | 98.48 | 98.32 | 98.37 |
Data | Model | Model Performance | |||
---|---|---|---|---|---|
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
VIS | CNN | 77.52 | 78.33 | 75.91 | 76.52 |
MS-CNN | 100.00 | 100.00 | 100.00 | 100.00 | |
MAS-CNN | 98.45 | 98.22 | 98.75 | 98.45 | |
OA (%) | Precision (%) | Recall (%) | F1-score (%) | ||
NIR | CNN | 51.16 | 25.66 | 48.52 | 33.56 |
MS-CNN | 96.90 | 96.26 | 97.08 | 96.55 | |
MAS-CNN | 91.47 | 91.23 | 91.90 | 91.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Jia, Z.; Duan, Q. The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs. Agronomy 2023, 13, 2137. https://doi.org/10.3390/agronomy13082137
Wu K, Jia Z, Duan Q. The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs. Agronomy. 2023; 13(8):2137. https://doi.org/10.3390/agronomy13082137
Chicago/Turabian StyleWu, Ke, Zhicheng Jia, and Qifeng Duan. 2023. "The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs" Agronomy 13, no. 8: 2137. https://doi.org/10.3390/agronomy13082137
APA StyleWu, K., Jia, Z., & Duan, Q. (2023). The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs. Agronomy, 13(8), 2137. https://doi.org/10.3390/agronomy13082137