Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and EOs Extraction and Characterization
2.2. Phytotoxicity of the EOs against Target Weeds
2.2.1. Germination Test
2.2.2. Seedling Early Growth Test
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of the EOs
3.2. Phytotoxicity of the EOs against Target Weeds
3.2.1. Phytotoxic Effect on Seed Germination
3.2.2. Phytotoxic Effect on Seedlings’ Early Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Pesticides Use. Available online: https://www.fao.org/faostat/en/#data/RP (accessed on 10 May 2024).
- Fried, G.; Chauvel, B.; Reynaud, P.; Sache, I. Decreases in crop production by non-native weeds, pests and pathogens. In Impact of Biological Invasions on Ecosystem Services; Vilà, M., Hulme, P.E., Eds.; Springer: Cham, Switzerland, 2017; pp. 83–101. [Google Scholar]
- Stewart, C.N., Jr. Becoming weeds. Nat. Genet. 2017, 49, 654–655. [Google Scholar] [CrossRef] [PubMed]
- Byron, M.; Treadwell, D.; Dittmar, P. Weeds as reservoirs of plant pathogens affecting economically important crops. EDIS 2019, 5, 7. [Google Scholar] [CrossRef]
- Müller-Schärer, H.; Collins, A.R. Integrated weed management. In Managing Soils and Terrestrial Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 439–447. [Google Scholar]
- Liu, J.; Zhou, J.H.; Guo, Q.N.; Ma, L.Y.; Yang, H. Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds. Chemosphere 2021, 262, 127830. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.Y.; He, B.; Yang, J.F.; Lin, H.L.; Yang, W.C.; Wu, Q.Y.; Li, Q.X.; Yang, G.F. Where are the new herbicides? Pest Manag. Sci. 2021, 77, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Zhou, L.; Wang, X.; Luo, S.; Li, J.; Xiao, H.; Zhang, X.; Xiang, T.; Feng, S.; Chen, T.; et al. Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy 2021, 11, 1115. [Google Scholar] [CrossRef]
- Ntalli, N.; Koliopoulos, G.; Giatropoulos, A.; Menkissoglu-Spiroudi, U. Plant secondary metabolites against arthropods of medical importance. Phytochem. Rev. 2019, 18, 1255–1275. [Google Scholar] [CrossRef]
- Kanissery, R.; Fenn, R.; Gairhe, B.; Kadyampakeni, D. Understanding the fate and Persistence of herbicides in soils. Citrus Ind News, 3 August 2020. [Google Scholar]
- Heap. The International Survey of Herbicide Resistant Weeds. Available online: https://www.weedscience.org/Home.aspx (accessed on 7 May 2024).
- Araniti, F.; Miras-Moreno, B.; Lucini, L.; Landi, M.; Abenavoli, M.R. Metabolomic, proteomic and physiological insights into the potential mode of action of thymol, a phytotoxic natural monoterpenoid phenol. Plant Physiol. Biochem. 2020, 153, 141–153. [Google Scholar] [CrossRef]
- Assaeed, A.; Elshamy, A.; El Gendy, A.E.N.; Dar, B.; Al-Rowaily, S.; Abd-ElGawad, A. Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect on weeds. Agronomy 2020, 10, 399. [Google Scholar] [CrossRef]
- Casella, F.; Vurro, M.; Valerio, F.; Perrino, E.V.; Mezzapesa, G.N.; Boari, A. Phytotoxic effects of essential oils from six Lamiaceae species. Agronomy 2023, 13, 257. [Google Scholar] [CrossRef]
- Fotsing, Y.S.F.; Kezetas, B. Terpenoids as important bioactive constituents of essential oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; De Oliveira, M.S., Da Costa, W.A., Eds.; IntechOpen: London, UK, 2020; pp. 1–15. [Google Scholar]
- Zeynep, U.; Menderes, C.; Huseyin, I.; Murat, Y. Antimicrobial and herbicidal activities of the essential oil from the Mediterranean Thymus eigii. J. Essent. Oil Bear. Plants 2018, 21, 214–222. [Google Scholar] [CrossRef]
- Zhou, S.; Han, C.; Zhang, C.; Kuchkarova, N.; Wei, C.; Zhang, C.; Shao, H. Allelopathic, phytotoxic, and insecticidal effects of Thymus proximus Serg. essential oil and its major constituents. Front. Plant Sci. 2021, 12, 689875. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; 469p. [Google Scholar]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Liu, M.; Childs, M.; Loos, M.; Taylor, A.; Smart, L.B.; Abbaspourrad, A. The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocoll. 2023, 134, 108085. [Google Scholar] [CrossRef]
- Abd-El Gawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharth, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef]
- Franco, C.D.J.P.; Ferreira, O.O.; Cruz, J.N.; Varela, E.L.P.; de Moraes, Â.A.B.; Nascimento, L.D.D.; Cascaes, M.M.; Souza Filho, A.P.D.S.; Lima, R.R.; Percário, S.; et al. Phytochemical profile and herbicidal (phytotoxic), antioxidants potential of essential oils from Calycolpus goetheanus (Myrtaceae) specimens, and in silico study. Molecules 2022, 27, 4678. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Chen, Q.; Miao, Y.; Peng, Z.; Huang, B.; Guo, L.; Liu, D.; Du, H. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Sci. Rep. 2021, 11, 4303. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species. Sci. World J. 2014, 1, 676242. [Google Scholar] [CrossRef]
- Shedden, K. Generalized Linear Models; Creative Commons Attribution Share Alike 3.0 License; Department of Statistics, University of Michigan: Ann Arbor, MI, USA, 2015; 35p. [Google Scholar]
- Hazzit, M.; Baaliouamer, A. Essential oil composition of Thymus algeriensis Boiss. et Reut. and Thymus numidicus Poiret from Algeria. Mozzo Riv. Ital. EPPOS 2007, 43, 11–18. [Google Scholar]
- Giordani, R.; Hadef, Y.; Kaloustian, J. Compositions and antifungal activities of essential oils of some Algerian aromatic plants. Fitoterapia 2008, 79, 199–203. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Veríssimo, A.R.; Faleiro, M.L.; Miguel, M.G. Chemical composition and biological activities of Algerian Thymus oils. Food Chem. 2009, 116, 714–721. [Google Scholar] [CrossRef]
- Kouache, B.; Brada, M.; Saadi, A.; Fauconnier, M.L.; Lognay, G.; Heuskin, S. Chemical composition and acaricidal activity of Thymus algeriensis essential oil against Varroa destructor. Nat. Prod. Commun. 2017, 12, 1934578X1701200138. [Google Scholar] [CrossRef]
- Zouaoui, N.; Chenchouni, H.; Bouguerra, A.; Massouras, T.; Barkat, M. Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS J. 2020, 18, 19–28. [Google Scholar] [CrossRef]
- Ouakouak, H.; Benarfa, A.; Messaoudi, M.; Begaa, S.; Sawicka, B.; Benchikha, N.; Simal-Gandara, J. Biological properties of essential oils from Thymus algeriensis Boiss. Plants 2021, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Adouane, S.; Mehaoua, M.S.; Bouatrous, Y.; Tudela, J.; Flamini, G.; Mechaala, S. Natural insecticides from native plants of the Mediterranean basin and their activity for the control of the date moth Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). J. Plant Dis. Prot. 2022, 129, 775–782. [Google Scholar] [CrossRef]
- Souadia, A. Chemical composition and antioxidant activity of Thymus ciliatus (Desf.) Benth. essential oils of Algeria. Nat. Prod. Commun. 2022, 17, 1934578X221080337. [Google Scholar] [CrossRef]
- Zatout, A.; Djibaoui, R.; Flamini, G.; Ascrizzi, R.; Benbrahim, C.; Mazari, H.E.; Benkredda, F.; Mechaala, S.; Kassah-Laouar, A. Chemical composition analysis of essential oils of four plants from Aurès region of Algeria and their antibacterial and antibiofilm activities against coagulase-negative staphylococci. Afr. J. Clin. Exp. Microbiol. 2022, 23, 278–289. [Google Scholar] [CrossRef]
- Benomari, F.Z.; Sarazin, M.; Chaib, D.; Pichette, A.; Boumghar, H.; Boumghar, Y.; Djabou, N. Chemical variability and chemotype concept of essential oils from Algerian wild plants. Molecules 2023, 28, 4439. [Google Scholar] [CrossRef]
- György, Z.; Incze, N.; Pluhár, Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochem. Syst. Ecol. 2020, 92, 104118. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crop. Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef]
- Torras, J.; Grau, M.D.; López, J.F.; de las Heras, F.X.C. Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Förster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef]
- Alizadeh, A.; Alizadeh, O.; Amari, G.; Zare, M. Essential oil composition, total phenolic content, antioxidant activity and antifungal properties of Iranian Thymus daenensis subsp. daenensis Celak. as in influenced by ontogenetical variation. J. Essent. Oil Bear. Plants 2013, 16, 59–70. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Salgueiro, L.; Miguel, M.G.; Faleiro, M.L. Portuguese Thymbra and Thymus species volatiles: Chemical composition and biological activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef] [PubMed]
- Vaiciulyte, V.; Loziene, K.; Svediene, J.; Raudoniene, V.; Paskevicius, A. α-Terpinyl acetate: Occurrence in essential oils bearing Thymus pulegioides, phytotoxicity, and antimicrobial effects. Molecules 2021, 26, 1065. [Google Scholar] [CrossRef] [PubMed]
- Synowiec, A.; Kalemba, D.; Drozdek, E.; Bocianowski, J. Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. J. Pest Sci. 2017, 90, 407–419. [Google Scholar] [CrossRef]
- Ali, I.B.; Chaouachi, M.; Bahri, R.; Chaieb, I.; Boussaid, M.; Harzallah-Skhiri, F. Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis Boiss. et Reut. Ind. Crop. Prod. 2015, 77, 631–639. [Google Scholar] [CrossRef]
- Linhart, Y.B.; Gauthier, P.; Keefover-Ring, K.; Thompson, J.D. Variable phytotoxin effects of Thymus vulgaris (Lamiaceae) terpenes on associated species. Int. J. Plant Sci. 2015, 176, 20–30. [Google Scholar] [CrossRef]
- Benchaa, S.; Hazzit, M.; Zermane, N.; Abdelkrim, H. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria. J. Essent. Oil Res. 2019, 31, 335–346. [Google Scholar] [CrossRef]
- Ghasemi, G.; Alirezalu, A.; Ghosta, Y.; Jarrahi, A.; Safavi, S.A.; Abbas-Mohammadi, M.; Barba, F.J.; Munekata, P.E.; Domínguez, R.; Lorenzo, J.M. Composition, antifungal, phytotoxic, and insecticidal activities of Thymus kotschyanus essential oil. Molecules 2020, 25, 1152. [Google Scholar] [CrossRef]
- Saleh, I.; Abd-ElGawad, A.; El Gendy, A.N.; Aty, A.A.; Mohamed, T.; Kassem, H.; Aldorsi, F.; Elshamy, A.; Hegazy, M.E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants 2020, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Portuguez-García, M.P.; Agüero-Alvarado, R.; González-Lutz, M.I. Herbicidal activity of three natural products on four weed species. Agron. Mesoam. 2021, 32, 991–999. [Google Scholar] [CrossRef]
- Amri, I.; Hamrouni, L.; Hanana, M.; Gargouri, S.; Fezzani, T.; Jamoussi, B. Chemical composition, physico-chemical properties, antifungal and herbicidal activities of Pinus halepensis Miller essential oils. Biol. Agric. Hortic. 2013, 29, 91–106. [Google Scholar] [CrossRef]
- Maldaner, J.; Steffen, G.P.K.; Missio, E.L.; Saldanha, C.W.; De Morais, R.M.; Steffen, R.B. Rue and Brazilian peppertree essential oils inhibit the germination and initial development of the invasive plant lovegrass. Int. J. Environ. Stud. 2020, 77, 255–263. [Google Scholar] [CrossRef]
- Araniti, F.; Lupini, A.; Sorgonà, A.; Conforti, F.; Marrelli, M.; Statti, G.A.; Menichini, F.; Abenavoli, M.R. Allelopathic potential of Artemisia arborescens: Isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays. Nat. Prod. Res. 2013, 27, 880–888. [Google Scholar] [CrossRef]
Species | Habitat | Code | Collecting Area | Geographical Localization | Altitude |
---|---|---|---|---|---|
T. algeriensis Boiss. et Reut. | Endemic wild species | T1 | Chrea National Park, Blida (Algeria) | N 36°27′08.5″ E 002°54′47.2″ | 1465 m |
T. ciliatus Desf. subsp. coloratus (Boiss. et Reut.) Batt. | Endemic wild species | T2 | Hammam Melouane-Chrea National Park, Blida (Algeria) | N 36°28′12″ E 003°00′36″ | 211 m |
T. vulgaris L. cultivar Varico 3 | Cultivated hybrid | T3 | Policoro, Basilicata (Italy) | 40°10′28″ N 16°39′26″ E | 15 m |
T. vulgaris L. ecotype Fasano | Cultivated local species | T4 |
N° | Compound | KI 1 | KI 2 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|
01 | santolina triene | 908 | 910 | 0.36 | -- | -- | -- |
02 | trycyclene | 926 | 924 | 0.47 | -- | -- | -- |
03 | α-thujene | 926 | 924 | -- | 0.20 | 0.48 | 0.66 |
04 | α-pinene | 936 | 940 | 19.73 | 0.21 | 1.03 | 1.15 |
05 | camphene | 954 | 950 | 8.64 | 0.29 | 0.88 | 0.93 |
06 | verbenene | 967 | 968 | 0.34 | -- | 0.05 | -- |
07 | sabinene | 975 | 975 | 0.87 | 0.05 | -- | -- |
08 | β-pinene | 979 | 980 | 4.37 | 0.14 | 0.21 | -- |
09 | myrcene | 991 | 992 | 2.77 | 0.36 | 0.52 | 1.35 |
10 | α-terpinene | 1017 | 1012 | 0.25 | 0.05 | 0.13 | 0.24 |
11 | p-cymene | 1022 | 1021 | 0.30 | 0.13 | 35.63 | 23.85 |
12 | limonene | 1029 | 1026 | 1.95 | 1.36 | 0.79 | 1.33 |
13 | 1,8 cineole | 1031 | 1028 | 2.99 | 0.16 | 3.53 | 3.30 |
14 | β(E)-ocymene | 1050 | 1047 | 1.17 | 0.07 | -- | -- |
15 | γ-terpinene | 1059 | 1058 | 0.54 | 0.98 | 2.35 | 10.36 |
16 | cis-sabinene hydrate | 1070 | 1067 | 0.45 | 0.10 | -- | -- |
17 | terpinolene | 1088 | 1088 | 0.47 | -- | 0.48 | 0.17 |
18 | linalool | 1096 | 1103 | 3.09 | 93.06 | 2.57 | 2.54 |
19 | 1-octen-3γlacetate | 1110 | 1116 | 0.43 | -- | -- | -- |
20 | α-campholenal | 1125 | 1125 | 0.99 | -- | -- | -- |
21 | camphor | 1143 | 1142 | 4.32 | 0.38 | 1.66 | 1.20 |
22 | trans-verbenol | 1144 | 1145 | 2.61 | -- | -- | -- |
23 | pinocarvone | 1162 | 1158 | 0.56 | -- | -- | -- |
24 | borneol | 1165 | 1166 | 11.31 | -- | 1.47 | 1.22 |
25 | ρ-mentha-1,5 dien-8-ol | 1170 | 1174 | 1.72 | -- | 1.76 | 1.65 |
26 | terpin-4-ol | 1177 | 1182 | 0.76 | -- | -- | -- |
27 | α-terpineol | 1189 | 1187 | 0.96 | -- | -- | -- |
28 | myrtenal | 1193 | 1190 | 0.90 | -- | -- | -- |
29 | verbenone | 1204 | 1215 | 0.73 | -- | -- | -- |
30 | isobonyl formate | 1233 | 1243 | 0.33 | -- | -- | -- |
31 | thymol methyl ester | 1235 | 1234 | -- | -- | 1.97 | 1.48 |
32 | linalool acetate | 1257 | 1262 | 3.96 | -- | -- | -- |
33 | isobornyl acetate | 1285 | 1289 | 5.28 | -- | -- | -- |
34 | thymol | 1290 | 1293 | -- | 0.55 | 20.35 | 21.77 |
35 | carvacrol | 1298 | 1300 | -- | -- | 11.76 | 18.15 |
36 | trans-carvyl acetate | 1328 | 1337 | 0.11 | -- | -- | -- |
37 | α-terpenyl acetate | 1350 | 1353 | 13.21 | -- | -- | -- |
38 | α-copaene | 1376 | 1370 | 0.49 | -- | -- | -- |
39 | β-bourbonene | 1384 | 1376 | 0.22 | -- | -- | -- |
40 | β-cedrene | 1418 | 1404 | 0.51 | 1.98 | 7.69 | 6.56 |
41 | germacrene | 1480 | 1475 | 1.58 | -- | -- | -- |
42 | Δ-cadinene | 1524 | 1530 | 0.26 | -- | -- | -- |
43 | caryophyllene oxide | 1581 | 1573 | -- | -- | 5.57 | 2.09 |
Monoterpene hydrocarbons | 42.23 | 3.77 | 42.85 | 40.04 | |||
Oxygen-containing monoterpenes | 54.71 | 94.18 | 43.89 | 51.31 | |||
Sesquiterpene hydrocarbons | 3.06 | 1.98 | 7.69 | 6.56 | |||
Oxygen-containing sesquiterpenes | - | - | 5.57 | 2.09 | |||
Others | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukhalfa, R.; Ruta, C.; Messgo-Moumene, S.; Calabrese, G.J.; Argentieri, M.P.; De Mastro, G. Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides. Agronomy 2024, 14, 2077. https://doi.org/10.3390/agronomy14092077
Boukhalfa R, Ruta C, Messgo-Moumene S, Calabrese GJ, Argentieri MP, De Mastro G. Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides. Agronomy. 2024; 14(9):2077. https://doi.org/10.3390/agronomy14092077
Chicago/Turabian StyleBoukhalfa, Rym, Claudia Ruta, Saida Messgo-Moumene, Generosa J. Calabrese, Maria Pia Argentieri, and Giuseppe De Mastro. 2024. "Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides" Agronomy 14, no. 9: 2077. https://doi.org/10.3390/agronomy14092077
APA StyleBoukhalfa, R., Ruta, C., Messgo-Moumene, S., Calabrese, G. J., Argentieri, M. P., & De Mastro, G. (2024). Valorization of Mediterranean Species of Thyme for the Formulation of Bio-Herbicides. Agronomy, 14(9), 2077. https://doi.org/10.3390/agronomy14092077