Quantifying the Flows of Nitrogen Fertilizer under Different Application Rates in a Soil–Forage Triticale–Dairy Cow System
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.2.1. Fertilization Experiment
2.2.2. In-Vitro Incubation Experiment
2.3. Measurement Indices and Methods
2.3.1. The Yield and Nutrient Contents of Forage Triticale
2.3.2. The Distribution of N Fertilizer in Forage Triticale
2.3.3. The Distribution of N Fertilizer in the Soil
2.3.4. The Distribution of N Fertilizer in the Livestock
2.4. Statistical Analysis
3. Results
3.1. The Growth and Development of Forage Triticale
3.2. Nutritive Quality of Forage Triticale
3.3. The Migration of N Fertilizer in the Crop
3.4. The Distribution of N Fertilizer in the Soil
3.5. The Utilization of N Fertilizer in the Livestock
3.6. The Distribution of N Fertilizer in the Soil–Forage Triticale–Dairy Cow System
4. Discussion
4.1. Effects of N-Fertilizer Application on Growth of Forage Triticale
4.2. N-Fertilizer Recovery and Allocation by Forage Triticale
4.3. N-Fertilizer Residue in Soil
4.4. N-Fertilizer Flows in Soil–Forage Triticale–Dairy Cow System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quan, Z.; Li, S.; Zhang, X.; Zhu, F.; Li, P.P.; Sheng, R.; Chen, X.; Zhang, L.M.; He, J.Z.; Wei, W.X.; et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil Tillage Res. 2020, 197, 104498. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Li, Z.; Cui, S.; Zhang, Q.P.; Xu, G.; Feng, Q.S.; Chen, C.; Li, Y. Optimizing wheat yield, water, and nitrogen use efficiency with water and nitrogen inputs in China: A synthesis and life cycle assessment. Front. Plant Sci. 2022, 13, 930484. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; Kessel, C.V. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 915–924. (In Chinese) [Google Scholar]
- Dragon, K. Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ. Earth Sci. 2013, 68, 2099–2109. [Google Scholar] [CrossRef]
- Zhang, Y.; Dore, A.J.; Ma, L.; Liu, X.J.; Ma, W.Q.; Cape, J.N.; Zhang, F.S. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 2010, 158, 490–501. [Google Scholar] [CrossRef]
- Zheng, J.S.; Qu, Y.; Kilasara, M.M.; Mmari, W.N.; Funakawa, S. Nitrate leaching from the critical root zone of maize in two tropical highlands of Tanzania: Effects of fertilizer-nitrogen rate and straw incorporation. Soil Tillage Res. 2019, 194, 104295. [Google Scholar] [CrossRef]
- Bai, Z.H.; Ma, L.; Oenema, O.; Chen, Q.; Zhang, F.S. Nitrogen and phosphorus use efficiencies in dairy production in China. J. Environ. Qual. 2013, 42, 990–1001. [Google Scholar] [CrossRef]
- Powell, J.M.; Gourley, C.J.P.; Rotz, C.A.; Weaver, D.M. Nitrogen use efficiency: A potential performance indicator and policy tool for dairy farms. Environ. Sci. Policy 2010, 13, 217–228. [Google Scholar] [CrossRef]
- Bai, Z.H.; Ma, L.; Qin, W.; Chen, Q.; Oenema, O.; Zhang, F.S. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ. Sci. Technol. 2014, 48, 12742–12749. [Google Scholar] [CrossRef] [PubMed]
- Quan, Z.; Li, S.L.; Zhang, X.; Zhu, F.F.; Li, P.P.; Sheng, R.; Chen, X.; Zhang, L.M.; He, J.Z.; Wei, W.X.; et al. Fates of 15N-labeled fertilizer in a black soil-maize system and the response to straw incorporation in Northeast China. J. Soils Sediments 2018, 18, 1441–1452. [Google Scholar] [CrossRef]
- Rimski-Korsakov, H.; Rubio, G.; Lavado, R.S. Fate of the nitrogen from fertilizers in field-grown maize. Nutr. Cycl. Agroecosystems 2012, 93, 253–263. [Google Scholar] [CrossRef]
- Ma, L.N.; Gao, X.L.; Liu, G.F.; Xu, X.F.; Lü, X.; Xin, X.P.; Lü, Y.X.; Zhang, C.X.; Zhang, L.H.; Wang, R.Z. The retention dynamics of N input within the soil–microbe–plant system in a temperate grassland. Geoderma 2020, 368, 114290. [Google Scholar] [CrossRef]
- Roth, R.T.; Lacey, C.G.; Camberato, J.J.; Armstrong, S.D. Quantifying the fate of nitrogen from cereal rye root and shoot biomass using 15N. Nutr. Cycl. Agroecosystems 2023, 125, 219–234. [Google Scholar] [CrossRef]
- Barros, T.; Powell, J.M.; Danes, M.A.C.; Aguerre, M.J.; Wattiaux, M.A. Relative partitioning of N from alfalfa silage, corn silage, corn grain and soybean meal into milk, urine, and feces, using stable 15N isotope. Anim. Feed Sci. Technol. 2017, 229, 91–96. [Google Scholar] [CrossRef]
- Chen, Y.T.; McNamara, J.P.; Ma, G.L.; Harrison, J.H.; Block, E. Milk 13C and 15N discriminations as biomarkers of feed efficiency and energy status in early lactation cows. Anim. Feed Sci. Technol. 2020, 269, 114638. [Google Scholar] [CrossRef]
- Gao, W.; Gao, X.; Chen, A.; Zhang, F.; Chen, D.; Liu, C. Effect of dietary dry matter intake on endogenous nitrogen flows in growing lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 383–393. [Google Scholar] [CrossRef]
- Ayalew, H.; Kumssa, T.T.; Butler, T.J.; Ma, X. Triticale improvement for forage and cover crop uses in the southern great plains of the United States. Front. Plant Sci. 2018, 9, 1130. [Google Scholar] [CrossRef]
- Villalobos, L.; Brummer, J.E. Yield and nutritive value of cool-season annual forages and mixtures seeded into pearl millet stubble. Agron. J. 2017, 109, 432–441. [Google Scholar] [CrossRef]
- Mcgoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2011, 91, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.R.; Nance, C.D.; Karlen, D.L. Winter triticale response to nitrogen fertilization when grown after corn or soybean. Agron. J. 2007, 99, 49–58. [Google Scholar] [CrossRef]
- Ferchaud, F.; Vitte, G.; Machet, J.M.; Beaudoin, N.; Catterou, M.; Mary, B. The fate of cumulative applications of 15N-labelled fertilizer in perennial and annual bioenergy crops. Agric. Ecosyst. Environ. 2016, 223, 76–86. [Google Scholar] [CrossRef]
- Zavalin, A.A.; Kurishbayev, A.K.; Ramazanova, R.K.; Tursinbaeva, A.E.; Kassipkhan, A. Fertilizer nitrogen use by spring triticale and spring wheat on dark-chestnut soil of the dry steppe zone of Kazakhstan. Russ. Agric. Sci. 2018, 44, 153–156. [Google Scholar] [CrossRef]
- Jia, S.L.; Wang, X.B.; Yang, Y.M.; Dai, K.A.; Meng, C.X.; Zhao, Q.S.; Zhang, X.M.; Zhang, D.C.; Feng, Z.H.; Sun, Y.M.; et al. Fate of labeled urea-15N as basal and topdressing applications in an irrigated wheat–maize rotation system in North China Plain: I winter wheat. Nutr. Cycl. Agroecosystems 2011, 90, 331–346. [Google Scholar] [CrossRef]
- You, Y.L.; Li, Y.; Zhao, H.M.; Wu, R.X.; Liu, G.B. Effects of nitrogen and phosphate fertilizer application on yield and forage quality of forage triticale on the Haihe Plain. Acta Prataculturae Sin. 2020, 29, 137–146. (In Chinese) [Google Scholar]
- Monteiro, H.F.; Paula, E.M.; Muck, R.E.; Broderick, G.A.; Faciola, A.P. Effects of lactic acid bacteria in a silage inoculant on ruminal nutrient digestibility, N metabolism, and lactation performance of high-producing dairy cows. J. Dairy Sci. 2021, 104, 8826–8834. [Google Scholar] [CrossRef]
- Zhang, X.M.; Gruninger, R.J.; Alemu, A.W.; Wang, M.; Tan, Z.L.; Kindermann, M.; Beauchemin, K.A. 3-nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique. J. Dairy Sci. 2020, 103, 8986–8997. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Sniffen, C.J.; Mertens, D.R.; Fox, D.G.; Robinson, P.H.; Krishnamoorthy, U. A net protein system for cattle: The rumen submodel for nitrogen. In Protein Requirements for Cattle (MP109-P); Oklahoma State University: Stillwater, OH, USA, 1981; Volume 256. [Google Scholar]
- Murphy, R. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Zhang, C.; Rees, R.M.; Ju, X.T. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutr. Cycl. Agroecosystems 2021, 121, 151–165. [Google Scholar] [CrossRef]
- Powell, J.M.; Barros, T.; Danes, M.; Aguerre, M.; Wattiaux, M.; Reed, K. Nitrogen use efficiencies to grow, feed, and recycle manure from the major diet components fed to dairy cows in the USA. Agric. Ecosyst. Environ. 2017, 239, 274–282. [Google Scholar] [CrossRef]
- Blesh, J.; Drinkwater, L.E. Retention of 15N-labeled fertilizer in an Illinois prairie soil with winter rye. Soil Sci. Soc. Am. J. 2014, 78, 496–508. [Google Scholar] [CrossRef]
- He, J.F.; Goyal, R.; Laroche, A.; Zhao, M.L.; Lu, Z.X. Water stress during grain development affects starch synthesis, composition and physicochemical properties in triticale. J. Cereal Sci. 2012, 56, 552–560. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Fox, R.H.; Rayner, J.H. Interactions between fertilizer nitrogen and soil nitrogen–the so–called ‘priming’ effect. J. Soil Sci. 1985, 36, 425–444. [Google Scholar] [CrossRef]
- Rao, A.C.S.; Smith, J.L.; Papendick, R.I.; Parr, J.F. Influence of added nitrogen interactions in estimating recovery efficiency of labeled nitrogen. Soil Sci. Soc. Am. J. 1991, 55, 1616–1621. [Google Scholar] [CrossRef]
- Recous, S.; Machet, J.M.; Mary, B. The fate of labelled 15N urea and ammonium nitrate applied to a winter wheat crop: II. Plant uptake and N efficiency. Plant Soil 1988, 112, 215–224. [Google Scholar] [CrossRef]
- Han, C.; Zhang, J.H.; Zhang, S.C.; Zhou, G.Z.; Li, D.P. The varieties between the fertilizer and rice leaf nitrogen concentration based on15N tracer. Chin. Agric. Sci. Bull. 2010, 26, 111–116. (In Chinese) [Google Scholar]
- Evans, J.R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol. 1983, 72, 297–302. [Google Scholar] [CrossRef]
- Liu, J. Studies on the Photosynthetic Performance, Nitrogen Use Efficiency, Forage Productivity, and Adaptability of Forage. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2019. [Google Scholar]
- Zhang, X.Z.; Kuang, Y.; Li, T.X. Effect of nitrogen application rate on biomass and nitrogen accumulation of triticale. J. Triticeae Crops 2013, 33, 1237–1242. (In Chinese) [Google Scholar]
- Ma, X.H.; Yu, Z.W.; Liang, X.F.; Yan, H.; Shi, G.P. Effects of nitrogen application rate and ratio of base and topdressing on nitrogen utilization and soil NO3-N content in winter wheat. J. Soil Water Conserv. 2006, 20, 95–98. [Google Scholar]
- Li, P.F.; Li, X.K.; Hou, W.F.; Ren, T.; Cong, R.H.; Du, C.W.; Xing, L.H.; Wang, S.H.; Lu, J.W. Studying the fate and recovery efficiency of controlled release urea in paddy soil using 15N tracer technique. Sci. Agric. Sin. 2018, 51, 3961–3971. (In Chinese) [Google Scholar]
- Macdonald, A.J.; Poulton, P.R.; Stockdale, E.A.; Powlson, D.S.; Jenkinson, D.S. The fate of residual 15N-labelled fertilizer in arable soils: Its availability to subsequent crops and retention in soil. Plant Soil 2002, 246, 123–137. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Christensen, M.B.T. Fertilizer 15N recovery in cereal crops and soil under shallow tillage. Soil Tillage Res. 2007, 97, 117–121. [Google Scholar] [CrossRef]
- Huang, X.S.; Zhong, Z.M.; Huang, Q.L.; Feng, D.Q.; Chen, Z.D.; Wang, M.G. Fertilizer-N uptake and conversion efficiency in 8 Species of gramineous pastures by using15N-tracing technique. J. Nucl. Agric. Sci. 2014, 28, 1677–1684. (In Chinese) [Google Scholar]
- Costagliola, A.; Roperto, F.; Benedetto, D.; Anastasio, A.; Marrone, R.; Perillo, A.; Russo, V.; Papparella, S.; Paciello, O. Outbreak of fatal nitrate toxicosis associated with consumption of fennels (Foeniculum vulgare) in cattle farmed in Campania region (southern Italy). Environ. Sci. Pollut. Res. 2014, 21, 6252–6257. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.B.; Drewnoski, M.E. Is it time to rethink our one-size-fits-all approach to nitrate toxicity thresholds in forages? Transl. Anim. Sci. 2022, 6, txac023. [Google Scholar] [CrossRef]
- NY/T 815–2004; Feeding Standard of Beef Cattle. MOA (Ministry of Agriculture of China): Beijing, China, 2004.
Soil Layer (cm) | Sand (%) | Silt (%) | Clay (%) | Total N g kg–1 | Total P g kg–1 | Total K g kg–1 | Organic Matter g kg–1 | Available N mg kg–1 | Available P mg kg–1 | Available K mg kg–1 | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
0–20 | 35.2 | 44.7 | 20.1 | 1.1 | 1.3 | 21.2 | 18.0 | 68.7 | 22.3 | 142.3 | 8.5 |
20–40 | 33.7 | 42.8 | 23.5 | 0.9 | 0.8 | 21.5 | 12.2 | 46.6 | 6.3 | 120.8 | 8.5 |
Treatment | Phenological Stage (Month–Day) | Plant Height (cm) | Stem-to-Leaf Ratio | Dry Weight (g Plant–1) | Biomass Yield Per Hectare (t ha−1) | |||
---|---|---|---|---|---|---|---|---|
Heading | Flowering | Stem | Leaf | Whole Plant | ||||
N0 | May–3 | May–10 | 156.8 a | 1.5 a | 4.2 cd | 2.8 bc | 7.0 cd | 14.0 c |
N75 | May–3 | May–10 | 155.0 a | 1.5 a | 4.2 cd | 2.9 bc | 7.1 cd | 14.2 bc |
N150 | May–3 | May–10 | 157.4 a | 1.5 a | 4.5 bc | 3.0 ab | 7.5 bc | 15.1 bc |
N225 | May–4 | May–11 | 160.9 a | 1.6 a | 5.3 a | 3.4 a | 8.7 a | 17.5 a |
N300 | May–4 | May–11 | 157.7 a | 1.5 a | 4.9 b | 3.2 ab | 8.1 ab | 16.1 ab |
CK | May–3 | May–10 | 163.2 a | 1.6 a | 4.0 d | 2.6 c | 6.5 d | 13.1 c |
Treatment | N Content (%) | WSC (%) | Starch (%) | NDF (%) | ADF (%) |
---|---|---|---|---|---|
N0 | 1.3 bc | 24.8 ab | 6.8 ab | 50.1 b | 31.6 a |
N75 | 1.4 ab | 24.8 ab | 7.7 a | 49.8 b | 31.0 a |
N150 | 1.4 ab | 25.5 a | 6.0 b | 50.4 b | 31.5 a |
N225 | 1.4 ab | 25.2 ab | 6.0 b | 56.6 a | 32.8 a |
N300 | 1.5 a | 24.3 ab | 6.8 ab | 55.2 a | 32.3 a |
CK | 1.3 c | 22.8 b | 7.5 a | 55.4 a | 32.7 a |
Treatment | Total N (mg Plant–1) | Ndff in Forage Triticale (mg Plant–1) | The Proportion of Ndff in Total N of Forage Triticale (%) | FNUE (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Leaf | Whole Plant | Stem | Leaf | Whole Plant | Stem | Leaf | Whole Plant | Stem | Leaf | Whole Plant | |
N0 | 35.3 cd | 57.7 cd | 93.0 b | -- | -- | -- | -- | -- | -- | -- | -- | -- |
N75 | 36.2 cd | 63.8 bc | 100.0 b | 5.0 d | 8.9 d | 13.8 d | 13.8 d | 14.0 d | 13.9 d | 13.3 a | 23.6 a | 36.9 a |
N150 | 40.1 bc | 63.1 bc | 103.2 b | 10.7 c | 17.3 c | 28.0 c | 26.6 c | 27.4 c | 27.1 c | 14.2 a | 23.1 a | 37.3 a |
N225 | 48.0 a | 72.9 a | 120.9 a | 16.6 b | 25.3 b | 42.0 b | 34.6 b | 34.7 b | 34.7 b | 14.8 a | 22.5 a | 37.3 a |
N300 | 45.4 ab | 71.2 ab | 116.6 a | 19.8 a | 31.4 a | 51.2 a | 43.7 a | 44.1 a | 43.9 a | 13.2 a | 20.9 a | 34.1 a |
CK | 30.7 d | 51.1 d | 81.8 c | -- | -- | -- | -- | -- | -- | -- | -- | -- |
Treatment | Ndff (g m–2) in Different Soil Layers (cm) | FNRE (%) in Different Soil Layers (cm) | FNLE (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 0–100 | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 0–100 | ||
N75 | 1.5 d | 0.7 d | 0.2 c | 0.2 b | 0.1 b | 2.7 d | 20.2 b | 9.5 b | 3.1 a | 2.3 a | 1.3 a | 36.3 b | 26.8 a |
N150 | 3.7 c | 1.3 c | 0.3 bc | 0.2 b | 0.2 ab | 5.7 c | 24.6 a | 8.6 c | 1.9 b | 1.3 b | 1.3 a | 37.8 ab | 25.0 a |
N225 | 5.7 b | 2.1 b | 0.4 b | 0.2 b | 0.2 ab | 8.6 b | 25.4 a | 9.3 b | 1.7 b | 0.8 c | 0.8 a | 38.1 a | 24.6 a |
N300 | 7.3 a | 3.2 a | 0.7 a | 0.3 a | 0.3 a | 11.7 a | 24.5 a | 10.6 a | 2.2 b | 0.9 c | 1.0 a | 39.1 a | 26.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Liu, G.; Yang, X.; Wang, Z.; Li, Y.; Lai, X.; Shen, Y. Quantifying the Flows of Nitrogen Fertilizer under Different Application Rates in a Soil–Forage Triticale–Dairy Cow System. Agronomy 2023, 13, 3073. https://doi.org/10.3390/agronomy13123073
You Y, Liu G, Yang X, Wang Z, Li Y, Lai X, Shen Y. Quantifying the Flows of Nitrogen Fertilizer under Different Application Rates in a Soil–Forage Triticale–Dairy Cow System. Agronomy. 2023; 13(12):3073. https://doi.org/10.3390/agronomy13123073
Chicago/Turabian StyleYou, Yongliang, Guibo Liu, Xianlong Yang, Zikui Wang, Yuan Li, Xingfa Lai, and Yuying Shen. 2023. "Quantifying the Flows of Nitrogen Fertilizer under Different Application Rates in a Soil–Forage Triticale–Dairy Cow System" Agronomy 13, no. 12: 3073. https://doi.org/10.3390/agronomy13123073
APA StyleYou, Y., Liu, G., Yang, X., Wang, Z., Li, Y., Lai, X., & Shen, Y. (2023). Quantifying the Flows of Nitrogen Fertilizer under Different Application Rates in a Soil–Forage Triticale–Dairy Cow System. Agronomy, 13(12), 3073. https://doi.org/10.3390/agronomy13123073