The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review
Abstract
:1. Introduction
2. Grassland Management
2.1. Grassland Use
2.2. Intensity of Grassland Management
2.3. Conventional versus Organic Farming
3. Application of Organic Fertilizers
3.1. Organic Fertilizer Properties
- Slurry—a combination of the liquid and solid fractions of excreta;
- Semi-solid manure—mainly the feces separated into liquid and solid fractions;
- Solid manure, also called farmyard manure—feces combined with litter or straw [68].
3.2. Application Techniques and Their Effects
3.3. Timing of Application
4. Plant Properties
4.1. Yield
4.2. Quality
4.3. Plant Composition and Diversity
5. Soil Chemical Properties
5.1. Soil Carbon (C)
5.2. Soil Nitrogen (N)
5.3. Other Soil Nutrients
5.3.1. Phosphorus (P)
5.3.2. Potassium (K)
5.3.3. Calcium (Ca) and Magnesium (Mg)
5.4. Soil pH Value
5.5. Soil Bulk Density
5.6. Soil Porosity
5.7. Soil Hydraulic Properties
5.8. Size of Soil Aggregates
6. Soil Biological Properties
6.1. Soil Organisms
6.2. Changes in Microbial and Enzyme Activity after Manure Application
7. Summary and Conclusions
8. Recommendation
- The use of organic fertilizers should be given priority over the use of mineral fertilizers, in accordance with legal requirements, so as not to double the burden on the environment.
- Mineral fertilizers should be used only when necessary and as an additional source of nutrients.
- Manure should be used in a way that maximizes its usefulness as a valuable fertilizer and minimizes its negative impact on the environment.
- Manure fertilization should be based on up-to-date data on the amount and composition of all relevant nutrients, especially nitrogen and phosphorus.
- To avoid over-fertilization and the loss of valuable nutrients through leaching or greenhouse gas emissions, soil status should be known, at least for nitrogen and phosphorus.
- Fertilization planning should be based on soil data and long-term yield data, which determine the actual nutrient demand of plants.
- Organic fertilizers should be applied only during the growing season when plants have high nutrient requirements.
- Nutrient losses due to leaching and greenhouse gas emissions must be avoided by using appropriate application techniques, such as broad band spreaders or injection techniques.
- Organic fertilizers should be used instead of mineral fertilizers to increase carbon inputs and thus improve many soil parameters, which at the same time increases soil fertility and resilience to climate change impacts such as droughts or heavy rainfall.
- Organic fertilizers should be applied in a manner and at a rate that promotes active soil life.
- Livestock densities should be adapted so that the positive effects of excreta on soil and plant parameters and their diversity are not negated by trampling and increased biomass decomposition.
- Knowledge transfer between scientists, policy makers, and farmers should be intensified at local, national, and global levels.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Crop Production in EU Standard Humidity (from 2000 onwards): Utilised Agricultural Area by Categories; Online Data Code: TAG00025, 2021. Available online: https://ec.europa.eu (accessed on 23 October 2023).
- Gilhaus, K.; Boch, S.; Fischer, M.; Hölzel, N.; Kleinebecker, T.; Prati, D.; Rupprecht, D.; Schmitt, B.; Klaus, V.H. Grassland management in Germany: Effects on plant diversity and vegetation composition. Tuexenia 2017, 37, 379–397. [Google Scholar] [CrossRef]
- Dengler, J.; Birge, T.; Bruun, H.H.; Rašomavičius, V.; Rūsiņa, S.; Sickel, H. Grasslands of Northern Europe and the Baltic States. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 689–702. ISBN 9780128160978. [Google Scholar]
- DiPaolo, D.A. Grassland and Shrublands—An Overview. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 414–423. ISBN 9780128160978. [Google Scholar]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Ceotto, E. Grasslands for bioenergy production. A review. Agron. Sustain. Dev. 2008, 28, 47–55. [Google Scholar] [CrossRef]
- Kizeková, M.; Hopkins, A.; Kanianska, R.; Makovníková, J.; Pollák, Š.; Pálka, B. Changes in the area of permanent grassland and its implications for the provision of bioenergy: Slovakia as a case study. Grass Forage Sci. 2018, 73, 218–232. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.N.; Popova, I.E.; Hammel, J.E.; Morra, M.J. Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns. J. Environ. Qual. 2019, 48, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Tian, H.; Pan, S.; Dangal, S.R.S.; Chen, J.; Chang, J.; Lu, Y.; Skiba, U.M.; Tubiello, F.N.; Zhang, B. Increased nitrogen enrichment and shifted patterns in the world’s grassland: 1860–2016. Earth Syst. Sci. Data 2019, 11, 175–187. [Google Scholar] [CrossRef]
- Kidd, J.; Manning, P.; Simkin, J.; Peacock, S.; Stockdale, E. Impacts of 120 years of fertilizer addition on a temperate grassland ecosystem. PLoS ONE 2017, 12, e0174632. [Google Scholar] [CrossRef]
- Heyburn, J.; McKenzie, P.; Crawley, M.J.; Fornara, D.A. Effects of grassland management on plant C:N:P stoichiometry: Implications for soil element cycling and storage. Ecosphere 2017, 8, e01963. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Janzen, R.A.; McGill, W.B.; Leonard, J.J.; Jeffrey, S.R. Manure as a resource—Ecological and economic considerations in balance. Trans. ASAE 1999, 42, 1261–1274. [Google Scholar] [CrossRef]
- van der Meer, H.G. Optimising manure management for GHG outcomes. Aust. J. Exp. Agric. 2008, 48, 38. [Google Scholar] [CrossRef]
- Lewu, F.B.; Volova, T.; Thomas, S.; Rakhimol, K.R. (Eds.) Controlled Release Fertilizers for Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2021; ISBN 978-0-12-819555-0. [Google Scholar]
- Shaji, H.; Chandran, V.; Mathew, L. Chapter 13—Organic Fertilizers as a Route to Controlled Release of Nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. ISBN 978-0-12-819555-0. [Google Scholar]
- Henuk, Y.; Dingle, J. Poultry manure: Source of fertilizer, fuel and feed. World’s Poult. Sci. J. 2003, 59, 350–360. [Google Scholar] [CrossRef]
- van Middelkoop, J.C.; van der Salm, C.; Ehlert, P.A.I.; de Boer, I.J.M.; Oenema, O. Does balanced phosphorus fertilisation sustain high herbage yields and phosphorus contents in alternately grazed and mown pastures? Nutr. Cycl. Agroecosystems 2016, 106, 93–111. [Google Scholar] [CrossRef]
- Pecio, A.; Jarosz, Z. Long-term effects of soil management practices on selected indicators of chemical soil quality. Acta Agrobot. 2016, 69, 1–21. [Google Scholar] [CrossRef]
- Dong, S.; Sui, B.; Shen, Y.; Meng, H.; Zhao, L.; Ding, J.; Zhou, H.; Zhang, X.; Cheng, H.; Wang, J. Investigation and analysis of the linkage mechanism and whole process cost of livestock manure organic fertilizer. Int. J. Agric. Biol. Eng. 2020, 13, 223–227. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Pu, S.; Blagodatskaya, E.; Kuzyakov, Y.; Razavi, B.S. Impact of manure on soil biochemical properties: A global synthesis. Sci. Total Environ. 2020, 745, 141003. [Google Scholar] [CrossRef]
- Pain, B.F.; Misselbrook, T.H.; Clarkson, C.R.; Rees, Y.J. Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland. Biol. Wastes 1990, 34, 259–267. [Google Scholar] [CrossRef]
- Prins, W.H.; Snijders, P.J.M. Negative Effects of Animal Manure on Grassland Due to Surface Spreading and Injection. In Animal Manure on Grassland and Fodder Crops. Fertilizer or Waste? Proceedings of an International Symposium of the European Grassland Federation, Wageningen, The Netherlands, 31 August–3 September 1987; van der Meer, H.G., Unwin, R.J., van Dijk, T.A., Ennik, G.C., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 119–135. ISBN 978-94-009-3659-1. [Google Scholar]
- Sindhöj, E.; Krysztoforski, M.; Kuka, K.; Luostarinen, S.; Melnalksne, Z.; Mjöfors, K.; Riiko, K.; Tamm, K.; Ylivainio, K.; Sarvi, M. Technologies and Management Practices for Sustainable Manure Use in the Baltic Sea Region; RISE Research Institutes of Sweden: Upsala, Sweden, 2020. [Google Scholar]
- Soussana, J.-F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Jones, S.K.; Rees, R.M.; Skiba, U.M.; Ball, B.C. Greenhouse gas emissions from a managed grassland. Glob. Planet. Chang. 2005, 47, 201–211. [Google Scholar] [CrossRef]
- Bicudo, J.R.; Goyal, S.M. Pathogens and manure management systems: A review. Environ. Technol. 2003, 24, 115–130. [Google Scholar] [CrossRef] [PubMed]
- van Eekeren, N.; de Boer, H.; Bloem, J.; Schouten, T.; Rutgers, M.; de Goede, R.; Brussaard, L. Soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers. Biol. Fertil. Soils 2009, 45, 595–608. [Google Scholar] [CrossRef]
- Schils, R.; Kok, I. Effects of cattle slurry manure management on grass yield. NJAS-Wagening. J. Life Sci. 2003, 51, 41–65. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; Abbink, G.W.; Termorshuizen, A.J.; Oenema, O. Relationships between soil fertility, herbage quality and manure composition on grassland-based dairy farms. Eur. J. Agron. 2014, 56, 9–18. [Google Scholar] [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Vogt, J.; Klaus, V.H.; Both, S.; Fürstenau, C.; Gockel, S.; Gossner, M.M.; Heinze, J.; Hemp, A.; Hölzel, N.; Jung, K.; et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 2019, 7, e36387. [Google Scholar] [CrossRef]
- Stybnarova, M.; Hakl, J.; Bilosova, H.; Micova, P.; Latal, O.; Pozdisek, J. Effect of cutting frequency on species richness and dry matter yield of permanent grassland after grazing cessation. Arch. Agron. Soil Sci. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Schrama, M.J.J.; Cordlandwehr, V.; Visser, E.J.W.; Elzenga, T.M.; de Vries, Y.; Bakker, J.P. Grassland cutting regimes affect soil properties, and consequently vegetation composition and belowground plant traits. Plant Soil 2013, 366, 401–413. [Google Scholar] [CrossRef]
- Dubeux, J.C.; Sollenberger, L.E. Nutrient Cycling in Grazed Pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–75. ISBN 9780128144749. [Google Scholar]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Mayel, S.; Jarrah, M.; Kuka, K. How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass Forage Sci. 2021, 76, 215–244. [Google Scholar] [CrossRef]
- Binnie, R.C.; Chestnutt, D.M.B. Effect of regrowth interval on the productivity of swards defoliated by cutting and grazing. Grass Forage Sci. 1991, 46, 343–350. [Google Scholar] [CrossRef]
- Drennan, M.J.; McGee, M. Performance of spring-calving beef suckler cows and their progeny to slaughter on intensive and extensive grassland management systems. Livest. Sci. 2009, 120, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Gasche, R.; Wang, N.; Lu, H.; Butterbach-Bahl, K.; Kiese, R. Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions. Biogeochemistry 2019, 145, 47–61. [Google Scholar] [CrossRef]
- Ammann, C.; Flechard, C.R.; Leifeld, J.; Neftel, A.; Fuhrer, J. The carbon budget of newly established temperate grassland depends on management intensity. Agric. Ecosyst. Environ. 2007, 121, 5–20. [Google Scholar] [CrossRef]
- Fornara, D.A.; Wasson, E.-A.; Christie, P.; Watson, C.J. Long-term nutrient fertilization and the carbon balance of permanent grassland: Any evidence for sustainable intensification? Biogeosciences 2016, 13, 4975–4984. [Google Scholar] [CrossRef]
- Metzger, C.M.H.; Heinichen, J.; Eickenscheidt, T.; Drösler, M. Impact of land-use intensity on the relationships between vegetation indices, photosynthesis and biomass of intensively and extensively managed grassland fens. Grass Forage Sci. 2017, 72, 50–63. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Zhao, L.; Wen, J.; Li, Q. Effects of grazing on the allocation of mass of soil aggregates and aggregate-associated organic carbon in an alpine meadow. PLoS ONE 2020, 15, e0234477. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Allard, V.; Newton, P.C.D.; Lieffering, M.; Clark, H.; Matthew, C.; Soussana, J.-F.; Gray, Y.S. Nitrogen cycling in grazed pastures at elevated CO2: N returns by ruminants. Glob. Chang. Biol. 2003, 9, 1731–1742. [Google Scholar] [CrossRef]
- Orr, R.J.; Griffith, B.A.; Champion, R.A.; Cook, J.E. Defaecation and urination behaviour in beef cattle grazing semi-natural grassland. Appl. Anim. Behav. Sci. 2012, 139, 18–25. [Google Scholar] [CrossRef]
- Schellberg, J.; Südekum, K.-H.; Gebbing, T. Effect of herbage on N intake and N excretion of suckler cows. Agron. Sustain. Dev. 2007, 27, 303–311. [Google Scholar] [CrossRef]
- Ondrášek, Ľ.; Čunderlík, J. Effects of organic and mineral fertilisers on biological properties of soil under seminatural grassland. Plant Soil Environ. 2008, 54, 329–335. [Google Scholar] [CrossRef]
- Ludvíková, V.; Pavlů, V.; Pavlů, L.; Gaisler, J.; Hejcman, M. Sward-height patches under intensive and extensive grazing density in an Agrostis capillaris grassland. Folia Geobot. 2015, 50, 219–228. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Chapman, P.J.; Jarvis, S.C.; Smith, R.V. Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use Manag. 1998, 14, 160–167. [Google Scholar] [CrossRef]
- Marsden, K.A.; Holmberg, J.A.; Jones, D.L.; Chadwick, D.R. Sheep urine patch N2O emissions are lower from extensively-managed than intensively-managed grasslands. Agric. Ecosyst. Environ. 2018, 265, 264–274. [Google Scholar] [CrossRef]
- Hanson, G.D.; Ford, S.A.; Parsons, R.L.; Cunningham, L.C.; Muller, L.D. Increasing Intensity of Pasture Use with Dairy Cattle: An Economic Analysis. J. Prod. Agric. 1998, 11, 175–179. [Google Scholar] [CrossRef]
- Conant, R.T.; Six, J.; Paustian, K. Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biol. Fertil. Soils 2003, 38, 386–392. [Google Scholar] [CrossRef]
- Hathaway-Jenkins, L.J.; Sakrabani, R.; Pearce, B.; Whitmore, A.P.; Godwin, R.J. A comparison of soil and water properties in organic and conventional farming systems in England. Soil Use Manag. 2011, 27, 133–142. [Google Scholar] [CrossRef]
- Klaus, V.H.; Hölzel, N.; Prati, D.; Schmitt, B.; Schöning, I.; Schrumpf, M.; Fischer, M.; Kleinebecker, T. Organic vs. conventional grassland management: Do 15N and 13C isotopic signatures of hay and soil samples differ? PLoS ONE 2013, 8, e78134. [Google Scholar] [CrossRef] [PubMed]
- Gisiger, L. Organic manuring of grassland*. Grass Forage Sci. 1950, 5, 63–79. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions. Biol. Fertil. Soils 2006, 43, 51–61. [Google Scholar] [CrossRef]
- Shand, C.A.; Coutts, G. The effects of sheep faeces on soil solution composition. Plant Soil 2006, 285, 135–148. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Chambers, B.J.; Smith, K.A. Nutrient composition of poultry manures in England and Wales. Bioresour. Technol. 1996, 58, 279–284. [Google Scholar] [CrossRef]
- Rieck-Hinz, A.M.; Miller, G.A.; Schafer, J.W. Nutrient Content of Dairy Manure from Three Handling Systems. J. Prod. Agric. 1996, 9, 82–86. [Google Scholar] [CrossRef]
- van der Stelt, B.; van Vliet, P.C.J.; Reijs, J.W.; Temminghoff, E.J.M.; van Riemsdijk, W.H. Effects of dietary protein and energy levels on cow manure excretion and ammonia volatilization. J. Dairy Sci. 2008, 91, 4811–4821. [Google Scholar] [CrossRef]
- Ziemer, C.J.; Kerr, B.J.; Trabue, S.L.; Stein, H.; Stahl, D.A.; Davidson, S.K. Dietary protein and cellulose effects on chemical and microbial characteristics of Swine feces and stored manure. J. Environ. Qual. 2009, 38, 2138–2146. [Google Scholar] [CrossRef]
- Latshaw, J.D.; Zhao, L. Dietary protein effects on hen performance and nitrogen excretion. Poult. Sci. 2011, 90, 99–106. [Google Scholar] [CrossRef]
- Rammer, C.; Lingvall, P. Influence of farmyard manure on the quality of grass silage. J. Sci. Food Agric. 1997, 75, 133–140. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Groves, S.J.; Chambers, B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol. 2005, 96, 135–143. [Google Scholar] [CrossRef]
- van der Ploeg, J.D.; Groot, J.; Verhoeven, F.; Lantinga, E.A. Interpretation of results from on-farm experiments: Manure-nitrogen recovery on grassland as affected by manure quality and application technique. 2. A sociological analysis. NJAS-Wagening. J. Life Sci. 2007, 54, 255–268. [Google Scholar] [CrossRef]
- Bourdin, F.; Sakrabani, R.; Kibblewhite, M.G.; Lanigan, G.J. Effect of slurry dry matter content, application technique and timing on emissions of ammonia and greenhouse gas from cattle slurry applied to grassland soils in Ireland. Agric. Ecosyst. Environ. 2014, 188, 122–133. [Google Scholar] [CrossRef]
- Huijsmans, J.; Hol, J.; Hendriks, M. Effect of application technique, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to grassland. NJAS-Wagening. J. Life Sci. 2001, 49, 323–342. [Google Scholar] [CrossRef]
- Groot, J.; van der Ploeg, J.D.; Verhoeven, F.; Lantinga, E.A. Interpretation of results from on-farm experiments: Manure-nitrogen recovery on grassland as affected by manure quality and application technique. 1. An agronomic analysis. NJAS-Wagening. J. Life Sci. 2007, 54, 235–254. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J. Predicting ammonia losses following the application of livestock manure to land. Bioresour. Technol. 2005, 96, 159–168. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Bhogal, A.; Rollett, A.; Taylor, M.; Williams, J.R. Precision application techniques reduce ammonia emissions following food-based digestate applications to grassland. Nutr. Cycl. Agroecosystems 2018, 110, 151–159. [Google Scholar] [CrossRef]
- Keidel, L.; Lenhart, K.; Moser, G.; Müller, C. Depth-dependent response of soil aggregates and soil organic carbon content to long-term elevated CO2 in a temperate grassland soil. Soil Biol. Biochem. 2018, 123, 145–154. [Google Scholar] [CrossRef]
- Häni, C.; Sintermann, J.; Kupper, T.; Jocher, M.; Neftel, A. Ammonia emission after slurry application to grassland in Switzerland. Atmos. Environ. 2016, 125, 92–99. [Google Scholar] [CrossRef]
- Rodhe, L.; Pell, M.; Yamulki, S. Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use Manag. 2006, 22, 229–237. [Google Scholar] [CrossRef]
- Thorman, R.E.; Nicholson, F.A.; Topp, C.F.E.; Bell, M.J.; Cardenas, L.M.; Chadwick, D.R.; Cloy, J.M.; Misselbrook, T.H.; Rees, R.M.; Watson, C.J.; et al. Towards Country-Specific Nitrous Oxide Emission Factors for Manures Applied to Arable and Grassland Soils in the UK. Front. Sustain. Food Syst. 2020, 4, 359. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Smith, K.A.; Johnson, R.A.; Pain, B.F. SE—Structures and Environment. Biosyst. Eng. 2002, 81, 313–321. [Google Scholar] [CrossRef]
- Uusi-Kämppä, J.; Mattila, P.K. Nitrogen losses from grass ley after slurry application surface broadcasting vs. injection. Agric. Food Sci. 2010, 19, 327. [Google Scholar] [CrossRef]
- Sørensen, P.; Rubæk, G.H. Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat. Soil Use Manag. 2012, 28, 1–11. [Google Scholar] [CrossRef]
- Smith, K.A.; Beckwith, C.P.; Chalmers, A.G.; Jackson, D.R. Nitrate leaching following autumn and winter application of animal manures to grassland. Soil Use Manag. 2002, 18, 428–434. [Google Scholar] [CrossRef]
- He, W.; Dutta, B.; Grant, B.B.; Chantigny, M.H.; Hunt, D.; Bittman, S.; Tenuta, M.; Worth, D.; VanderZaag, A.; Desjardins, R.L.; et al. Assessing the effects of manure application rate and timing on nitrous oxide emissions from managed grasslands under contrasting climate in Canada. Sci. Total Environ. 2020, 716, 135374. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.J.; Uenk, D.; Hilhorst, G.J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 2007, 299, 83–99. [Google Scholar] [CrossRef]
- Simić, A.; Marković, J.; Bojan Stojanović, S.V.; Violeta Mandić, Z.B.; Dželetović, Ž. The use of different N sources for the treatment of permanent grassland and effect on forage quality. Emir. J. Food Agric. 2019, 31, 180–187. [Google Scholar] [CrossRef]
- Štýbnarová, M.; Mičová, P.; Fiala, K.; Karabcová, H.; Látal, O.; Pozdíšek, J. Effect of Organic Fertilizers on Botanical Composition of Grassland, Herbage Yield and Quality. Agriculture (Pol’nohospodárstvo) 2014, 60, 87–97. [Google Scholar] [CrossRef]
- Cleland, E.E.; Lind, E.M.; DeCrappeo, N.M.; DeLorenze, E.; Wilkins, R.A.; Adler, P.B.; Bakker, J.D.; Brown, C.S.; Davies, K.F.; Esch, E.; et al. Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems 2019, 22, 1466–1477. [Google Scholar] [CrossRef]
- Kacorzyk, P.; Głąb, T. Effect of ten years of mineral and organic fertilization on the herbage production of a mountain meadow. J. Elem. 2012, 22, 219–233. [Google Scholar] [CrossRef]
- Augustenborg, C.A.; Carton, O.T.; Schulte, R.; Suffet, I.H. Response of silage yield to land application of out-wintering pad effluent in Ireland. Agric. Water Manag. 2008, 95, 367–374. [Google Scholar] [CrossRef]
- Kayser, M.; Isselstein, J. Potassium cycling and losses in grassland systems: A review. Grass Forage Sci. 2005, 60, 213–224. [Google Scholar] [CrossRef]
- Pavlů, K.; Kassahun, T.; Nwaogu, C.; Pavlů, L.; Gaisler, J.; Homolka, P.; Pavlů, V. Effect of grazing intensity and dung on herbage and soil nutrients. Plant Soil Environ. 2019, 65, 343–348. [Google Scholar] [CrossRef]
- Simić, A.; Stojanović, B.; Vučković, S.; Marković, J.; Božičković, A.; Bijelić, Z.; Mandić, V. Application of farmyard manure in grassland production. AGR 2016, 1, 20–27. [Google Scholar] [CrossRef]
- Chen, W.; Huang, D.; Liu, N.; Zhang, Y.; Badgery, W.B.; Wang, X.; Shen, Y. Improved grazing management may increase soil carbon sequestration in temperate steppe. Sci. Rep. 2015, 5, 10892. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Furusawa, S.; Sato, S. Recent pasture management determines biodiversity and productivity, and past management determines forage quality. Écoscience 2016, 23, 89–96. [Google Scholar] [CrossRef]
- Knežević, M.; Leto, J.; Perčulija, G.; Bošnjak, K.; Vranić, M. Effects of liquid manure application on yield, quality and botanical composition of grassland. Cereal Res. Commun. 2007, 35, 637–640. [Google Scholar] [CrossRef]
- Tampere, M.; Kauer, K.; Keres, I.; Loit, E.; Selge, A.; Viiralt, R.; Raave, H. The effect of fertilizer and N application rate on nitrogen and potassium leaching in cut grassland. Zemdirb. Agric. 2015, 102, 381–388. [Google Scholar] [CrossRef]
- Głąb, T.; Kacorzyk, P. Root distribution and herbage production under different management regimes of mountain grassland. Soil Tillage Res. 2011, 113, 99–104. [Google Scholar] [CrossRef]
- Jones, S.K.; Rees, R.M.; Skiba, U.M.; Ball, B.C. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agric. Ecosyst. Environ. 2007, 121, 74–83. [Google Scholar] [CrossRef]
- Saarijärvi, K.; Virkajärvi, P.; Heinonen-Tanski, H.; Taipalinen, I. N and P leaching and microbial contamination from intensively managed pasture and cut sward on sandy soil in Finland. Agric. Ecosyst. Environ. 2004, 104, 621–630. [Google Scholar] [CrossRef]
- van Dobben, H.F.; Quik, C.; Wamelink, G.W.; Lantinga, E.A. Vegetation composition of Lolium perenne-dominated grasslands under organic and conventional farming. Basic Appl. Ecol. 2019, 36, 45–53. [Google Scholar] [CrossRef]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Jones, S.K.; Rees, R.M.; Kosmas, D.; Ball, B.C.; Skiba, U.M. Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use Manag. 2006, 22, 132–142. [Google Scholar] [CrossRef]
- Fornara, D.A.; Banin, L.; Crawley, M.J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Glob. Chang. Biol. 2013, 19, 3848–3857. [Google Scholar] [CrossRef]
- Cenini, V.L.; Fornara, D.A.; McMullan, G.; Ternan, N.; Lajtha, K.; Crawley, M.J. Chronic nitrogen fertilization and carbon sequestration in grassland soils: Evidence of a microbial enzyme link. Biogeochemistry 2015, 126, 301–313. [Google Scholar] [CrossRef]
- Simpson, A.J.; Simpson, M.J.; Smith, E.; Kelleher, B.P. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol. 2007, 41, 8070–8076. [Google Scholar] [CrossRef]
- Liang, C.; Cheng, G.; Wixon, D.L.; Balser, T.C. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 2011, 106, 303–309. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, P.; Amman, C.; Campbell, C.; Ceschia, E.; Clifton-Brown, J.; Czobel, S.; Domingues, R.; et al. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric. Ecosyst. Environ. 2007, 121, 121–134. [Google Scholar] [CrossRef]
- Sun, F.; Harrison, J.H.; Ndegwa, P.M.; Johnson, K. Effect of Manure Treatment on Ammonia and Greenhouse Gases Emissions Following Surface Application. Water Air Soil Pollut. 2014, 225, 310. [Google Scholar] [CrossRef]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Kindler, R.; Siemens, J.A.; Kaiser, K.; Walmsley, D.C.; Bernhofer, C.; Buchmann, N.; Cellier, P.; Eugster, W.; Gleixner, G.; Grũnwald, T.; et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob. Chang. Biol. 2011, 17, 1167–1185. [Google Scholar] [CrossRef]
- Sanderman, J.; Amundson, R. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 2009, 92, 41–59. [Google Scholar] [CrossRef]
- Xu, S.; Jagadamma, S.; Ashworth, A.J.; Singh, S.; Owens, P.R.; Moore, P.A. Long-term effects of pasture management and fenced riparian buffers on soil organic carbon content and aggregation. Geoderma 2021, 382, 114666. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manag. 2018, 223, 74–84. [Google Scholar] [CrossRef]
- Jones, S.K.; Helfter, C.; Anderson, M.; Coyle, M.; Campbell, C.; Famulari, D.; Di Marco, C.; van Dijk, N.; Tang, Y.S.; Topp, C.F.E.; et al. The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland. Biogeosciences 2017, 14, 2069–2088. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Medina-Roldán, E.; Ostle, N.J.; McNamara, N.P.; Bardgett, R.D. Grazing increases the temperature sensitivity of soil organic matter decomposition in a temperate grassland. Environ. Res. Lett. 2012, 7, 14027. [Google Scholar] [CrossRef]
- Voglmeier, K.; Six, J.; Jocher, M.; Ammann, C. Soil greenhouse gas budget of two intensively managed grazing systems. Agric. For. Meteorol. 2020, 287, 107960. [Google Scholar] [CrossRef]
- Ghani, A.; Sarathchandra, U.; Ledgard, S.; Dexter, M.; Lindsey, S. Microbial decomposition of leached or extracted dissolved organic carbon and nitrogen from pasture soils. Biol. Fertil. Soils 2013, 49, 747–755. [Google Scholar] [CrossRef]
- Ammann, C.; Spirig, C.; Leifeld, J.; Neftel, A. Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric. Ecosyst. Environ. 2009, 133, 150–162. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E. Nitrous Oxide and Methane Emissions following Application of Animal Manures to Grassland. J. Environ. Qual. 2000, 29, 277–287. [Google Scholar] [CrossRef]
- Köster, J.R.; Cárdenas, L.M.; Bol, R.; Lewicka-Szczebak, D.; Senbayram, M.; Well, R.; Giesemann, A.; Dittert, K. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification—An N2O isotopomer case study. Soil Biol. Biochem. 2015, 84, 65–74. [Google Scholar] [CrossRef]
- Rochette, P.; Gregorich, E.G. Dynamics of soil microbial biomass C, soluble organic C and CO2 evolution after three years of manure application. Can. J. Soil. Sci. 1998, 78, 283–290. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Dipman, M.M.; Adams, T.A.; Ruina, A.V.; Robins, C.R.; Meyer, W.M. Carbon and nitrogen storage in California sage scrub and non-native grassland habitats. J. Arid. Environ. 2016, 129, 119–125. [Google Scholar] [CrossRef]
- Bittman, S.; Forge, T.; Kowalenko, C. Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 613–623. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Luo, J.; Houlbrooke, D.; Ledgard, S.; Ghani, A.; Lindsey, S. Effects of form of effluent, season and urease inhibitor on ammonia volatilization from dairy farm effluent applied to pasture. J. Soils Sediments 2014, 14, 1341–1349. [Google Scholar] [CrossRef]
- Twigg, M.M.; House, E.; Thomas, R.; Whitehead, J.; Phillips, G.J.; Famulari, D.; Fowler, D.; Gallagher, M.W.; Cape, J.N.; Sutton, M.A.; et al. Surface/atmosphere exchange and chemical interactions of reactive nitrogen compounds above a manured grassland. Agric. For. Meteorol. 2011, 151, 1488–1503. [Google Scholar] [CrossRef]
- Jin, T.; Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Iizuka, N.; Hata, H.; Hatano, R. Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 53–65. [Google Scholar] [CrossRef]
- Jahangir, M.; Khalil, M.I.; Johnston, P.; Cardenas, L.M.; Hatch, D.J.; Butler, M.; Barrett, M.; O’flaherty, V.; Richards, K.G. Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agric. Ecosyst. Environ. 2012, 147, 13–23. [Google Scholar] [CrossRef]
- Watson, C.J.; Foy, R.H. Environmental Impacts of Nitrogen and Phosphorus Cycling in Grassland Systems. Outlook Agric. 2001, 30, 117–127. [Google Scholar] [CrossRef]
- Anger, M.; Hüging, H.; Huth, C.; Kühbauch, W. Nitrat-Austräge auf intensiv und extensiv beweidetem Grünland, erfasst mittels Saugkerzen- und Nmin-Beprobung I Einfluss der Beweidungsintensität. Z. Pflanzenernaehr. Bodenk. 2002, 165, 640–647. [Google Scholar] [CrossRef]
- Fischer, K.; Burchill, W.; Lanigan, G.J.; Kaupenjohann, M.; Chambers, B.J.; Richards, K.G.; Forrestal, P.J. Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland. Soil Use Manag. 2016, 32, 83–91. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; van der Weerden, T.J.; Pain, B.F.; Jarvis, S.C.; Chambers, B.J.; Smith, K.A.; Phillips, V.R.; Demmers, T. Ammonia emission factors for UK agriculture. Atmos. Environ. 2000, 34, 871–880. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Aaes, O.; Søegaard, K. Ammonia losses from urine and dung of grazing cattle. Atmos. Environ. 1998, 32, 295–300. [Google Scholar] [CrossRef]
- Voglmeier, K.; Jocher, M.; Häni, C.; Ammann, C. Ammonia emission measurements of an intensively grazed pasture. Biogeosciences 2018, 15, 4593–4608. [Google Scholar] [CrossRef]
- Bell, M.J.; Rees, R.M.; Cloy, J.M.; Topp, C.F.E.; Bagnall, A.; Chadwick, D.R. Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Sci. Total Environ. 2015, 508, 343–353. [Google Scholar] [CrossRef]
- Webb, J.; Anthony, S.G.; Brown, L.; Lyons-Visser, H.; Ross, C.; Cottrill, B.; Johnson, P.; Scholefield, D. The impact of increasing the length of the cattle grazing season on emissions of ammonia and nitrous oxide and on nitrate leaching in England and Wales. Agric. Ecosyst. Environ. 2005, 105, 307–321. [Google Scholar] [CrossRef]
- van Vliet, L.J.P.; Bittman, S.; Derksen, G.; Kowalenko, C.G. Aerating grassland before manure application reduces runoff nutrient loads in a high rainfall environment. J. Environ. Qual. 2006, 35, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.C.; Seastedt, T.R.; Mann, C.M.; Suding, K.N.; Townsend, A.R.; Cherwin, K.L. Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl. Soil Ecol. 2007, 36, 238–242. [Google Scholar] [CrossRef]
- McDowell, R.W.; Gray, C.W.; Cameron, K.C.; Di, H.J.; Pellow, R. The efficacy of good practice to prevent long-term leaching losses of phosphorus from an irrigated dairy farm. Agric. Ecosyst. Environ. 2019, 273, 86–94. [Google Scholar] [CrossRef]
- Hahn, C.; Prasuhn, V.; Stamm, C.; Schulin, R. Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agric. Ecosyst. Environ. 2012, 153, 65–74. [Google Scholar] [CrossRef]
- Laurenson, S.; Houlbrooke, D.J. Nutrient and microbial loss in relation to timing of rainfall following surface application of dairy farm manure slurries to pasture. Soil Res. 2014, 52, 513. [Google Scholar] [CrossRef]
- Chardon, W.J.; Aalderink, G.H.; van der Salm, C. Phosphorus leaching from cow manure patches on soil columns. J. Environ. Qual. 2007, 36, 17–22. [Google Scholar] [CrossRef]
- Härdtle, W.; von Oheimb, G.; Gerke, A.-K.; Niemeyer, M.; Niemeyer, T.; Assmann, T.; Drees, C.; Matern, A.; Meyer, H. Shifts in N and P Budgets of Heathland Ecosystems: Effects of Management and Atmospheric Inputs. Ecosystems 2009, 12, 298–310. [Google Scholar] [CrossRef]
- Kayser, M.; Müller, J.; Isselstein, J. Potassium leaching from cut grassland and from urine patches. Soil Use Manag. 2007, 23, 384–392. [Google Scholar] [CrossRef]
- Alfaro, M.A.; Jarvis, S.C.; Gregory, P.J. Potassium budgets in grassland systems as affected by nitrogen and drainage. Soil Use Manag. 2003, 19, 89–95. [Google Scholar] [CrossRef]
- Vargas, G.; Verdejo, J.; Rivera, A.; Suárez, D.; Youlton, C.; Celis-Diez, J.L.; Le Bissonnais, Y.; Dovletyarova, E.A.; Neaman, A. The effect of four calcium-based amendments on soil aggregate stability of two sandy topsoils. J. Plant Nutr. Soil Sci. 2019, 182, 159–166. [Google Scholar] [CrossRef]
- Kleiber, T.; Golcz, A.; Krzesiński, W. Effect of Magnesium Nutrition of Onion (Allium cepa L.). Part I. Yielding and Nutrient Status. Ecol. Chem. Eng. S 2012, 19, 97–105. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C. Macroaggregate Characteristics in Cultivated Soils after 25 Annual Manure Applications. Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland. Soil Use Manag. 2004, 20, 2–7. [Google Scholar] [CrossRef]
- Alfaro, M.A.; Gregory, P.J.; Jarvis, S.C. Dynamics of Potassium Leaching on a Hillslope Grassland Soil. J. Environ. Qual. 2004, 33, 192. [Google Scholar] [CrossRef] [PubMed]
- Naramabuye, F.X.; Haynes, R.J. Short-term effects of three animal manures on soil pH and Al solubility. Soil Res. 2006, 44, 515. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle Manure Amendments Can Increase the pH of Acid Soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef]
- Sokolov, V.K.; VanderZaag, A.; Habtewold, J.; Dunfield, K.; Wagner-Riddle, C.; Venkiteswaran, J.J.; Crolla, A.; Gordon, R. Dairy manure acidification reduces CH4 emissions over short and long-term. Environ. Technol. 2021, 42, 2797–2804. [Google Scholar] [CrossRef]
- Miller, J.J.; Sweetland, N.J.; Chang, C. Soil physical properties of a Chernozemic clay loam after 24 years of beef cattle manure application. Can. J. Soil. Sci. 2002, 82, 287–296. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Baker, K.L.; Graceson, A.; Bonnett, S.; Ball, B.C.; Cloy, J.M. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. Eur. J. Agron. 2019, 109, 125916. [Google Scholar] [CrossRef]
- Mestdagh, I.; Lootens, P.; van Cleemput, O.; Carlier, L. Variation in organic-carbon concentration and bulk density in Flemish grassland soils. Z. Pflanzenernaehr. Bodenk. 2006, 169, 616–622. [Google Scholar] [CrossRef]
- Pietola, L.; Horn, R.; Yli-Halla, M. Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 2005, 82, 99–108. [Google Scholar] [CrossRef]
- Hassink, J.; Whitmore, A.P.; Kubát, J. Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. Eur. J. Agron. 1997, 7, 189–199. [Google Scholar] [CrossRef]
- Dlapa, P.; Hriník, D.; Hrabovský, A.; Šimkovic, I.; Žarnovičan, H.; Sekucia, F.; Kollár, J. The Impact of Land-Use on the Hierarchical Pore Size Distribution and Water Retention Properties in Loamy Soils. Water 2020, 12, 339. [Google Scholar] [CrossRef]
- Kirchmann, H.; Gerzabek, M.H. Relationship between soil organic matter and micropores in a long-term experiment at Ultuna, Sweden. Z. Pflanzenernaehr. Bodenk. 1999, 162, 493–498. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Evett, S.R.; Unger, P.W. Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma 2003, 116, 47–60. [Google Scholar] [CrossRef]
- Greenwood, K.L.; MacLeod, D.A.; Scott, J.M.; Hutchinson, K.J. Changes to soil physical properties after grazing exclusion. Soil Use Manag. 1998, 14, 19–24. [Google Scholar] [CrossRef]
- Schjønning, P.; Iversen, B.V.; Munkholm, L.J.; Labouriau, R.; Jacobsen, O.H. Pore characteristics and hydraulic properties of a sandy loam supplied for a century with either animal manure or mineral fertilizers. Soil Use Manag. 2005, 21, 265–275. [Google Scholar] [CrossRef]
- Linsler, D.; Geisseler, D.; Loges, R.; Taube, F.; Ludwig, B. Effects of tillage and application of cattle slurry on carbon pools and aggregate distribution in temperate grassland soils. J. Plant Nutr. Soil Sci. 2014, 177, 388–394. [Google Scholar] [CrossRef]
- Zhanhui, Z.; Congzhi, Z.; Jiabao, Z.; Changhua, L.; Qicong, W. Fertilizer impacts on soil aggregation and aggregate-associated organic components. Plant Soil Environ. 2018, 64, 338–343. [Google Scholar] [CrossRef]
- Ding, X.; Liang, C.; Zhang, B.; Yuan, Y.; Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 2015, 84, 137–146. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Shapiro, C.A. The effects of manure application on soil aggregation. Nutr. Cycl. Agroecosyst. 2008, 80, 173–180. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Li, G.; Yan, L. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 2020, 68, 140. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Mishra, M.M.; Dhankar, S.S.; Kapoor, K.K.; Batra, R. Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biol. Fertil. Soils 1993, 15, 60–64. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Waite, I.S.; O’Donnell, A.G. Microbial biomass, organic matter mineralization and nitrogen in soils from long-term experimental grassland plots (Palace Leas meadow hay plots, UK). Eur. J. Soil Sci. 2011, 62, 95–104. [Google Scholar] [CrossRef]
- Neufeld, K.R.; Grayston, S.J.; Bittman, S.; Krzic, M.; Hunt, D.E.; Smukler, S.M. Long-term alternative dairy manure management approaches enhance microbial biomass and activity in perennial forage grass. Biol. Fertil. Soils 2017, 53, 613–626. [Google Scholar] [CrossRef]
- Bittman, S.; Kowalenko, C.G.; Hunt, D.E.; Schmidt, O. Surface-Banded and Broadcast Dairy Manure Effects on Tall Fescue Yield and Nitrogen Uptake. Agron. J. 1999, 91, 826–833. [Google Scholar] [CrossRef]
- Zhelezova, A.D.; Semenov, V.M.; Ksenofontova, N.A.; Krasnov, G.S.; Tkhakakhova, A.K.; Nikitin, D.A.; Semenov, M.V. Effects of distinct manure amendments on microbial diversity and activity in Chernozem and Retisol. Appl. Soil Ecol. 2024, 193, 105152. [Google Scholar] [CrossRef]
- Sayre, J.M.; Wang, D.; Lin, J.Y.; Danielson, R.E.; Scow, K.M.; Mazza Rodrigues, J.L. Repeated manure inputs to a forage production soil increase microbial biomass and diversity and select for lower abundance genera. Agric. Ecosyst. Environ. 2023, 354, 108567. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; Ksenofontova, N.; Zinyakova, N.B.; van Bruggen, A.H. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? J. Environ. Manag. 2021, 294, 113018. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Del Grosso, S.J.; Parton, W.J. Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr. Cycl. Agroecosystems 2005, 71, 239–248. [Google Scholar] [CrossRef]
- Laughlin, R.J.; Rütting, T.; Müller, C.; Watson, C.J.; Stevens, R.J. Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Appl. Soil Ecol. 2009, 42, 25–30. [Google Scholar] [CrossRef]
- de Vries, F.T.; van Groenigen, J.W.; Hoffland, E.; Bloem, J. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol. Biochem. 2011, 43, 997–1005. [Google Scholar] [CrossRef]
- Jingguo, W.; Bakken, L.R. Competition for nitrogen during mineralization of plant residues in soil: Microbial response to C and N availability. Soil Biol. Biochem. 1997, 29, 163–170. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.-Y.; Zhao, Y.; Gao, Z.; Zhao, S.-J. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. CATENA 2021, 202, 105230. [Google Scholar] [CrossRef]
- Mencel, J.; Mocek-Płóciniak, A.; Kryszak, A. Soil Microbial Community and Enzymatic Activity of Grasslands under Different Use Practices: A Review. Agronomy 2022, 12, 1136. [Google Scholar] [CrossRef]
- Musiał, M.; Kryszak, J.; Grzebisz, W.; Wolna-Maruwka, A.; Łukowiak, R. Effect of Pasture Management System Change on In-Season Inorganic Nitrogen Pools and Heterotrophic Microbial Communities. Agronomy 2020, 10, 724. [Google Scholar] [CrossRef]
- Boeddinghaus, R.S.; Nunan, N.; Berner, D.; Marhan, S.; Kandeler, E. Do general spatial relationships for microbial biomass and soil enzyme activities exist in temperate grassland soils? Soil Biol. Biochem. 2015, 88, 430–440. [Google Scholar] [CrossRef]
- Shi, Y.; Ziadi, N.; Hamel, C.; Bittman, S.; Hunt, D.; Lalande, R.; Shang, J. Soil microbial bio-mass, activity, and community composition as affected by dairy manure slurry applications in grassland production. Appl. Soil Ecol. 2018, 125, 97–107. [Google Scholar] [CrossRef]
- Dong, L.; Berg, B.; Gu, W.; Wang, Z.; Sun, T. Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil. Ecol. Process. 2022, 11, 36. [Google Scholar] [CrossRef]
- Egan, G.; Crawley, M.J.; Fornara, D.A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Sci. Total Environ. 2018, 613–614, 810–819. [Google Scholar] [CrossRef]
- Elfstrand, S.; Hedlund, K.; Mårtensson, A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol. 2007, 35, 610–621. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Shiel, R.S. Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biol. Fertil. Soils 1996, 22, 66–70. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Li, Y.; Wang, J.; Collins, A.L. Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations. Sci. Total Environ. 2020, 714, 136672. [Google Scholar] [CrossRef] [PubMed]
Management | Intensive Grassland | Medium Intensive Grassland | Extensive Grassland | Reference |
---|---|---|---|---|
Cutting frequency per year | 4 and more | 2–3 | 1 | [36] |
Quantity of fertilizer applications per year | Up to 5 | 3–4 | 0–2 | [42,43] |
Amount of fertilizer applications per year | Up to 640 kg N ha−1 | n.s. | 0–181 kg N ha−1 | [42,44,45,46] |
Grazing intensity | 3.4 LU | 1.8 LU | 0.8 LU | [47] |
Input of herbivores | 144 kg N ha−1 | n.s. | 128 kg N ha−1 | [48] |
Animal Group | Manure Type | DM | SD | n | Tot-N | SD | n | Tot-P | SD | n | K | SD | n | pH | SD | n |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (% FM) | (% FM) | (% FM) | (% FM) | (% FM) | (% FM) | |||||||||
Beef cattle | deep litter | 26.99 | 3.78 | 11 | 0.55 | 0.21 | 11 | 0.08 | 0.04 | 11 | 0.67 | 0.28 | 11 | 8.68 | 0.40 | 4 |
Beef cattle | semi-solid manure | 15.74 | 1.47 | 7 | 0.30 | 0.06 | 7 | 0.13 | 0.04 | 7 | 0.00 | 0.00 | 0 | 8.24 | 0.40 | 7 |
Beef cattle | slurry | 8.78 | 1.72 | 13 | 0.34 | 0.09 | 13 | 0.08 | 0.02 | 13 | 0.41 | 0.08 | 13 | 7.78 | 0.40 | 12 |
Beef cattle | solid manure | 26.86 | 12.38 | 7 | 0.57 | 0.15 | 7 | 0.11 | 0.01 | 7 | 0.62 | 0.27 | 7 | 8.47 | 0.38 | 7 |
Dairy cows | semi-solid manure | 15.62 | 3.24 | 46 | 0.32 | 0.07 | 46 | 0.12 | 0.05 | 46 | 0.06 | 0.00 | 1 | 7.78 | 0.65 | 45 |
Dairy cows | slurry | 8.36 | 2.99 | 79 | 0.28 | 0.11 | 79 | 0.06 | 0.02 | 79 | 0.28 | 0.10 | 78 | 7.63 | 0.38 | 74 |
Dairy cows | solid manure | 21.57 | 7.19 | 56 | 0.50 | 0.18 | 56 | 0.13 | 0.06 | 56 | 0.58 | 0.23 | 40 | 8.38 | 0.49 | 53 |
Suckler cows | deep litter | 23.22 | 4.64 | 14 | 0.57 | 0.17 | 14 | 0.10 | 0.04 | 14 | 0.82 | 0.37 | 14 | 8.39 | 0.56 | 10 |
Heifers/calves | semi-solid manure | 15.78 | 1.99 | 18 | 0.31 | 0.07 | 18 | 0.13 | 0.04 | 18 | 0.00 | 0.00 | 0 | 8.01 | 0.56 | 18 |
Heifers/calves | solid manure | 21.44 | 7.07 | 27 | 0.41 | 0.08 | 27 | 0.13 | 0.05 | 27 | 0.51 | 0.16 | 12 | 8.06 | 0.54 | 27 |
Pigs integrated | deep litter | 27.49 | 4.14 | 5 | 0.70 | 0.14 | 5 | 0.22 | 0.08 | 5 | 1.17 | 0.66 | 5 | 8.40 | 0.40 | 5 |
Pigs integrated | liquid fraction | 2.69 | 0.82 | 5 | 0.09 | 0.09 | 5 | 0.04 | 0.05 | 5 | 0.00 | 0.00 | 0 | 7.81 | 0.26 | 5 |
Pigs integrated | slurry | 3.29 | 1.54 | 7 | 0.29 | 0.15 | 7 | 0.08 | 0.04 | 7 | 0.15 | 0.03 | 6 | 7.32 | 0.44 | 7 |
Pigs integrated | solid manure | 25.72 | 5.72 | 7 | 0.47 | 0.28 | 7 | 0.25 | 0.16 | 7 | 0.33 | 0.08 | 3 | 8.17 | 0.71 | 7 |
Fattening pigs | slurry | 5.49 | 3.06 | 34 | 0.44 | 0.21 | 34 | 0.08 | 0.04 | 30 | 0.21 | 0.07 | 28 | 7.61 | 0.50 | 31 |
Broilers | deep litter | 54.77 | 16.94 | 14 | 2.65 | 0.78 | 14 | 0.58 | 0.13 | 13 | 1.39 | 0.44 | 13 | 6.40 | 1.21 | 8 |
Laying hens | solid manure | 43.25 | 22.98 | 11 | 1.46 | 0.53 | 11 | 0.47 | 0.35 | 11 | 0.71 | 0.18 | 3 | 7.81 | 0.91 | 9 |
Sheep | deep litter | 33.28 | 16.93 | 11 | 0.68 | 0.27 | 11 | 0.17 | 0.07 | 11 | 0.99 | 0.40 | 11 | 8.86 | 0.34 | 10 |
Application Technique | Total N Losses by NH3 Volatilisation (%) | Reduction in N Losses (%) | Reference |
---|---|---|---|
Broadcast application | 27–98 | - | [73] |
27.3–84.5 | - | [77] | |
21 | - | [72] | |
19.1 | - | [75] | |
40 | - | [78] | |
Cattle slurry (Spring) | 17.7–24.8 | - | [79] |
Cattle slurry (Autumn) | 5.9–23.9 | - | |
Farmyard manure (Spring) | 0.4–2.6 | - | |
Farmyard manure (Autumn) | 1.3–1.7 | - | |
Narrow-band application | 8.9–32.0 | - | [72] |
- | 26 | [80] | |
Cattle slurry (Spring) | 7.7–18.9 | - | [79] |
Cattle slurry (Autumn) | 6.4–22.1 | - | |
Trailing hose | 4–28 | 51 | [77] |
Railing shoe | 4–12 | 53 | [77] |
- | 57 | [80] | |
- | 40–50 | [75] | |
Shallow injection | 7 | 76 | [77] |
1.5–15.7 | - | [72] | |
- | 73 | [80] | |
- | 40–50 | [75] |
Treatment | Application (kg N ha−1 a−1) | Yield (t DM ha−1) | Quality (g N kg−1 DM) | Diversity (Species m−2) | Reference |
---|---|---|---|---|---|
Grazing | 336 | 7.50–8.63 | 26.1–31.3 | - | [41] |
Manure application | 336 | 8.17–8.66 | 22.7–27.2 | - | |
Sheep manure | 103 | 5.92 | - | - | [98] |
Sheep grazing | 184 | 5.42 | - | - | |
Pig slurry | 160 | ±8 | - | - | [45] |
Pig slurry | 320 | ±14 | - | - | |
Pig slurry | 640 | 20 | - | - | |
Cattle slurry | 130 | ±9 | - | - | |
Cattle slurry | 270 | ±15 | - | - | |
Cattle slurry | 540 | 19 | - | - | |
Cattle slurry | 300 | 7.5 | - | - | [99] |
Poultry manure | 300 | 10.1 | - | - | |
Cattle slurry conv. | 144 | 11.8 | - | 22 | [48] |
Cattle slurry ext. | 128 | 10.5 | - | 26–28 | |
Cattle slurry org. | 117 | 10.7 | - | >32 | |
sheep manure | 69 | 3.55/2.15 * | 19.78/23.95 * | - | [89] |
Sheep manure | 103 | 4.07/2.52 * | 19.20/23.32 * | - | |
Liquid manure | 76–112 | 8.68 | - | [96] | |
Grazing 1998 | 220 | 6.02 | 36.7 | - | [100] |
Grazing 1999 | 220 | 7.94 | 34.9 | - | |
Cut 1998 | 220 | 8.81 | 24.4 | - | |
Cut 1998 | 220 | 8.98 | 27.8 | - | |
Untreated cattle slurry | 303 | 0.262 t N ha−1 | - | - | [85] |
Digested cattle slurry | 306 | 0.270 t N ha−1 | - | - | |
Cattle slurry, injected | 311 | 0.247 t N ha−1 | - | - | |
Cattle slurry, surface | 303 | 0.206 t N ha−1 | - | - | |
Farmyard manure (FYM) | 307 | 0.234 t N ha−1 | - | - | |
Farmyard manure | n.a. | 2.95/1.38 ** | - | - | [93] |
FYM conventional | 280 | - | - | 12 | [101] |
FYM organic | 140 | - | - | 16 | |
Cattle slurry (CS) | 202 | 11.11 | - | - | [31] |
CS low protein | 206 | 8.78 | - | - | |
CS composted with hay | 183 | 8.13 | - | - | |
Cattle FYM | 217 | 9.56 | - | - |
Treatment | Application (kg N ha−1 a−1) | C Storage | CO2 Emissions | CH4 Emissions | Reference |
---|---|---|---|---|---|
LCM *, 4 cuts | 110 | 147 g C m−2 a−1 | 1.8 µmol m−2 s−1 | - | [44] |
No fert., 3 cuts | 0 | −57 g C m−2 a−1 | 3.1 µmol m−2 s−1 | - | |
LCM, 4 cuts | 110 | 64.7–183 t C ha−1 | - | - | [120] |
No fert., 3 cuts | 0 | 61.0–173 t C ha−1 | - | - | |
Dairy cow slurry | 50 | - | - | 0.58 kg ha−1 | [121] |
Pig slurry | 50 | - | - | 0.13 kg ha−1 | |
Pig slurry | 160 | 0.39 t C ha−1 a−1 | - | - | [45] |
Pig slurry | 320 | 0.28 t C ha−1 a−1 | - | - | |
Pig slurry | 640 | 0.31 t C ha−1 a−1 | - | - | |
Cattle slurry | 130 | 0.43 t C ha−1 a−1 | - | - | |
Cattle slurry | 270 | 0.65 t C ha−1 a−1 | - | - | |
Cattle slurry | 540 | 0.86 t C ha−1 a−1 | - | - | |
Dairy cattle slurry | 130–540 | - | 11. 6–12 t CO2 eq | - | |
Beef cattle slurry | 130–540 | - | 9.1–9.5 t CO2 eq | - | |
Cattle slurry | 150/150 ** | - | 14.03/15.9 t CO2 C ha−1 | 1.0/6.4 kg ha−1 | [29] |
Poultry manure | 150/150 ** | - | 17.22/17.22 t CO2 C ha−1 | 0.3/0.7 kg ha−1 | |
Cattle slurry | 150 | 8.4 t C ha−1 | 7.49–12.71 t CO2 C ha−1 | 0–6.4 kg ha−1 | [103] |
Poultry manure | 150 | 31.3 t C ha−1 | 7.0–13.77 t CO2 C ha−1 | −0.1–0.7 kg ha−1 | |
Cattle slurry conv. | 144 | - | 1.280 t CO2 eq | 5.102 t CO2 eq | [48] |
Cattle slurry ext. | 128 | - | 0.666 t CO2 eq | 4.535 t CO2 eq | |
Cattle slurry org. | 117 | - | 0.428 t CO2 eq | 4.114 t CO2 eq | |
Anaerobic digestate | 80.12 | - | 669.5 mg (kg soil DM)−1 | - | [122] |
Cattle slurry | 246.3 | - | 2030.5 mg (kg soil DM)−1 | - | |
Stockpiled dairy manure | 190 | 154.1 mg C kg−1 | 733.1 mg C kg−1 | - | [123] |
Rotted dairy manure | 187 | 186.9 mg C kg−1 | 796.9 mg C kg−1 | - |
Treatment | Application (kg N ha−1 a−1) | N Storage(t N ha−1) | NH3 Emissions | N2O Emissions | N Leaching | Reference |
---|---|---|---|---|---|---|
LCM *, 4 cuts | 110 | 6.9–19.4 | 40–70 kg N ha−1 | 1.4–1.9 kg N ha−1 | 0–3.5 kg N ha−1 | [120] |
No fert., 3 cuts | 0 | 6.6–18.6 | - | 0.4–0.6 kg N ha−1 | 0–3.5 kg N ha−1 | |
Dairy cow slurry | 50 | - | - | 0.34 kg N ha−1 | - | [121] |
Pig slurry | 50 | - | - | 0.57 kg N ha−1 | - | |
Pig slurry | 640 | 0.03 | - | - | - | [45] |
Cattle slurry | 130 | 0.03 | - | - | - | |
Cattle slurry | 270 | 0.05 | - | - | - | |
Cattle slurry | 540 | 0.08 | - | - | - | |
Cattle slurry conv. | 144 | - | 129 kg N ha−1 | 3.017 t CO2 eq | - | [48] |
Cattle slurry ext. | 128 | - | 113 kg N ha−1 | 1.808 t CO2 eq | - | |
Cattle slurry org. | 117 | - | 104 kg N ha−1 | 1.776 t CO2 eq | - | |
Cattle slurry | 150 | - | - | 0.147–0.319 t CO2 eq | - | [103] |
Poultry manure | 150 | - | - | 1.179–6.612 t CO2 eq | - | |
Cattle slurry | 150 | 2.85–2.98 | - | ↑ | 10.1–16.2% | [99] |
Poultry manure | 150 | 2.81–5.2 | - | 2200 g N ha−1 d−1 | 1.9–7.0% | |
Anaerobic digestate | - | - | - | 5.77% of total N | 0–4.9% | [122] |
Cattle slurry | - | - | 8.87% of total N | 0.3–17.5% | ||
Pig FYM | - | - | 1.1–2.8% | 0.15–0.3% | - | [79] |
Poultry manure | - | 5.7–10.4% | 0.58–2.37% | - | ||
Pig slurry | - | 20.7–24.9% | 0.32–1.79% | - | ||
Grazing dairy cows | 120 | - | - | 1.05–1.07 kg ha−1 a−1 | - | [118] |
Dairy cow slurry | 120 | - | - | 0.47–0.57 kg ha−1 a−1 | - | |
Slurry spreading | 250 | - | 1041/1258 ** kg N farm−1 | - | - | [138] |
Slurry + grazing | 250 | - | 485/410 ** kg N farm−1 | - | - | |
FYM | 250 | - | 774/945 ** kg N farm−1 | - | - | |
FYM + grazing | 250 | - | 485/410 ** kg N farm−1 | - | - |
Treatment Type of Manure | Treatment Time | Application (kg N ha−1 a−1) | NH3 Emissions | N2O Emissions (kg ha−1) | N Leaching | Reference |
---|---|---|---|---|---|---|
Urine | In spring | 480 | - | 1.903 | - | [137] |
In summer | 420 | - | 5.034 | - | ||
In autumn | 435 | - | 2.014 | - | ||
Dung | In spring | 1020 | - | 2.035 | - | |
In summer | 680 | - | 1.996 | - | ||
In autumn | 720 | - | 1.538 | - | ||
Dung | In spring | - | 5.3% | - | - | [133] |
In summer | - | 2.8% | - | - | ||
In autumn | - | 3.5% | - | - | ||
Urine | In spring | 695 | 14.9% | - | - | |
In summer | - | 9.8% | - | - | ||
In autumn | - | 8.7% | - | - | ||
Cattle slurry | April/June 2002 | 300/170 | - | 2.5 | - | [29] |
April/June 2002 | 380/150 | - | 1.2 | - | ||
Poultry manure | 2002 | 150 | - | 52.1 | - | |
2003 | 150 | - | 9.3 | - | ||
Slurry | August–April | [134] | ||||
<4% DM | - | 15% | - | - | ||
4–8% DM | - | 37% | - | - | ||
>8% DM | - | 59% | - | - | ||
Slurry | May–July | - | 60% | - | - | |
Solid manure | - | 76% | - | - | ||
Dirty water | - | 15% | - | - | ||
Poultry manure | - | 45% | - | - | ||
Cut | 1998 | 220 | - | - | 1.7 kg ha−1 | [100] |
1999 | 220 | - | - | 0.7 kg ha−1 | ||
2000 | - | - | -- | 12 kg ha−1 | ||
Grazing | 1998 | 220 | - | - | 1.4 kg ha−1 | |
1999 | 220 | - | - | 1.1 kg ha−1 | ||
2000 | - | - | 46.3 kg ha−1 | |||
Cattle slurry | September | Ø 200 | - | - | 6.3–26.3% | [83] |
October | Ø 200 | - | - | 15.5–29.4% | ||
November | Ø 200 | - | - | 10.1–16.2% | ||
December | Ø 200 | - | - | 1.9–7.0% | ||
January | Ø 200 | - | - | 0–4.9% | ||
Farmyard manure | June | Ø 200 | - | - | 0.3–17.5% | |
October | Ø 200 | - | - | 2.9–17.5% | ||
Cattle slurry | Autumn 2011 | 24 | 5.6–14.8% | 0.99–1.03 | - | [79] |
Spring 2012 | 67–77 | 7.7–24.8% | 0.72–1.20 | - | ||
Autumn 2012 | 71 | 22.1–23.9% | 0.77–1.18 | 17.0 kg ha−1 | ||
Spring 2013 | 77 | 15.6–18.9% | 0.44–0.61 | - | ||
Farmyard manure | Autumn 2011 | 131 | 1.3–1.7% | 1.28 | 3.4 kg ha−1 | |
Spring 2012 | 122 | 0.4–2.6% | 0.72–1.28 | - | ||
Dairy slurry control | 1998 | 88.6 | 0.48 kg ha−1 | - | 0.19 kg ha−1 | [139] |
1999 | 95.9 | 0.08 kg ha−1 | - | 0.016 kg ha−1 | ||
Pig slurry control | 2000 | 59.6 | 0.05 kg ha−1 | - | 0.01 kg ha−1 | |
2001 | 113 | 2.22 kg ha−1 | - | 0.012 kg ha−1 | ||
Dairy slurry aerated | 1998 | 88.6 | 0.05 kg ha−1 | - | 0.02 kg ha−1 | |
1999 | 95.9 | 0.03 kg ha−1 | - | 0.018 kg ha−1 | ||
Pig slurry aerated | 2000 | 59.6 | 0.02 kg ha−1 | - | 0.009 kg ha−1 | |
2001 | 113 | 0.05 kg ha−1 | - | 0.048 kg ha−1 |
Treatment | Manure Type | Application Amount | Special Technique | P | K | Reference |
---|---|---|---|---|---|---|
Grazing 1999 | - | - | No drainage | - | 5 kg ha−1 a−1 | [152] |
Grazing 2000 | - | - | No drainage | - | 13 kg ha−1 a−1 | |
Grazing 1999 | - | - | Drainage | - | 5 kg ha−1 a−1 | |
Grazing 2000 | - | - | Drainage | - | 9 kg ha−1 a−1 | |
Fertilization 1999 | Cattle FYM | 122 kg K ha−1 | No drainage | - | 19 kg ha−1 a−1 | |
Fertilization 2000 | Cattle FYM | 304 kg K ha−1 | No drainage | - | 31 kg ha−1 a−1 | |
Fertilization 1999 | Cattle FYM | 122 kg K ha−1 | Drainage | - | 7 kg ha−1 a−1 | |
Fertilization 2000 | Cattle FYM | 304 kg K ha−1 | Drainage | - | 23 kg ha−1 a−1 | |
Intensive | Cattle slurry | 34.6 kg P ha−1 | - | 5.3 kg ha−1 | - | [48] |
Extensive | Cattle slurry | 30.9 kg P ha−1 | - | 4.5 kg ha−1 | - | |
Organic | Cattle slurry | 23.2 kg P ha−1 | - | −2.3 kg ha−1 | - | |
Fertilization on medium-P site | Dairy manure | - | 1 d sprinkler | 3.72 mg L−1 | - | [142] |
- | 1 d watering can | 1.17 mg L−1 | - | |||
- | 8 d sprinkler | 0.95–2.09 mg L−1 | - | |||
- | 8 d watering can | 0.84–0.90 mg L−1 | - | |||
Fertilization on high-P site | Dairy manure | - | 1 d sprinkler | 0.75–1.93 mg L−1 | - | |
- | 1 d watering can | 2.17–2.31 mg L−1 | - | |||
- | 8 d sprinkler | 2.04–5.25 mg L−1 | - | |||
- | 8 d watering can | 1.20–1.40 mg L−1 | - | |||
Fertilization | Cattle slurry | 425 kg K ha−1 a−1 | - | - | 149 kg ha−1 | [146] |
Grass-clover sward | . | 166 kg K ha−1 a−1 | - | - | 89 kg ha−1 | |
Application in summer | Cattle urine | 60 g K m−2 | - | - | 2.4–4.2 g m−2 | |
Application in Autumn | Cattle urine | 74 g K m−2 | - | - | 4.7–7.1 g m−2 | |
Cut 3 times | Dairy manure | 14.5 kg P | Grass cover | 14 g ha−1 | - | [100] |
Grazing | Dairy manure | 14.5 kg P | Grass cover | 11 g ha−1 | - | |
1998 | Dairy manure | 6.4 g P, 21.4 g K DM−1 | Fertilization without aeration | 1.50 kg ha−1 | 5.96 kg ha−1 | [139] |
1999 | Dairy manure | 11.2 g P, 53.6 g K DM−1 | 0.06 kg ha−1 | 0.62 kg ha−1 | ||
2000 | Dairy manure | 12.5 g P, 16.5 g K DM−1 | 0.06 kg ha−1 | 0.22 kg ha−1 | ||
2001 | Swine manure | - | 0.89 kg ha−1 | 5.32 kg ha−1 | ||
1998 | Dairy manure | 6.4 g P, 21.4 g K DM−1 | Fertilization with aeration | 1.13 kg ha−1 | 0.72 kg ha−1 | |
1999 | Dairy manure | 11.2 g P, 53.6 g K DM−1 | 0.06 kg ha−1 | 0.27 kg ha−1 | ||
2000 | Dairy manure | 12.5 g P, 16.5 g K DM−1 | 0.02 kg ha−1 | 0.13 kg ha−1 | ||
2001 | Swine manure | - | n.a. | 1.17 kg ha−1 |
Treatment | Nutrients | Impact on Microbes | Impact on Bacteria | Impact on Fungi | Reference |
---|---|---|---|---|---|
Addition of organic nutrients by rabbit grazing | - | ↑ | ↑ not significant | ↕ | [188] |
Green manure application | 2052 C/65 N (kg ha−1) | ↑ | 34.3 nmol g soil−1 | 1.8 nmol g soil−1 | [189] |
Manure application | 2212 C/104 N (kg ha−1) | ↑ | 36.8 nmol g soil−1 | 1.3 nmol g soil−1 | |
Sawdust application + Ca(NO3)2 | 2054 C/81 N (kg ha−1) | ↑ | 37.4 nmol g soil−1 | 1.7 nmol g soil−1 | |
Manure application | 20 t ha−1 54.4 C/4.49 N (mg g soil−1) | ↑ | - | - | [190] |
Manure application | 400 C/59 N (kg ha−1) | ↑ | - | - | [172] |
Acetate as C source (replacement for manure) | 2.5 mL as solution | ↑ | ↓ | ↑ | [179] |
Stockpiled dairy manure | 100 t ha−1 | ↑ | - | - | [123] |
Rotted dairy manure | 100 t ha−1 | Slightly higher ↑ | - | - | |
Cattle slurry | 3361 OM/98 N (kg ha−1) | ↑ | 56 μg C g dry soil−1 | 15 μg C g dry soil−1 | [31] |
Cattle slurry low protein | 3718 OM/104 N (kg ha−1) | ↑ | 57 μg C g dry soil−1 | 14 μg C g dry soil−1 | |
Cattle slurry composted with hay | 4161 OM/170 N (kg ha−1) | ↑ | 53 μg C g dry soil−1 | 16 μg C g dry soil−1 | |
Cattle FYM | 6347 OM/171 N (kg ha−1) | ↑ | 52 μg C g dry soil−1 | 17 μg C g dry soil−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brummerloh, A.; Kuka, K. The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review. Agronomy 2023, 13, 3010. https://doi.org/10.3390/agronomy13123010
Brummerloh A, Kuka K. The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review. Agronomy. 2023; 13(12):3010. https://doi.org/10.3390/agronomy13123010
Chicago/Turabian StyleBrummerloh, Arne, and Katrin Kuka. 2023. "The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review" Agronomy 13, no. 12: 3010. https://doi.org/10.3390/agronomy13123010
APA StyleBrummerloh, A., & Kuka, K. (2023). The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review. Agronomy, 13(12), 3010. https://doi.org/10.3390/agronomy13123010