Screening of Varieties Resistant to Late-Spring Coldness in Wheat and Effects of Late-Spring Coldness on the Ultrastructure of Wheat Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Field Experiment
2.1.2. Pot Experiments
2.2. Sampling and Measurement
2.2.1. Field Experiment
- 1.
- LSCW-damaged spike rate: (number of damaged spikes in the sample/total number of spikes in the sample) × 100%.
- 2.
- LSCW-damaged spike rate at different levels:
- (1)
- Mildly LSCW-damaged spike rate: (the number of spikes with unproductive spikelets for less than 1/3 of the sample/total number of spikes in the sample) × 100%;
- (2)
- Moderately LSCW-damaged spike rate: (the number of spikes with unproductive spikelets for more than 1/3 and less than 1/2 of the sample/total number of spikes in the sample) × 100%;
- (3)
- Severely LSCW-damaged spike rate: (the number of spikes with unproductive spikelets for more than 1/2 and less than 2/3 of the sample/total number of spikes in the sample) × 100%;
- (4)
- Extremely severely LSCW-damaged spike rate: (the number of spikes with unproductive spikelets for more than 2/3 of the sample/total number of spikes in the sample) × 100%;
- (5)
- Dead spike rate under LSCW: (the number of spikes wherein all the spikelets are sterile in the sample/total number of spikes in the sample) × 100%.
- 3.
- Loss rate of grain number per spike (%): (the number of grains per damaged spike/the number of grains per normal spike) × 100%.
- 4.
- Late-Spring Coldness Resistance Index: (LSCRI) = yield of one test variety/average yield of all the test varieties.
2.2.2. Pot Experiment
2.3. Statistical Analysis
3. Results
3.1. Characterization of Morphological Damage to Wheat Spikes Caused by LSCW
3.2. Effect of LSCW on Damage to Spikes and Grain Number per Spike
3.2.1. Effect on Damage to Spikes and Spikelets
3.2.2. Effects on Damage Rate in Spikelet Setting
3.2.3. Effect of LSCW on Seed Yield
3.3. Comprehensive Evaluation of Resistance of Wheat Varieties to LSCW
3.3.1. Effects of LSCW on TLSCI
3.3.2. Principal Component Analysis of Rates of Damaged Spikes, Damaged Spikelets, and TLSCI
3.3.3. Euclidean Clustering Method for Analyzing LSCW Resistance Traits in 20 Varieties
- Strong LSCW resistance: YN19, GM9, and SN17;
- Slightly strong LSCW resistance: AN0711, LX66, HM28, AK157, HM33, XM35, YN5286, YN5158, and JM22;
- Moderate LSCW resistance: ZM27, WM52, and LM598;
- Weak LSCW resistance: ZM895, XM26, ZM366, ZM8329, and FM5.
3.4. Effects of LSCW on Cell Ultrastructure of Different Wheat Varieties
3.4.1. Effect of LSCW on Morphology and Structure of Mesophyll Cells
Effect of LSCW on Morphology and Structure of Functional Leaf Cells
Effect of LSCW on Chloroplast Morphology and Structure
Effect of LSCW on Mitochondrial Morphology and Structure
3.4.2. Effect of LSCW on Morphology and Structure of Young Ear Cells
3.4.3. Effect of LSCW on Morphology and Structure of Cells from Internode below Young Ear
4. Discussion
4.1. The Advantages and Disadvantages of Identification Methods Used to Study Resistance to LSCW and the Basis for Establishing Evaluation Indexes
4.2. Classification of Different Varieties into LSCW-Resistant Phenotypes for Application in Wheat Breeding and Production
4.3. The Ultrastructural Changes in Wheat Cells under LSCW Stress Are Important Indicators of Resistance to LSCW
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz, R.; Sayre, K.D.; Govaerts, B.; Gupta, R.; Subbarao, G.; Ban, T.; Hodson, D.; Dixon, J.M.; Ortiz-Monasterio, J.I.; Reynolds, M. Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 2008, 126, 46–58. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Special Report. Global Warming of 1.5 °C. The Intergovernmental Panel on Climate Change (IPCC), 2018. Available online: https://www.ipcc.ch/report/sr15 (accessed on 9 November 2023).
- Barlow, K.M.; Christy, B.P.; O’Leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crop. Res. 2015, 171, 109–119. [Google Scholar] [CrossRef]
- Tshewang, S.; Jessop, R.; Birchall, C. Effect of frost on triticale and wheat varieties at flowering in the north eastern Australian cereal belt. Cereal Res. Commun. 2017, 45, 655–664. [Google Scholar] [CrossRef]
- Crimp, S.J.; Zheng, B.; Khimashia, N.; Gobbett, D.L.; Chapman, S.; Howden, M.; Nicholls, N. Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop Pasture Sci. 2016, 67, 801–811. [Google Scholar] [CrossRef]
- Holman, J.D.; Schlegel, A.J.; Thompson, C.R.; Lingenfelser, J.E. Influence of precipitation, temperature and 56 years on winter wheat yields in western Kansas. Crop Manag. 2011, 10, 11–21. [Google Scholar] [CrossRef]
- Frederiks, T.M.; Christopher, J.T.; Borrel, A.K. Investigation of Post Head-Emergence Frost Resistance in Several CIMMYT Synthetic and Queensland wheats. In Proceedings of the 4th International Crop Science Congress, Brisbane, QLD, Australia, 26 September–1 October 2004. [Google Scholar]
- Frederiks, T.M.; Christopher, J.T.; Borrell, A.K. Low Temperature Adaption of Wheat Post Head-Emergence in Northern Australia. In Proceedings of the 11th International Wheat Genetics Symposium, Sydney University, Camperdown, NSW, Australia, 27 August 2008. [Google Scholar]
- Zhao, H.; Wang, X.; Hu, W.; Cao, T.; Liu, Z.; Chen, Y. Status and suggestion of wheat variety utilization in southern Huang-Huai wheat region. J. Henan Agric. Sci. 2016, 45, 18–24. [Google Scholar] [CrossRef]
- FAO. FAO Statistical Yearbook. 2013. Available online: http://www.fao.org/docrep/018/i3107e/i3107e.pdf (accessed on 9 November 2023).
- Qian, Y.L.; Wang, J.L.; Zheng, C.L.; Yang, F.Y.; Song, Y.L.; Song, Y.B. Spatial-temporal change of low temperature disaster of winter wheat in North China in last 50 years. Chin. J. Ecol. 2014, 33, 3245–3253. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, B.; Zhang, H.; Gu, J.; Fu, T.; Asseng, S.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y. Modeling the response of winter wheat phenology to low temperature stress at elongation and booting stages. Agric. For. Meteorol. 2021, 303, 108376. [Google Scholar] [CrossRef]
- Li, C.-Y.; Xu, W.; Liu, L.-W.; Yang, J.; Zhu, X.-K.; Guo, W.-S. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chin. J. Appl. Ecol. 2015, 26, 2015–2022. [Google Scholar] [CrossRef]
- Zheng, J.C.; Liu, T.; Zheng, Q.X.; Li, J.Q.; Qian, Y.C.; Li, J.C.; Zhan, Q.W. Identification of cold tolerance and analysis of genetic diversity for major wheat varieties in jianghuai region of china. Pak. J. Bot. 2020, 3, 839–849. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Huang, Z.; Mi, L.; Xu, K.; Wu, J.; Fan, Y.; Ma, S.; Jiang, D. Effects of Low Temperature at Booting Stage on Sucrose Metabolism and Endogenous Hormone Contents in Winter Wheat Spikelet. Front. Plant Sci. 2019, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Kaznina, N.M.; Batova, Y.V.; Laidinen, G.F.; Sherudilo, E.G.; Titov, A.F. Low-temperature adaptation of winter wheat seedlings under excessive zinc content in the root medium. Russ. J. Plant Physiol. 2019, 66, 763–770. [Google Scholar] [CrossRef]
- Dolferus, R.; Powell, N.; Ji, X.; Ravash, R.; Edlington, J.; Oliver, S.; Van Dongen, J.; Shiran, B. The Physiology of Reproductive-Stage Abiotic Stress Tolerance in Cereals. In Molecular Stress Physiology of Plants; Rout, G.R., Das, A.B., Eds.; Springer: New Delhi, India, 2013; pp. 193–216. [Google Scholar]
- Zhang, Y.T.; Zhu, Q.Y.; Zhang, M.; Guo, Z.H.; Yang, J.J.; Mo, J.X.; Cui, J.B.; Hu, H.L.; Xu, J. Individual cryptomeria fortunei hooibrenk clones show varying degrees of chilling stress resistance. Forests 2020, 11, 189. [Google Scholar] [CrossRef]
- Notice of the Ministry of Agriculture of People’s Republic of China. Ministry of Agriculture of the PRC, Beijing, China. Available online: http://www.moa.gov.cn/ (accessed on 9 November 2023).
- Mukherjee, A.; Wang, S.Y.S.; Promchote, P. Examination of the Climate Factors That Reduced Wheat Yield in Northwest India during the 2000s. Water 2019, 11, 343. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron. 2020, 159, 237–273. [Google Scholar] [CrossRef]
- Ji, H.; Xiao, L.; Xia, Y.; Song, H.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric. For. Meteorol. 2017, 243, 33–42. [Google Scholar] [CrossRef]
- Crimp, S.; Bakar, K.S.; Kokic, P.; Jin, H.; Nicholls, N.; Howden, M. Bayesian spacetime model to analyse frost risk for agriculture in Southeast Australia. Int. J. Climatol. 2014, 35, 2092–2108. [Google Scholar] [CrossRef]
- Potithep, S.; Yasuoka, Y. Application of the 3-PG model for gross primary productivity estimation in deciduous broadleaf forests: A study area in Japan. Forests 2011, 2, 343–349. [Google Scholar] [CrossRef]
- Shi, D.; Wei, X.; Chen, G. Effects of low temperature on photosynthetic characteristics in the super-high-yield hybrid rice ‘Liangyoupeijiu’ at the seedling stage. Genet. Mol. Res. 2016, 15, gmr15049021. [Google Scholar] [CrossRef]
- Khakwani, A.A.; Dennett, M.D.; Munir, M. Early growth response of six wheat varieties under artificial osmotic stress condition. Pak. J. Agri. Sci. 2011, 48, 119–123. Available online: http://www.pakjas.com.pk (accessed on 9 November 2023).
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef]
- Zheng, G.; Tian, B.; Zhang, F.; Tao, F.; Li, W. Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ. 2011, 34, 1431–1442. [Google Scholar] [CrossRef]
- Lukatkin, A.S.; Brazaityte, A.; Bobinas, C.; Duchovskis, P. Chilling injury in chilling-sensitive plants: A review. Zemdirbyste 2012, 99, 111–124. [Google Scholar] [CrossRef]
- Landi, M. Commentary to: “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds” by Hodges et al., Planta (1999) 207:604–611. Planta 2017, 245, 1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.N.; Xie, D.W.; Fu, L.S. Plasma Membrane Stability in Leaf Sheath of Cold-area Winter Wheat with Different Cold Resistance. J. Triticeae Crops 2013, 33, 477–482. Available online: https://www.cnki.net/kcms/detail/61.1359.S.20130305.1147.021.html (accessed on 9 November 2023).
- Routaboul, J.-M.; Fischer, S.F.; Browse, J. Trienoic Fatty Acids Are Required to Maintain Chloroplast Function at Low Temperatures. Plant Physiol. 2000, 124, 1697–1705. [Google Scholar] [CrossRef]
- Iba, K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 2002, 53, 225–245. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Venzhik, Y.; Talanova, V.; Titov, A. The effect of abscisic acid on cold tolerance and chloroplasts ultrastructure in wheat under optimal and cold stress conditions. Acta Physiol. Plant. 2016, 38, 63. [Google Scholar] [CrossRef]
- Venzhik, Y.; Deryabin, A.; Moshkov, I.; Timiryazev, K.A. Adaptive strategy of plant cells during chilling: Aspect of ultrastructural reorganization. Plant Sci. 2023, 332, 111722. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.E.I.; Jin, L.I.; Liu-sheng, D.U.A.N.; Peng-zhong, Z.H.A.N.G.; Jie, L.I.; Wei-ming, T.A.N. Effects of seed coating agents on external morphology and ultrastructure of cotton radicles and seedings under low temprature treatment. Chin. J. Agrometeorol. 2017, 38, 248–256. [Google Scholar]
- Fu, L.S.; Wang, X.N.; Wang, X.D.; Xie, F.D.; Li, Z.F. Comparison of cell ultrastructure between winter wheat cultivars during cold acclimation and freezing period. J. Triticeae Crops 2010, 30, 66–72. [Google Scholar] [CrossRef]
- Han, S.H.; Wang, S. Electron microscopic observation on mitochondria of an especial cold-hardened plant in winter. Acta Bot. Sin. 2000, 4, 539–543+697–698. [Google Scholar] [CrossRef]
- Bhadra, P.; Maitra, S.; Shankar, T.; Hossain, A.; Praharaj, S.; Aftab, T. Climate change impact on plants:plant responses and adaptations. In Plant Perspectives to Global Climate Changes; Academic Press: Cambridge, MA, USA, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, Y.; Snyder, R.L.; Kent, E.R. Tea leaf’s microstructure and ultrastructure response to low temperature in indicating critical damage temperature. Inf. Process. Agric. 2019, 6, 247–254. [Google Scholar] [CrossRef]
- Ren, B.Z.; Zhang, J.W.; Dong, S.T.; Liu, P.; Zhao, B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE 2016, 11, e0161424. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.X.; Guo, J.H.; Li, N.; Jiang, M.; Li, X.N. Low temperature tolerance is depressed in wild-type and abscisic acid-deficient mutant barley grown in Cd-contaminated soil. J. Hazard. Mater. 2022, 430, 128489. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Zhang, J.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.; Jiang, D. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regul. 2019, 90, 109–121. [Google Scholar] [CrossRef]
- Fuller, M.P.; Fuller, A.M.; Kaniouras, S.; Christophers, J.; Fredericks, T. The freezing characteristics of wheat at ear emergence. Eur. J. Agron. 2007, 26, 435–441. [Google Scholar] [CrossRef]
- Venzhik, Y.V.; Titov, A.F.; Talanova, V.V.; Miroslavov, E.A.; Koteeva, N.K. Structural and functional reorganization of the photosynthetic apparatus in adaptation to cold of wheat plants. Cell Tissue Biol. 2013, 7, 168–176. [Google Scholar] [CrossRef]
- Babenko, L.M.; Kosakivska, I.V.; Akimov, Y.A.; Klymchuk, D.O.; Skaternya, T.D. Effect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol. 2014, 4, 117–125. Available online: http://www.ifrg-bg.com (accessed on 9 November 2023).
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.; Zhu, Y.; Ma, W.; Zhang, D.; Ding, Z.; Liu, L.; Tang, L.; Liu, B.; Cao, W. Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agric. For. Meteorol. 2020, 288, 107995. [Google Scholar] [CrossRef]
- Allen, D.J.; Ort, D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 2001, 6, 36–42. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, S.; Malik, J.A.; Berger, J.D.; Nayyar, H. Cold stress effects on reproductive development in grain crops: An overview. Environ. Exp. Bot. 2010, 67, 429–443. [Google Scholar] [CrossRef]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Gururani, M.A.; Venkatesh, J.; Tran, L.S.P. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 2015, 8, 1304–1320. [Google Scholar] [CrossRef]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.J.; Allakhverdiev, S.I.; Yang, X.H.; Safdar, M.E.; Yang, W.Y.; Liu, W.G. Photosynthesis research under climate change. Photosynth. Res. 2021, 150, 5–19. [Google Scholar] [CrossRef]
Date | GDD (°C) |
---|---|
4.1 | 18.5 |
4.2 | 19.5 |
4.3 | 19 |
4.4 | 10 |
4.5 | 5.45 |
4.6 | 6 |
4.7 | 7.5 |
4.8 | 15 |
4.9 | 17.5 |
4.10 | 19 |
Variety | Total Damaged Spike Rate (%) | Mild LSCW-Damaged Spike Rate (%) | Moderate LSCW-Damaged Spike Rate (%) | Severely LSCW-Damaged Spike Rate (%) | Extremely Severely LSCW-Damaged Spike Rate (%) | Dead Spike Rate under LSCW (%) |
---|---|---|---|---|---|---|
ZM895 | 62.22 a | 8.33 ef | 22.22 b | 12.78 b | 7.78 a | 11.11 c |
XM26 | 61.11 a | 18.89 a | 6.11 d | 15.56 a | 2.78 c | 17.7 a |
ZM366 | 53.89 b | 14.45 b | 6.11 d | 15.00 a | 3.89 c | 14.4 b |
ZM27 | 48.33 c | 13.33 bc | 27.78 a | 3.33 e | 2.78 c | 1.11 e |
ZM8329 | 43.89 c | 11.11 cd | 1.67 ef | 12.22 bc | 3.33 c | 15.5 ab |
WM52 | 36.11 d | 20.56 a | 5.56 d | 3.33 e | 2.78 c | 3.89 d |
LM598 | 36.11 d | 8.33 ef | 11.11 c | 6.67 d | 5.56 b | 4.45 d |
FM5 | 28.33 e | 10.00 de | 2.78 e | 11.11 c | 3.89 c | 0.56 e |
AN0711 | 9.45 f | 5.00 ghi | 2.22 ef | 2.22 ef | 0 d | 0 e |
LX66 | 9.45 f | 7.22 fg | 1.67 ef | 0 g | 0 d | 0.56 e |
HM33 | 7.22 fg | 4.45 hi | 1.11 ef | 0.56 g | 0 d | 0.56 e |
HM28 | 7.22 fg | 3.33 ijk | 2.78 e | 1.11 fg | 0 d | 0 e |
AK157 | 6.67 fgh | 3.89 hij | 1.67 ef | 1.11 fg | 0 d | 0 e |
XM35 | 6.11 fghi | 6.11 fgh | 0 f | 0 g | 0 d | 0 e |
JM22 | 3.33 ghi | 3.33 ijk | 0 f | 0 g | 0 d | 0 e |
YN5286 | 2.78 ghi | 1.67 jk | 1.11 ef | 0 g | 0 d | 0 e |
YN5158 | 1.67 ghi | 1.67 jk | 0 f | 0 g | 0 d | 0 e |
GM9 | 1.11 hi | 1.11 jk | 0 f | 0 g | 0 d | 0 e |
SN17 | 1.11 hi | 1.11 jk | 0 f | 0 g | 0 d | 0 e |
YN19 | 0.56 i | 0.56 k | 0 f | 0 g | 0 d | 0 e |
Variety | Damage Rates in Spikelet Setting (%) |
---|---|
ZM8329 | 73.59 a |
ZM895 | 69.64 ab |
ZM366 | 65.42 bc |
XM26 | 65.42 bc |
WM52 | 65.38 bc |
LM598 | 60.32 cd |
FM5 | 59.39 cde |
AK157 | 58.48 cde |
ZM27 | 58.49 cde |
HM28 | 56.86 cde |
XM35 | 55.46 de |
HM33 | 55.06 de |
JM22 | 54.88 de |
YN5158 | 54.37 de |
LX66 | 53.57 de |
AN0711 | 52.05 de |
YN5286 | 51.49 e |
YN19 | 25.21 f |
WM9 | 22.76 f |
SN17 | 19.79 f |
Variety | Yield (kg/ha) | TLSCI |
---|---|---|
ZM895 | 294.8 j | 0.722 j |
LM598 | 335.8 i | 0.822 i |
ZM366 | 355.7 h | 0.871 h |
FM5 | 359.4 gh | 0.88 gh |
XM26 | 367.0 gh | 0.898 gh |
WM52 | 370.8 gh | 0.908 gh |
AK157 | 371.4 gh | 0.909 gh |
ZM8329 | 377.9 fg | 0.925 fg |
ZM27 | 396.5 ef | 0.971 ef |
XM35 | 400.2 e | 0.98 e |
HM33 | 419.5 d | 1.027 d |
HM28 | 424.6 d | 1.04 d |
JM22 | 427.6 d | 1.047 d |
AN0711 | 439.4 cd | 1.076 cd |
LX66 | 454.5 bc | 1.113 bc |
YN5158 | 455.2 bc | 1.114 bc |
YN19 | 467.1 b | 1.144 b |
YN5286 | 468.6 b | 1.147 b |
GM9 | 471.9 b | 1.155 b |
SN17 | 511.5 a | 1.252 a |
Index/Unit | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
Eigenvalue λ | 5.7633 | 0.8769 | 0.6054 |
Variance contribution (%) | 72.0410 | 10.9613 | 7.5672 |
Cumulative Contribution (%) | 72.0410 | 83.0023 | 90.5695 |
Total damaged spike rate | 0.9799 | 0.0493 | –0.1438 |
Mildly LSCW-damaged spike rate | 0.8203 | –0.1450 | 0.1322 |
Moderately LSCW-damaged spike rate | 0.6441 | 0.7249 | –0.0897 |
Severely LSCW-damaged spike rate | 0.9022 | –0.2718 | –0.2408 |
Extremely severely LSCW-damaged spike rate | 0.8909 | 0.2435 | –0.1659 |
Damage rate in spikelet setting | 0.8290 | –0.4226 | –0.2638 |
Damage rate in spikelet setting | 0.7733 | –0.1061 | 0.5879 |
Yield | –0.9068 | –0.0709 | –0.2418 |
Class-Number | Group Classification | Sum of Squares of Deviation within Class |
---|---|---|
1 | GM9, SN17, YN19 | 0.4910 |
2 | AN0711, LX66, HM28, AK157, HM33, XM35, YN5286, YN5158, JM22 | 2.9416 |
3 | ZM27, WM52, LM598 | 6.1600 |
4 | ZM895, XM26, ZM366, ZM8329, FM5 | 9.1626 |
Statistical analysis | Total sum of squares of deviation within the class | 18.7552 |
Total sum of squares of deviation between classes | 81.2448 | |
Pseudo-f-value (inter-class/intra-class) | 23.1032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cai, H.; Liu, L.; Xu, H.; Chen, X.; Li, J. Screening of Varieties Resistant to Late-Spring Coldness in Wheat and Effects of Late-Spring Coldness on the Ultrastructure of Wheat Cells. Agronomy 2023, 13, 3011. https://doi.org/10.3390/agronomy13123011
Zhang Y, Cai H, Liu L, Xu H, Chen X, Li J. Screening of Varieties Resistant to Late-Spring Coldness in Wheat and Effects of Late-Spring Coldness on the Ultrastructure of Wheat Cells. Agronomy. 2023; 13(12):3011. https://doi.org/10.3390/agronomy13123011
Chicago/Turabian StyleZhang, Yan, Hongmei Cai, Lvzhou Liu, Hui Xu, Xiang Chen, and Jincai Li. 2023. "Screening of Varieties Resistant to Late-Spring Coldness in Wheat and Effects of Late-Spring Coldness on the Ultrastructure of Wheat Cells" Agronomy 13, no. 12: 3011. https://doi.org/10.3390/agronomy13123011
APA StyleZhang, Y., Cai, H., Liu, L., Xu, H., Chen, X., & Li, J. (2023). Screening of Varieties Resistant to Late-Spring Coldness in Wheat and Effects of Late-Spring Coldness on the Ultrastructure of Wheat Cells. Agronomy, 13(12), 3011. https://doi.org/10.3390/agronomy13123011