Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy
Abstract
:1. Introduction
2. PGPB: Their Role as Growth Promoters and Biofertilisers
3. Role of PGPB in Abiotic Stress Reduction
3.1. PGPB—Plant Growth Promoters in High-Salinity Soils
3.2. PGPB—Effects of Drought Stress
3.3. PGPB—Improvement of Plant Growth on Polluted Marginal Land
4. Challenges in Marketing PGPB
- Short shelf life: The limited shelf life of PGPB, which prevents biofertilisers from competing with synthetic pesticides, is one of the problems faced by farmers and manufacturers. This could be overcome by combining the inoculant with a carrier, which would not only prolong the viability of the inoculant, but also create ideal conditions for the rapid growth of the microorganisms when released in the field [136]. Other options include liquid biofertilisers, which have a longer shelf life (up to two years) compared to solid biofertilisers, which have a shelf life of six months. Another possible solution could be the encapsulation of PGPB in polymer matrices to protect the microorganisms introduced into the soil and ensure their slow and steady release.
- Co-inoculation: Scientific evidence suggests that it is preferable to co-inoculate different types of microorganisms, as together, they are more effective than individual PGPB strains when applied in the field [137]. There is evidence that some strains of bacteria can slow or block the development of other microorganisms, although it is true that within a consortium of microorganisms, one strain can support or complement the work of another [138]. In addition, different microbes may have different growth requirements, which can make growth synchronisation difficult. Therefore, a careful formulation of the biocontrol consortium is required to select the appropriate PGPB combination. In this particular scenario, endospores (such as Bacillus spp. and Paenibacillus spp.) are the right choice. Endospores confer greater stress resistance and stability on the formulation and storage of the inoculant and have a greater ability to survive under adverse conditions than other bacterial forms.
- Competition in the rhizosphere and their impact on native bacterial communities: The performance of PGPB in field trials is not always consistent with laboratory or greenhouse tests. This is often because PGPB are not competent in the rhizosphere. To be competent in the rhizosphere, they must be able to effectively colonise plant roots and to persist and multiply along plant roots for an extended period of time in the presence of the native microflora [139]. Furthermore, once inoculated onto a seed or a plant, PGPB, acting as invaders, can potentially induce changes in microbial communities, thus disrupting the niche previously established by the resident microbiota [140]. Three situations may occur: (i) PGPB can become stably established within the resident microflora and the community composition, (ii) soil resilience leads to the elimination of PGPB and the restoration of the baseline conditions, and (iii) PGPB can become established within the native microflora and then induce transient changes in the composition of the native microbial community, followed by the restoration of the baseline conditions [141,142]. If PGPB establish a stable interaction with the resident bacterial community, they may develop positive or negative relationships with the community members, leading to changes in the species composition of the community. These changes are not limited to the community level; cascading effects may extend to the ecosystem level, with unpredictable and possibly undesirable consequences for agroecosystem functioning [143]. For example, inoculation of plants with PGPB can lead to the so-called ‘legacy effects’ [144], which may include changes in the resident microbiome, nutrient cycling, disease suppression and organic matter persistence. It is important to note that the introduced PGPB may leave a functional legacy, whether or not they persist in the community. Further research is therefore needed to clarify how the introduction of PGPB may affect the structure and function of the resident community, of the ecosystem within the application area (e.g., cropland) and of adjacent ecosystems, as their effects are still largely unknown.
- Public health: Despite their enormous potential to promote plant development, pathogenic bacterial isolates can be harmful to humans. Of concern are Pseudomonas species, such as P. fluorescens, P. putida, P. putrefaciens, P. stutzeri and P. pseudoalkaligenes, and the opportunistic pathogen P. aeruginosa (which causes respiratory infections in humans) [145]. Other Bacillus, Ralstonia, Enterobacter, Acineto, Serratia, Rhodococcus, Klebsiella and Stenotrophomonas species can be both plant growth promoters and human pathogens prevailing over beneficial and environmentally benign bacteria [145,146]. Assessing the pathogenicity of bacteria using biochemical and molecular tests can reduce the unintended use of pathogenic bacteria as biofertilisers.
- Field instability: Success in the laboratory is often not accurately reflected in field trials. The main use of PGPB is their application in the field, although the development of a technology begins in the laboratory. Therefore, in order to evaluate and formulate a suitable PGPB inoculant, laboratory trials need to be associated with pot trials and then large-scale field trials. Few PGPB have been successfully registered for commercial use because of the inconsistency of the results between greenhouse and field trials. In addition, soil quality and climatic conditions are very important for the soil and plant colonisation of PGPB.
- Regulatory constraints: Biofertilisers are subject to complicated product registration and patent application procedures. In addition, the regulatory processes tend to be very expensive, and the guidelines vary worldwide [147]. A globally coherent and coordinated regulatory policy is needed to standardise and facilitate the regulatory procedures for biofertilisers.
5. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sallustio, L.; Pettenella, D.; Merlini, P.; Romano, R.; Salvati, L.; Marchetti, M.; Corona, P. Assessing the Economic Marginality of Agricultural Lands in Italy to Support Land Use Planning. Land Use Policy 2018, 76, 526–534. [Google Scholar] [CrossRef]
- Jiang, C.; Guan, K.; Khanna, M.; Chen, L.; Peng, J. Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States. Environ. Sci. Technol. 2021, 55, 10794–10804. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S. Soil Health and Its Improvement Through Novel Agronomic and Innovative Approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/ (accessed on 17 June 2023).
- Decreto Legislativo 29 Aprile 2010, n. 75. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10087 (accessed on 20 November 2023).
- EUR-Lex—32019R1009—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 17 June 2023).
- Hendriksen, N.B. Microbial Biostimulants—The Need for Clarification in EU Regulation. Trends Microbiol. 2022, 30, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Ladisa, G.; Todorovic, M.; Trisorio Liuzzi, G. A GIS-Based Approach for Desertification Risk Assessment in Apulia Region, SE Italy. Phys. Chem. Earth Parts ABC 2012, 49, 103–113. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Cao, M.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Optimistic Contributions of Plant Growth-Promoting Bacteria for Sustainable Agriculture and Climate Stress Alleviation. Environ. Res. 2023, 217, 114924. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Souza, R.D.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Bacteria as Inoculants in Agricultural Soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Romero-Munar, A.; Aroca, R. A Non-K+-Solubilizing PGPB (Bacillus megaterium) Increased K+ Deprivation Tolerance in Oryza Sativa Seedlings by up-Regulating Root K+ Transporters. Plant Physiol. Biochem. 2023, 196, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; Asaf, S.; Lee, K.-E.; Park, Y.-G.; Kim, A.-Y.; Khan, M.A.; You, Y.-H.; Lee, I.-J. Integrated Phytohormone Production by the Plant Growth-Promoting Rhizobacterium Bacillus tequilensis SSB07 Induced Thermotolerance in Soybean. J. Plant Interact. 2019, 14, 416–423. [Google Scholar] [CrossRef]
- Santoyo, G.; Sánchez-Yáñez, J.M.; De Los Santos-Villalobos, S. Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. In Methods in Rhizosphere Biology Research; Reinhardt, D., Sharma, A.K., Eds.; Rhizosphere Biology; Springer: Singapore, 2019; pp. 133–149. ISBN 9789811357664. [Google Scholar]
- Glick, B.R.; Gamalero, E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Kenawy, A.; Dailin, D.J.; Abo-Zaid, G.A.; Malek, R.A.; Ambehabati, K.K.; Zakaria, K.H.N.; Sayyed, R.Z.; El Enshasy, H.A. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management; Sayyed, R.Z., Ed.; Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 13, pp. 1–35. ISBN 9789811369858. [Google Scholar]
- Singh, P.; Singh, R.K.; Zhou, Y.; Wang, J.; Jiang, Y.; Shen, N.; Wang, Y.; Yang, L.; Jiang, M. Unlocking the Strength of Plant Growth Promoting Pseudomonas in Improving Crop Productivity in Normal and Challenging Environments: A Review. J. Plant Interact. 2022, 17, 220–238. [Google Scholar] [CrossRef]
- Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef]
- Pandit, A.; Adholeya, A.; Cahill, D.; Brau, L.; Kochar, M. Microbial Biofilms in Nature: Unlocking Their Potential for Agricultural Applications. J. Appl. Microbiol. 2020, 129, 199–211. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Sierra-Garcia, I.N.; Cremades, J.; António, C.; Rodrigues, A.M.; Pinto, D.C.G.A.; Silva, H.; Cunha, Â. Biostimulation of Salicornia europaea L. Crops with Plant Growth-Promoting Bacteria in Laboratory and Field Conditions: Effects on Growth and Metabolite Profile. J. Appl. Microbiol. 2023, 134, lxad036. [Google Scholar] [CrossRef]
- Kouam, I.D.; Mabah, J.; Germain Ntsoli, P.; Tchamani, L.; Yaouba, A.; Katte, B.; Bitom, D. Growth Promotion Potential of Bacillus Spp. Isolates on Two Tomato (Solanum lycopersicum L.) Varieties in the West Region of Cameroon. Open Agric. 2023, 8, 20220154. [Google Scholar] [CrossRef]
- Hungria, M.; Barbosa, J.Z.; Rondina, A.B.L.; Nogueira, M.A. Improving Maize Sustainability with Partial Replacement of N Fertilizers by Inoculation with Azospirillum brasilense. Agron. J. 2022, 114, 2969–2980. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. Bacterial Consortium for Improved Maize (Zea mays L.) Production. Microorganisms 2019, 7, 519. [Google Scholar] [CrossRef] [PubMed]
- Filipini, L.D.; Pilatti, F.K.; Meyer, E.; Ventura, B.S.; Lourenzi, C.R.; Lovato, P.E. Application of Azospirillum on Seeds and Leaves, Associated with Rhizobium Inoculation, Increases Growth and Yield of Common Bean. Arch. Microbiol. 2021, 203, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Stergiou, P.; Xanthou, M.-Z.; Kakabouki, I.; Vlachakis, D.; et al. Evaluation of Plant Growth Promoting Bacteria Strains on Growth, Yield and Quality of Industrial Tomato. Microorganisms 2021, 9, 2099. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, M.Y.A.; Milani, K.M.L.; Miras-Moreno, B.; Lucini, L.; Valentinuzzi, F.; Mimmo, T.; Pii, Y.; Cesco, S.; Rodrigues, E.P.; Oliveira, A.L.M.D. Inoculation with Plant Growth-Promoting Bacteria Alters the Rhizosphere Functioning of Tomato Plants. Appl. Soil Ecol. 2021, 158, 103784. [Google Scholar] [CrossRef]
- Di Salvo, L.P.; Cellucci, G.C.; Carlino, M.E.; García De Salamone, I.E. Plant Growth-Promoting Rhizobacteria Inoculation and Nitrogen Fertilization Increase Maize (Zea mays L.) Grain Yield and Modified Rhizosphere Microbial Communities. Appl. Soil Ecol. 2018, 126, 113–120. [Google Scholar] [CrossRef]
- Naqqash, T.; Malik, K.A.; Imran, A.; Hameed, S.; Shahid, M.; Hanif, M.K.; Majeed, A.; Iqbal, M.J.; Qaisrani, M.M.; Van Elsas, J.D. Inoculation With Azospirillum Spp. Acts as the Liming Source for Improving Growth and Nitrogen Use Efficiency of Potato. Front. Plant Sci. 2022, 13, 929114. [Google Scholar] [CrossRef]
- Qin, L.; Tian, P.; Cui, Q.; Hu, S.; Jian, W.; Xie, C.; Yang, X.; Shen, H. Bacillus Circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. Front. Plant Sci. 2021, 12, 644597. [Google Scholar] [CrossRef]
- Conde-Avila, V.; Ortega-Martínez, L.D.; Loera, O.; Pérez-Armendáriz, B.; Martínez Valenzuela, C. Encapsulation of Azotobacter Vinelandii ATCC 12837 in Alginate-Na Beads as a Tomato Seedling Inoculant. Curr. Microbiol. 2022, 79, 112. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; Beltrán, I.; Mendoza-Labrador, J.; Estrada-Bonilla, G.; Bonilla, R. Phosphorus Nutrition and Growth of Cotton Plants Inoculated With Growth-Promoting Bacteria Under Low Phosphate Availability. Front. Sustain. Food Syst. 2021, 4, 618425. [Google Scholar] [CrossRef]
- Samaras, A.; Roumeliotis, E.; Ntasiou, P.; Karaoglanidis, G. Bacillus Subtilis MBI600 Promotes Growth of Tomato Plants and Induces Systemic Resistance Contributing to the Control of Soilborne Pathogens. Plants 2021, 10, 1113. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-96189-7. [Google Scholar]
- Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When Salt Meddles between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087. [Google Scholar] [CrossRef] [PubMed]
- De Ollas, C.; Morillón, R.; Fotopoulos, V.; Puértolas, J.; Ollitrault, P.; Gómez-Cadenas, A.; Arbona, V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. Front. Plant Sci. 2019, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Sadder, M.T.; Alshomali, I.; Ateyyeh, A.; Musallam, A. Physiological and Molecular Responses for Long Term Salinity Stress in Common Fig (Ficus carica L.). Physiol. Mol. Biol. Plants 2021, 27, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; ElSayed, A.I.; Moore, M.; Dietz, K.-J. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. J. Exp. Bot. 2017, 68, 1283–1298. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Abbas, A.; Fahad, S.; Baloch, M.S.; Ahmad, M.I.; Saud, S.; Song, Y. Targeting Salt Stress Coping Mechanisms for Stress Tolerance in Brassica: A Research Perspective. Plant Physiol. Biochem. 2021, 158, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Pankaj, U.; Singh, G.; Verma, R.K. Microbial Approaches in Management and Restoration of Marginal Lands. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–305. ISBN 978-0-12-818258-1. [Google Scholar]
- El-Esawi, M.; Alaraidh, I.; Alsahli, A.; Ali, H.; Alayafi, A.; Witczak, J.; Ahmad, M. Genetic Variation and Alleviation of Salinity Stress in Barley (Hordeum vulgare L.). Molecules 2018, 23(2488). [Google Scholar] [CrossRef]
- Dhanya Thomas, T.T.; Dinakar, C.; Puthur, J.T. Effect of UV-B Priming on the Abiotic Stress Tolerance of Stress-Sensitive Rice Seedlings: Priming Imprints and Cross-Tolerance. Plant Physiol. Biochem. 2020, 147, 21–30. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Leoni, B.; Crecchio, C. Photosynthetic Responses of Durum Wheat to Chemical/Microbiological Fertilization Management under Salt and Drought Stresses. Acta Physiol. Plant. 2021, 43, 123. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Romano-Rodríguez, E.; Mesa-Marín, J.; Sola-Elías, C.; Mateos-Naranjo, E. Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve the Response of Swiss Chard to Soil Salinization. Agronomy 2022, 12, 468. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, S.; Tian, C.-Y. Effect of Halotolerant Rhizobacteria Isolated from Halophytes on the Growth of Sugar Beet (Beta vulgaris L.) under Salt Stress. FEMS Microbiol. Lett. 2017, 364, fnx091. [Google Scholar] [CrossRef]
- Babar, M.; Saif-ur-Rehman; Rasul, S.; Aslam, K.; Abbas, R.; Athar, H.-R.; Manzoor, I.; Kashif Hanif, M.; Naqqash, T. Mining of Halo-Tolerant Plant Growth Promoting Rhizobacteria and Their Impact on Wheat (Triticum aestivum L.) under Saline Conditions. J. King Saud Univ. Sci. 2021, 33, 101372. [Google Scholar] [CrossRef]
- Taj, Z.; Challabathula, D. Protection of Photosynthesis by Halotolerant Staphylococcus Sciuri ET101 in Tomato (Lycoperiscon esculentum) and Rice (Oryza sativa) Plants During Salinity Stress: Possible Interplay Between Carboxylation and Oxygenation in Stress Mitigation. Front. Microbiol. 2021, 11, 547750. [Google Scholar] [CrossRef] [PubMed]
- Ilangumaran, G.; Smith, D.L. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. Front. Plant Sci. 2017, 8, 1768. [Google Scholar] [CrossRef] [PubMed]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; AL-Harrasi, A. Plant Growth Promoting Bacteria as an Alternative Strategy for Salt Tolerance in Plants: A Review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef]
- Poria, V.; Dębiec-Andrzejewska, K.; Fiodor, A.; Lyzohub, M.; Ajijah, N.; Singh, S.; Pranaw, K. Plant Growth-Promoting Bacteria (PGPB) Integrated Phytotechnology: A Sustainable Approach for Remediation of Marginal Lands. Front. Plant Sci. 2022, 13, 999866. [Google Scholar] [CrossRef]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant Growth Promoting Rhizobacteria Dietzia Natronolimnaea Modulates the Expression of Stress Responsive Genes Providing Protection of Wheat from Salinity Stress. Sci. Rep. 2016, 6, 34768. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, W.; Rathore, P.; Kumari, R.; Yadav, R. Brown Gold of Marginal Soil: Plant Growth Promoting Bacteria to Overcome Plant Abiotic Stress for Agriculture, Biofuels and Carbon Sequestration. Sci. Total Environ. 2020, 711, 135062. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Weon, H.-Y.; Song, J.; Sang, M.K. Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus Aryabhattai H19-1 and B. Mesonae H20-5 in Tomato Plants. J. Microbiol. Biotechnol. 2019, 29, 1124–1136. [Google Scholar] [CrossRef]
- Sofy, M.R.; Aboseidah, A.A.; Heneidak, S.A.; Ahmed, H.R. ACC Deaminase Containing Endophytic Bacteria Ameliorate Salt Stress in Pisum Sativum through Reduced Oxidative Damage and Induction of Antioxidative Defense Systems. Environ. Sci. Pollut. Res. 2021, 28, 40971–40991. [Google Scholar] [CrossRef]
- Vives-Peris, V.; De Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root Exudates: From Plant to Rhizosphere and Beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Amna; Ud Din, B.; Sarfraz, S.; Xia, Y.; Kamran, M.A.; Javed, M.T.; Sultan, T.; Hussain Munis, M.F.; Chaudhary, H.J. Mechanistic Elucidation of Germination Potential and Growth of Wheat Inoculated with Exopolysaccharide and ACC- Deaminase Producing Bacillus Strains under Induced Salinity Stress. Ecotoxicol. Environ. Saf. 2019, 183, 109466. [Google Scholar] [CrossRef] [PubMed]
- Orhan, F. Alleviation of Salt Stress by Halotolerant and Halophilic Plant Growth-Promoting Bacteria in Wheat (Triticum aestivum). Braz. J. Microbiol. 2016, 47, 621–627. [Google Scholar] [CrossRef]
- Saghafi, D.; Ghorbanpour, M.; Lajayer, B.A. Efficiency of Rhizobium Strains as Plant Growth Promoting Rhizobacteria on Morpho-Physiological Properties of Brassica napus L. under Salinity Stress. J. Soil Sci. Plant Nutr. 2018, 18, 253–268. [Google Scholar] [CrossRef]
- Rossi, M.; Borromeo, I.; Capo, C.; Glick, B.R.; Del Gallo, M.; Pietrini, F.; Forni, C. PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils. Appl. Sci. 2021, 11, 11442. [Google Scholar] [CrossRef]
- Anees, M.; Qayyum, A.; Jamil, M.; Rehman, F.U.; Abid, M.; Malik, M.S.; Yunas, M.; Ullah, K. Role of Halotolerant and Chitinolytic Bacteria in Phytoremediation of Saline Soil Using Spinach Plant. Int. J. Phytoremediation 2020, 22, 653–661. [Google Scholar] [CrossRef]
- Amaya-Gómez, C.V.; Porcel, M.; Mesa-Garriga, L.; Gómez-Álvarez, M.I. A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Appl. Environ. Microbiol. 2020, 86, e00760-20. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, I.; Fahsi, N.; Hafidi, M.; Allaoui, A.; Biskri, L. Plant Growth Enhancement Using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus Licheniformis QA1 and Enterobacter Asburiae QF11 Isolated from Chenopodium Quinoa Willd. Microorganisms 2020, 8, 948. [Google Scholar] [CrossRef]
- Kaushal, M.; Wani, S.P. Rhizobacterial-Plant Interactions: Strategies Ensuring Plant Growth Promotion under Drought and Salinity Stress. Agric. Ecosyst. Environ. 2016, 231, 68–78. [Google Scholar] [CrossRef]
- Kasim, W.A.; Gaafar, R.M.; Abou-Ali, R.M.; Omar, M.N.; Hewait, H.M. Effect of Biofilm Forming Plant Growth Promoting Rhizobacteria on Salinity Tolerance in Barley. Ann. Agric. Sci. 2016, 61, 217–227. [Google Scholar] [CrossRef]
- Yasmeen, T.; Ahmad, A.; Arif, M.S.; Mubin, M.; Rehman, K.; Shahzad, S.M.; Iqbal, S.; Rizwan, M.; Ali, S.; Alyemeni, M.N.; et al. Biofilm Forming Rhizobacteria Enhance Growth and Salt Tolerance in Sunflower Plants by Stimulating Antioxidant Enzymes Activity. Plant Physiol. Biochem. 2020, 156, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.F.; Kuşvuran, S.; Rady, M.M. The Defensive Role of Silicon in Wheat against Stress Conditions Induced by Drought, Salinity or Cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef]
- Rios, J.J.; Martínez-Ballesta, M.C.; Ruiz, J.M.; Blasco, B.; Carvajal, M. Silicon-Mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Front. Plant Sci. 2017, 8, 948. [Google Scholar] [CrossRef]
- Li, Y.-T.; Zhang, W.-J.; Cui, J.-J.; Lang, D.-Y.; Li, M.; Zhao, Q.-P.; Zhang, X.-H. Silicon Nutrition Alleviates the Lipid Peroxidation and Ion Imbalance of Glycyrrhiza Uralensis Seedlings under Salt Stress. Acta Physiol. Plant. 2016, 38, 96. [Google Scholar] [CrossRef]
- Garg, N.; Bhandari, P. Interactive Effects of Silicon and Arbuscular Mycorrhiza in Modulating Ascorbate-Glutathione Cycle and Antioxidant Scavenging Capacity in Differentially Salt-Tolerant Cicer Arietinum L. Genotypes Subjected to Long-Term Salinity. Protoplasma 2016, 253, 1325–1345. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Hirt, H.; Ali, S.; Ali, Z. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean. Front. Plant Sci. 2016, 7, 876. [Google Scholar] [CrossRef]
- Al-Garni, S.M.S.; Khan, M.M.A.; Bahieldin, A. Plant Growth-Promoting Bacteria and Silicon Fertilizer Enhance Plant Growth and Salinity Tolerance in Coriandrum sativum. J. Plant Interact. 2019, 14, 386–396. [Google Scholar] [CrossRef]
- Etesami, H. Can Interaction between Silicon and Plant Growth Promoting Rhizobacteria Benefit in Alleviating Abiotic and Biotic Stresses in Crop Plants? Agric. Ecosyst. Environ. 2018, 253, 98–112. [Google Scholar] [CrossRef]
- Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B.; Novák, J. Abiotic Stress in Crop Production. Int. J. Mol. Sci. 2023, 24, 6603. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Orozco-Mosqueda, M.D.C.; Santos-Villalobos, S.D.L.; Santoyo, G.; Babalola, O.O. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. Plants 2022, 11, 3090. [Google Scholar] [CrossRef]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A Risk Assessment Framework for Irrigated Agriculture under Climate Change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Luo, Q.; Xie, H.; Chen, Z.; Ma, Y.; Yang, H.; Yang, B.; Ma, Y. Morphology, Photosynthetic Physiology and Biochemistry of Nine Herbaceous Plants under Water Stress. Front. Plant Sci. 2023, 14, 1147208. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhu, H. Specific Changes in Morphology and Dynamics of Plant Mitochondria under Abiotic Stress. Horticulturae 2022, 9, 11. [Google Scholar] [CrossRef]
- Ali, H.; Sallahuddin, N.; Ahmed Shamsudin, N.H.; Mohd Zain, N.A.; Ibrahim, M.H.; Yaacob, J.S. Abiotic Stress Induces Morphological, Physiological, and Genetic Changes in Orthosiphon Stamineus Benth. In Vitro Cultures. Horticulturae 2022, 8, 153. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef]
- Freitas, V.F.D.; Cerezini, P.; Hungria, M.; Nogueira, M.A. Strategies to Deal with Drought-Stress in Biological Nitrogen Fixation in Soybean. Appl. Soil Ecol. 2022, 172, 104352. [Google Scholar] [CrossRef]
- Gloser, V.; Dvorackova, M.; Mota, D.H.; Petrovic, B.; Gonzalez, P.; Geilfus, C.M. Early Changes in Nitrate Uptake and Assimilation Under Drought in Relation to Transpiration. Front. Plant Sci. 2020, 11, 602065. [Google Scholar] [CrossRef]
- Ullah, A.; Nisar, M.; Ali, H.; Hazrat, A.; Hayat, K.; Keerio, A.A.; Ihsan, M.; Laiq, M.; Ullah, S.; Fahad, S.; et al. Drought Tolerance Improvement in Plants: An Endophytic Bacterial Approach. Appl. Microbiol. Biotechnol. 2019, 103, 7385–7397. [Google Scholar] [CrossRef]
- Ullah, A.; Akbar, A.; Luo, Q.; Khan, A.H.; Manghwar, H.; Shaban, M.; Yang, X. Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microb. Ecol. 2019, 77, 429–439. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits That Go Far beyond Biological Nitrogen Fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- Jabborova, D.; Kannepalli, A.; Davranov, K.; Narimanov, A.; Enakiev, Y.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Wirth, S.; Sayyed, R.Z.; et al. Co-Inoculation of Rhizobacteria Promotes Growth, Yield, and Nutrient Contents in Soybean and Improves Soil Enzymes and Nutrients under Drought Conditions. Sci. Rep. 2021, 11, 22081. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.; Manna, M.; Kaur, H.; Thakur, T.; Gandass, N.; Bhatt, D.; Muthamilarasan, M. Phytohormone Signaling and Crosstalk in Regulating Drought Stress Response in Plants. Plant Cell Rep. 2021, 40, 1305–1329. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, H.; Naeem, S.; Bakhtawar, M.; Jabeen, Z.; Nosheen, A.; Naz, R.; Keyani, R.; Mumtaz, S.; Hassan, M.N. Halotolerant Rhizobacteria Pseudomonas Pseudoalcaligenes and Bacillus Subtilis Mediate Systemic Tolerance in Hydroponically Grown Soybean (Glycine max L.) against Salinity Stress. PLoS ONE 2020, 15, e0231348. [Google Scholar] [CrossRef] [PubMed]
- Yaadesh, S.; Tomar, G.S.; Kaushik, R.; Prasanna, R.; Grover, M. Azospirillum–Bacillus Associations: Synergistic Effects on in Vitro PGP Traits and Growth of Pearl Millet at Early Seedling Stage under Limited Moisture Conditions. Biotech 2023, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Sati, D.; Pande, V.; Samant, M. Plant-Beneficial Bacillus, Pseudomonas, and Staphylococcus Spp. from Kumaon Himalayas and Their Drought Tolerance Response. Front. Sustain. Food Syst. 2023, 7, 1085223. [Google Scholar] [CrossRef]
- Rashid, U.; Yasmin, H.; Hassan, M.N.; Naz, R.; Nosheen, A.; Sajjad, M.; Ilyas, N.; Keyani, R.; Jabeen, Z.; Mumtaz, S.; et al. Drought-Tolerant Bacillus megaterium Isolated from Semi-Arid Conditions Induces Systemic Tolerance of Wheat under Drought Conditions. Plant Cell Rep. 2022, 41, 549–569. [Google Scholar] [CrossRef]
- Romero-Munar, A.; Aroca, R.; Zamarreño, A.M.; García-Mina, J.M.; Perez-Hernández, N.; Ruiz-Lozano, J.M. Dual Inoculation with Rhizophagus Irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses. Int. J. Mol. Sci. 2023, 24, 5193. [Google Scholar] [CrossRef]
- Aguilera-Torres, C.; Riveros, G.; Morales, L.V.; Sierra-Almeida, A.; Schoebitz, M.; Hasbún, R. Relieving Your Stress: PGPB Associated with Andean Xerophytic Plants Are Most Abundant and Active on the Most Extreme Slopes. Front. Microbiol. 2023, 13, 1062414. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Growth Enhancement and Extenuation of Drought Stress in Maize Inoculated with Multifaceted ACC Deaminase Producing Rhizobacteria. Front. Sustain. Food Syst. 2023, 6, 1076844. [Google Scholar] [CrossRef]
- Soltys-Kalina, D.; Plich, J.; Strzelczyk-Żyta, D.; Śliwka, J.; Marczewski, W. The Effect of Drought Stress on the Leaf Relative Water Content and Tuber Yield of a Half-Sib Family of ‘Katahdin’-Derived Potato Cultivars. Breed. Sci. 2016, 66, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, S.; Bérard, A.; Page, D.; Lanoe, L.; Bertin, N.; Doussan, C. Increased Exopolysaccharide Production and Microbial Activity Affect Soil Water Retention and Field Performance of Tomato under Water Deficit. Rhizosphere 2021, 19, 100408. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Tufail, M.A.; Asghar, H.N.; Nazli, F.; Zahir, Z.A. Appraising the Potential of EPS -producing Rhizobacteria with ACC -deaminase Activity to Improve Growth and Physiology of Maize under Drought Stress. Physiol. Plant. 2021, 172, 463–476. [Google Scholar] [CrossRef]
- Latif, M.; Bukhari, S.A.H.; Alrajhi, A.A.; Alotaibi, F.S.; Ahmad, M.; Shahzad, A.N.; Dewidar, A.Z.; Mattar, M.A. Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, 12, 1140. [Google Scholar] [CrossRef]
- Ferioun, M.; Bouhraoua, S.; Srhiouar, N.; Tirry, N.; Belahcen, D.; Siang, T.C.; Louahlia, S.; El Ghachtouli, N. Optimized Drought Tolerance in Barley (Hordeum vulgare L.) Using Plant Growth-Promoting Rhizobacteria (PGPR). Biocatal. Agric. Biotechnol. 2023, 50, 102691. [Google Scholar] [CrossRef]
- Liu, F.; Ma, H.; Liu, B.; Du, Z.; Ma, B.; Jing, D. Effects of Plant Growth-Promoting Rhizobacteria on the Physioecological Characteristics and Growth of Walnut Seedlings under Drought Stress. Agronomy 2023, 13, 290. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-Ul-Hye, M.; Hussain, S.; Riaz, M.; Qayyum, M.F. Mitigation of Drought Stress in Maize through Inoculation with Drought Tolerant ACC Deaminase Containing PGPR under Axenic Conditions. Pak. J. Bot. 2020, 52, 49–60. [Google Scholar] [CrossRef]
- Ansari, F.A.; Jabeen, M.; Ahmad, I. Pseudomonas Azotoformans FAP5, a Novel Biofilm-Forming PGPR Strain, Alleviates Drought Stress in Wheat Plant. Int. J. Environ. Sci. Technol. 2021, 18, 3855–3870. [Google Scholar] [CrossRef]
- Khan, A.; Singh, A.V. Multifarious Effect of ACC Deaminase and EPS Producing Pseudomonas Sp. and Serratia Marcescens to Augment Drought Stress Tolerance and Nutrient Status of Wheat. World J. Microbiol. Biotechnol. 2021, 37, 198. [Google Scholar] [CrossRef]
- Yasmin, H.; Rashid, U.; Hassan, M.N.; Nosheen, A.; Naz, R.; Ilyas, N.; Sajjad, M.; Azmat, A.; Alyemeni, M.N. Volatile Organic Compounds Produced by Pseudomonas pseudoalcaligenes Alleviated Drought Stress by Modulating Defense System in Maize (Zea mays L.). Physiol. Plant. 2021, 172, 896–911. [Google Scholar] [CrossRef]
- Tateo, A.; Campanaro, V.; Amoroso, N.; Bellantuono, L.; Monaco, A.; Pantaleo, E.; Rinaldi, R.; Maggipinto, T. Predicting Air Quality from Measured and Forecast Meteorological Data: A Case Study in Southern Italy. Atmosphere 2023, 14, 475. [Google Scholar] [CrossRef]
- Brunetti, G.; Soler-Rovira, P.; Farrag, K.; Senesi, N. Tolerance and Accumulation of Heavy Metals by Wild Plant Species Grown in Contaminated Soils in Apulia Region, Southern Italy. Plant Soil 2009, 318, 285–298. [Google Scholar] [CrossRef]
- FAO; UNEP. Global Assessment of Soil Pollution: Report; FAO: Rome, Italy; UNEP: Nairobi, Kenya, 2021; ISBN 978-92-5-134469-9. [Google Scholar]
- Rodríguez, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; ISBN 978-92-5-130505-8. [Google Scholar]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the Molecular Mechanisms for the Enhanced Phytoremediation of Heavy Metals through Plant Growth Promoting Rhizobacteria: A Review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P. Efficiency of Bacteria and Bacterial Assisted Phytoremediation of Heavy Metals: An Update. Bioresour. Technol. 2021, 328, 124835. [Google Scholar] [CrossRef] [PubMed]
- Nedjimi, B. Phytoremediation: A Sustainable Environmental Technology for Heavy Metals Decontamination. SN Appl. Sci. 2021, 3, 286. [Google Scholar] [CrossRef]
- Jarosławiecka, A.K.; Piotrowska-Seget, Z. The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary Śląskie and Bukowno (Poland). Microbiol. Res. 2022, 13, 626–642. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef]
- Gupta, R.; Khan, F.; Alqahtani, F.M.; Hashem, M.; Ahmad, F. Plant Growth–Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl. Biochem. Biotechnol. 2023. [CrossRef]
- Wang, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Natarajan, D.; Ma, Y. Plant Growth-Promoting Bacteria in Metal-Contaminated Soil: Current Perspectives on Remediation Mechanisms. Front. Microbiol. 2022, 13, 966226. [Google Scholar] [CrossRef]
- Anand, V.; Kaur, J.; Srivastava, S.; Bist, V.; Dharmesh, V.; Kriti, K.; Bisht, S.; Srivastava, P.K.; Srivastava, S. Potential of Methyltransferase Containing Pseudomonas Oleovorans for Abatement of Arsenic Toxicity in Rice. Sci. Total Environ. 2023, 856, 158944. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Yang, G.; Chen, J.; Zhou, Y.; Núñez Delgado, A.; Cui, H.-L.; Duan, G.-L.; Rosen, B.P.; Zhu, Y.-G. Fundamentals and Application in Phytoremediation of an Efficient Arsenate Reducing Bacterium Pseudomonas Putida ARS1. J. Environ. Sci. 2024, 137, 237–244. [Google Scholar] [CrossRef]
- Marwa, N.; Singh, N.; Srivastava, S.; Saxena, G.; Pandey, V.; Singh, N. Characterizing the Hypertolerance Potential of Two Indigenous Bacterial Strains (Bacillus Flexus and Acinetobacter Junii) and Their Efficacy in Arsenic Bioremediation. J. Appl. Microbiol. 2019, 126, 1117–1127. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, H.; He, Y.; Chen, Z.; Yao, L.; Han, H. Improving Radish Phosphorus Utilization Efficiency and Inhibiting Cd and Pb Uptake by Using Heavy Metal-Immobilizing and Phosphate-Solubilizing Bacteria. Sci. Total Environ. 2023, 868, 161685. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Yan, Z.; Dong, J.; Wu, X.; Meng, Z.; Shi, Y.; Chen, J. Mechanisms Controlling the Transformation of and Resistance to Mercury(II) for a Plant-Associated Pseudomonas Sp. Strain, AN-B15. J. Hazard. Mater. 2022, 425, 127948. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.S.; Nikulina, E.; Fedotov, P. Induced Phytoextraction of Mercury. Sep. Purif. Rev. 2022, 51, 174–194. [Google Scholar] [CrossRef]
- González, D.; Blanco, C.; Probanza, A.; Jiménez, P.A.; Robas, M. Evaluation of the PGPR Capacity of Four Bacterial Strains and Their Mixtures, Tested on Lupinus Albus Var. Dorado Seedlings, for the Bioremediation of Mercury-Polluted Soils. Processes 2021, 9, 1293. [Google Scholar] [CrossRef]
- Robas, M.; Jiménez, P.A.; González, D.; Probanza, A. Bio-Mercury Remediation Suitability Index: A Novel Proposal That Compiles the PGPR Features of Bacterial Strains and Its Potential Use in Phytoremediation. Int. J. Environ. Res. Public. Health 2021, 18, 4213. [Google Scholar] [CrossRef] [PubMed]
- Durand, A.; Maillard, F.; Alvarez-Lopez, V.; Guinchard, S.; Bertheau, C.; Valot, B.; Blaudez, D.; Chalot, M. Bacterial Diversity Associated with Poplar Trees Grown on a Hg-Contaminated Site: Community Characterization and Isolation of Hg-Resistant Plant Growth-Promoting Bacteria. Sci. Total Environ. 2018, 622–623, 1165–1177. [Google Scholar] [CrossRef]
- Crump, K.; Crouch, E.; Zelterman, D.; Crump, C.; Haseman, J. Accounting for Multiple Comparisons in Statistical Analysis of the Extensive Bioassay Data on Glyphosate. Toxicol. Sci. 2020, 175, 156–167. [Google Scholar] [CrossRef]
- Ogunbiyi, O.D.; Akamo, D.O.; Oluwasanmi, E.E.; Adebanjo, J.; Isafiade, B.A.; Ogunbiyi, T.J.; Alli, Y.A.; Ayodele, D.T.; Oladoye, P.O. Glyphosate-Based Herbicide: Impacts, Detection, and Removal Strategies in Environmental Samples. Groundw. Sustain. Dev. 2023, 22, 100961. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.A.; Calvo-Magro, E.; Valentine, A. Benefits of the Symbiotic Association of Shrubby Legumes for the Rehabilitation of Degraded Soils under Mediterranean Climatic Conditions. Land Degrad. Dev. 2016, 27, 395–405. [Google Scholar] [CrossRef]
- Mohy-Ud-Din, W.; Akhtar, M.J.; Bashir, S.; Asghar, H.N.; Nawaz, M.F.; Chen, F. Isolation of Glyphosate-Resistant Bacterial Strains to Improve the Growth of Maize and Degrade Glyphosate under Axenic Condition. Agriculture 2023, 13, 886. [Google Scholar] [CrossRef]
- Saeed, M.; Ilyas, N.; Bibi, F.; Jayachandran, K.; Dattamudi, S.; Elgorban, A.M. Biodegradation of PAHs by Bacillus Marsiflavi, Genome Analysis and Its Plant Growth Promoting Potential. Environ. Pollut. 2022, 292, 118343. [Google Scholar] [CrossRef] [PubMed]
- Ambust, S.; Das, A.J.; Kumar, R. Bioremediation of Petroleum Contaminated Soil through Biosurfactant and Pseudomonas Sp. SA3 Amended Design Treatments. Curr. Res. Microb. Sci. 2021, 2, 100031. [Google Scholar] [CrossRef] [PubMed]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Satinder, K.B. Shelf-Life of Biofertilizers: An Accord between Formulations and Genetics. J. Biofertilizers Biopestic. 2012, 3, 1000e109. [Google Scholar] [CrossRef]
- Denaya, S.; Yulianti, R.; Pambudi, A.; Effendi, Y. Novel Microbial Consortium Formulation as Plant Growth Promoting Bacteria (PGPB) Agent. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012030. [Google Scholar] [CrossRef]
- Remans, R.; Ramaekers, L.; Schelkens, S.; Hernandez, G.; Garcia, A.; Reyes, J.L.; Mendez, N.; Toscano, V.; Mulling, M.; Galvez, L.; et al. Effect of Rhizobium–Azospirillum Coinoculation on Nitrogen Fixation and Yield of Two Contrasting Phaseolus Vulgaris L. Genotypes Cultivated across Different Environments in Cuba. Plant Soil 2008, 312, 25–37. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.J.; Dekkers, L.C. What Makes Pseudomonas Bacteria Rhizosphere Competent? Environ. Microbiol. 1999, 1, 9–13. [Google Scholar] [CrossRef]
- Mawarda, P.C.; Le Roux, X.; Dirk Van Elsas, J.; Salles, J.F. Deliberate Introduction of Invisible Invaders: A Critical Appraisal of the Impact of Microbial Inoculants on Soil Microbial Communities. Soil Biol. Biochem. 2020, 148, 107874. [Google Scholar] [CrossRef]
- Mallon, C.A.; Elsas, J.D.V.; Salles, J.F. Microbial Invasions: The Process, Patterns, and Mechanisms. Trends Microbiol. 2015, 23, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, M.; Dechesne, A.; Albrechtsen, H.-J.; Smets, B.F. Stochastic Processes Govern Invasion Success in Microbial Communities When the Invader Is Phylogenetically Close to Resident Bacteria. ISME J. 2018, 12, 2748–2756. [Google Scholar] [CrossRef]
- Liu, X.; Le Roux, X.; Salles, J.F. The Legacy of Microbial Inoculants in Agroecosystems and Potential for Tackling Climate Change Challenges. iScience 2022, 25, 103821. [Google Scholar] [CrossRef]
- Moore, J.A.M.; Abraham, P.E.; Michener, J.K.; Muchero, W.; Cregger, M.A. Ecosystem Consequences of Introducing Plant Growth Promoting Rhizobacteria to Managed Systems and Potential Legacy Effects. New Phytol. 2022, 234, 1914–1918. [Google Scholar] [CrossRef]
- Keswani, C.; Prakash, O.; Bharti, N.; Vílchez, J.I.; Sansinenea, E.; Lally, R.D.; Borriss, R.; Singh, S.P.; Gupta, V.K.; Fraceto, L.F.; et al. Re-Addressing the Biosafety Issues of Plant Growth Promoting Rhizobacteria. Sci. Total Environ. 2019, 690, 841–852. [Google Scholar] [CrossRef]
- Martínez-Hidalgo, P.; Maymon, M.; Pule-Meulenberg, F.; Hirsch, A.M. Engineering Root Microbiomes for Healthier Crops and Soils Using Beneficial, Environmentally Safe Bacteria. Can. J. Microbiol. 2019, 65, 91–104. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-Mediated Induction of Systemic Resistance and Physiochemical Alterations in Plants against the Pathogens: Current Perspectives. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef]
PGPB | Plant Name | PGPB Mechanisms | Application Method * | Role of PGPB | Reference |
---|---|---|---|---|---|
Brevibacterium casei Pseudomonas oryzihabitans Bacillus aryabhattai | Salicornia europaea |
| Seed and soil inoculation (V, F) |
| [24] |
Bacillus spp. | Solanum lycopersicum |
| Seed inoculation (Ghouse) |
| [25] |
Azospirillum brasilense | Zea mays L. |
| Seed and/or foliar spray inoculation (Ghouse, F) |
| [26] |
Bacillus spp. Pseudomonas spp. Streptomyces spp. | Z. mays L. |
| Seed inoculation (F) |
| [27] |
Rhizobium tropici Azospirillum brasilense | Phaseolus vulgaris L. |
| Seed and/or foliar spray inoculation (F) |
| [28] |
Bacillus subtilis Bacillus amyloliquefaciens Bacillus megaterium Bacillus licheniformis | S. lycopersicum L. |
| Soil inoculation (F) |
| [29] |
Enterobacter spp. Pseudomonas spp. | S. lycopersicum L. |
| Seed and soil inoculation (V) |
| [30] |
Azospirillum brasilense | Z. mays L. |
| Seed inoculation (F) |
| [31] |
Azospirillum spp. | Solanum tuberosum |
| Tuber Inoculation (Ghouse, F) |
| [32] |
Bacillus circulans (GN03) | Cotton (Gossypium hirsutum) |
| Soil inoculation (Ghouse) | Accumulation of
| [33] |
Azotobacter vinelandii (encapsulated in alginate-Na beads) | S. lycopersicum L. |
| Soil inoculation (Ghouse) |
| [34] |
Rhizobium (SP20, N8, N9, G56, G58, B02) |
Cotton (Gossypium hirsutum) |
| Soil inoculation (Ghouse) |
| [35] |
B. subtilis MBI600 | Lycopersicum esculentum |
| Soil inoculation (V, planta) |
| [36] |
PGPB | Plant Name | PGPB Mechanisms | Application Method * | Plant Response | Reference |
---|---|---|---|---|---|
Providencia rettgeri | Hordeum vulgare L. |
| Seed inoculation (Ghouse) |
| [102] |
Bacillus cereus L90 | Juglans regia |
| Soil inoculation (Ghouse) |
| [103] |
Bacillus velenenzis Bacillus cereus Pseudomonas baietica Staphylococcus pasteuri | Triticum aestivum L. |
| Seed inoculation (Ghouse) |
| [93] |
Bacillus megaterium Bacillus licheniformis | T. aestivum L. |
| Seed inoculation (V, Ghouse) |
| [94] |
Pseudomonas aeruginosa Enterobacter cloacae Achromobacter xylosoxidans Leclercia adecarboxylata | Z. mays L. |
| Seed inoculation (V) |
| [104] |
Pseudomonas azotoformans | T. aestivum L. |
| Seed inoculation (Gchamber) |
| [105] |
Pseudomonas spp. Serratia marcescens | T. aestivum L. |
| Seed inoculation (Ghouse) |
| [106] |
Pseudomonas pseudoalcaligenes | Z. mays L. |
| Seed inoculation (V, Ghouse) |
| [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racioppo, A.; d’Amelio, A.; De Santis, A.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy. Agronomy 2023, 13, 2983. https://doi.org/10.3390/agronomy13122983
Racioppo A, d’Amelio A, De Santis A, Bevilacqua A, Corbo MR, Sinigaglia M. Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy. Agronomy. 2023; 13(12):2983. https://doi.org/10.3390/agronomy13122983
Chicago/Turabian StyleRacioppo, Angela, Annalisa d’Amelio, Alessandro De Santis, Antonio Bevilacqua, Maria Rosaria Corbo, and Milena Sinigaglia. 2023. "Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy" Agronomy 13, no. 12: 2983. https://doi.org/10.3390/agronomy13122983
APA StyleRacioppo, A., d’Amelio, A., De Santis, A., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2023). Potential Use of Plant Growth-Promoting Bacteria to Enhance Growth and Soil Fertility in Marginal Areas: Focus on the Apulia Region, Italy. Agronomy, 13(12), 2983. https://doi.org/10.3390/agronomy13122983