Soil Salinity Mapping of Croplands in Arid Areas Based on the Soil–Land Inference Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Soil Salinity Data
2.2.2. Environmental Variables Data
2.3. Methods
2.3.1. Mapping Methods for Salinization
- 1.
- Ordinary Kriging (OK)
- 2.
- Inverse Distance Weighting (IDW)
- 3.
- Multiple Linear Regression (MLR)
- 4.
- Geographically Weighted Regression (GWR)
- 5.
- Soil–Land Inference Model (SoLIM)
2.3.2. Precision Validation
3. Results
3.1. Statistical Analysis of Soil Salinity at Different Depths
3.2. Accuracy Evaluation of the Five Models
3.3. Spatial Analysis of Soil Salinity Inference with SoLIM
3.4. Distribution Characteristics of Salinity for Different Soil Types
4. Discussion
4.1. The Relationship between Soil Salinization in Arid Zones and Environmental Factors
4.2. Comparison of Different Methods for Mapping Soil Salinity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J. Saudi Soc. Agric. Sci. 2016, 17, 250–258. [Google Scholar] [CrossRef]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin, Germany, 2020; pp. 17–61. [Google Scholar]
- Eswaran, H.; Lal, R.; Reich, P. Land Degradation: An Overview. In Response to Land Degradation; CRC Press: Boca Raton, FL, USA, 2019; pp. 20–35. [Google Scholar]
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water 2018, 10, 1030. [Google Scholar]
- Nagaraj, D.; Proust, E.; Todeschini, A.; Rulli, M.C.; D’Odorico, P. A new dataset of global irrigation areas from 2001 to 2015. Adv. Water Resour. 2021, 152, 103910. [Google Scholar] [CrossRef]
- Salcedo, F.P.; Cutillas, P.P.; Cabañero, J.J.A.; Vivaldi, A.G. Use of remote sensing to evaluate the effects of environmental factors on soil salinity in a semi-arid area. Sci. Total Environ. 2022, 815, 152524. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Guo, L.; Zhang, J.; Li, W.; He, H.; Zong, R.; Wang, D.; Jia, Z.; Wen, Y. Experiences and challenges of agricultural development in an artificial oasis: A review. Agric. Syst. 2021, 193, 103220. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, Z.; Zhang, L.; Wang, J.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Emadi, M.; Baghernejad, M. Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran. Arch. Agron. Soil Sci. 2014, 60, 1315–1327. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Zhang, X.; Chan, N.W.; Kung, H.-t.; Zhou, X.; Wang, Y. Quantitative evaluation of spatial and temporal variation of soil salinization risk using GIS-based geostatistical method. Remote Sens. 2020, 12, 2405. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Liu, H.; Wei, Z.; Miao, H. Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land. Sustainability 2022, 14, 6967. [Google Scholar] [CrossRef]
- Sahbeni, G.; Székely, B. Spatial modeling of soil salinity using kriging interpolation techniques: A study case in the Great Hungarian Plain. Eurasian J. Soil Sci. 2022, 11, 102–112. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Sahbeni, G.; Huang, C.; Duan, H.; Song, X. Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sens. Appl. Soc. Environ. 2022, 28, 100847. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Muhaimeed, A.S.; Al-Shafie, W.M.; Fadhil Al-Quraishi, A.M.; Nangia, V.; Zhu, M.; Liu, G. Soil salinity prediction and mapping by machine learning regression in C entral M esopotamia, I raq. Land Degrad. Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sens. 2015, 7, 488–511. [Google Scholar] [CrossRef]
- Shahabi, M.; Jafarzadeh, A.A.; Neyshabouri, M.R.; Ghorbani, M.A.; Valizadeh Kamran, K. Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Arch. Agron. Soil Sci. 2017, 63, 151–160. [Google Scholar] [CrossRef]
- Shi, H.; Hellwich, O.; Luo, G.; Chen, C.; He, H.; Ochege, F.U.; Van de Voorde, T.; Kurban, A.; De Maeyer, P. A global meta-analysis of soil salinity prediction integrating satellite remote sensing, soil sampling, and machine learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Hu, P.; Zheng, H.; Liu, Y.; Cao, X.; Hellwich, O.; Liu, T.; Luo, G.; Bao, A.; Chen, X. Integrative modeling of heterogeneous soil salinity using sparse ground samples and remote sensing images. Geoderma 2023, 430, 116321. [Google Scholar] [CrossRef]
- Qi, F.; Zhu, A.-X.; Harrower, M.; Burt, J.E. Fuzzy soil mapping based on prototype category theory. Geoderma 2006, 136, 774–787. [Google Scholar] [CrossRef]
- Zhu, A.X.; Band, L.E.; Dutton, B.; Nimlos, T.J. Automated soil inference under fuzzy logic. Ecol. Model. 1996, 90, 123–145. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Fahmy, S.; Zhu, A.X.; Hann, S.; Burt, J.E.; Qi, F. Updating Conventional Soil Maps through Digital Soil Mapping. Soil Sci. Soc. Am. J. 2011, 75, 1044–1053. [Google Scholar] [CrossRef]
- Wen, W.; Wang, Y.; Yang, L.; Liang, D.; Chen, L.; Liu, J.; Zhu, A.-X. Mapping soil organic carbon using auxiliary environmental covariates in a typical watershed in the Loess Plateau of China: A comparative study based on three kriging methods and a soil land inference model (SoLIM). Environ. Earth Sci. 2015, 73, 239–251. [Google Scholar] [CrossRef]
- Tuzheng, C.; Li, Y.; Fadong, L.; Xinlin, H. Spatial variability of soil moisture, salinity, and nutrients in cotton fields of different oasis ecosystems in the Manas River basin. J. Agric. Resour. Environ. 2022, 39, 1133. [Google Scholar]
- Zhang, T.; Wang, L.; Han, Y. Evaluating the Sensitivity of Ecosystems to Soil Salinization in the Manas River Basin. Pol. J. Environ. Stud. 2017, 26, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, F.; Chen, D.; He, X.; Xue, L.; Long, A. Assessment of changes in oasis scale and water management in the arid Manas River Basin, north western China. Sci. Total Environ. 2019, 691, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.; Yang, G.; Liu, H.; Long, A.; Chen, F.; Liu, B.; Gu, X. Land use/cover and landscape pattern changes in Manas River Basin based on remote sensing. Int. J. Agric. Biol. Eng. 2020, 13, 141–152. [Google Scholar] [CrossRef]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Yang, G.; Shi, J.; Zuo, Q.; Liu, L.; Niu, M.; Wu, X.; Ben-Gal, A. Remote Sensing Data Fusion to Evaluate Patterns of Regional Evapotranspiration: A Case Study for Dynamics of Film-Mulched Drip-Irrigated Cotton in China’s Manas River Basin over 20 Years. Remote Sens. 2022, 14, 3438. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Li, Y.; Fan, Z.; Zhang, P.; Yu, P.; Ling, H. Oasis evolution and water resource utilization of a typical area in the inland river basin of an arid area: A case study of the Manas River valley. Environ. Earth Sci. 2012, 66, 683–692. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, C.; Wu, Y.; Ye, P.; Du, D. Advances of coupled water-heat-salt theory and test techniques for soils in cold and arid regions: A review. Geoderma 2023, 432, 116378. [Google Scholar] [CrossRef]
- Mulder, V.; De Bruin, S.; Schaepman, M.E.; Mayr, T. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Wang, N.; Xue, J.; Peng, J.; Biswas, A.; He, Y.; Shi, Z. Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from Southern Xinjiang, China. Remote Sens. 2020, 12, 4118. [Google Scholar] [CrossRef]
- Ma, L.; Yang, S.; Simayi, Z.; Gu, Q.; Li, J.; Yang, X.; Ding, J. Modeling variations in soil salinity in the oasis of Junggar Basin, China. Land Degrad. Dev. 2018, 29, 551–562. [Google Scholar] [CrossRef]
- Jiang, H.; Shu, H. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China. Earth Sci. Inform. 2019, 12, 43–56. [Google Scholar] [CrossRef]
- Yu, T.; Jiapaer, G.; Bao, A.; Zheng, G.; Jiang, L.; Yuan, Y.; Huang, X. Using Synthetic Remote Sensing Indicators to Monitor the Land Degradation in a Salinized Area. Remote Sens. 2021, 13, 2851. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Ma, J.; Cheng, Y.; Wang, L. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin. J. Arid Land 2021, 13, 40–55. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Long, L.; Liu, Y.; Chen, X.; Guo, J.; Li, X.; Guo, Y.; Zhang, X.; Lei, S. Analysis of spatial variability and influencing factors of soil nutrients in western China: A Case Study of the Daliuta Mining Area. Sustainability 2022, 14, 2793. [Google Scholar] [CrossRef]
- Qin, C.; Zhu, A.X.; Pei, T.; Li, B.; Zhou, C.; Yang, L. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. Int. J. Geogr. Inf. Sci. 2007, 21, 443–458. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Azabdaftari, A.; Sunar, F. Soil salinity mapping using multitemporal Landsat data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 3–9. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. J. Arid Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Shahrayini, E.; Noroozi, A.; Eghbal, M.K. Prediction of Soil Properties by Visible and Near-Infrared Reflectance Spectroscopy. Eurasian Soil Sci. 2020, 53, 1760–1772. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, M.; Hu, B.; Jiang, Q.; Shi, Z.; He, Y.; Peng, J. Desert Soil Salinity Inversion Models Based on Field In Situ Spectroscopy in Southern Xinjiang, China. Remote Sens. 2022, 14, 4962. [Google Scholar] [CrossRef]
- Seifi, M.; Ahmadi, A.; Neyshabouri, M.-R.; Taghizadeh-Mehrjardi, R.; Bahrami, H.-A. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran. Remote Sens. Appl. Soc. Environ. 2020, 20, 100398. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Corn and soybean yield response to salinity influenced by soil texture. Agron. J. 2018, 110, 1243–1253. [Google Scholar] [CrossRef]
- Sheng, J.; Ma, L.; Jiang, P.a.; Li, B.; Huang, F.; Wu, H. Digital soil mapping to enable classification of the salt-affected soils in desert agro-ecological zones. Agric. Water Manag. 2010, 97, 1944–1951. [Google Scholar] [CrossRef]
- Miyamoto, S.; Chacon, A. Soil salinity of urban turf areas irrigated with saline water: II. Soil factors. Landsc. Urban Plan. 2006, 77, 28–38. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Eldeiry, A.A.; Garcia, L.A. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. J. Irrig. Drain. Eng. 2010, 136, 355–364. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
- Nielsen, D.R.; Wendroth, O. Spatial and Temporal Statistics: Sampling Field Soils and Their Vegetation; Catena Verlag: Stuttgart, Germany, 2003. [Google Scholar]
- Hammam, A.; Mohamed, E. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar] [CrossRef]
- Bilgili, A.V. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environ. Monit. Assess. 2013, 185, 777–795. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- da Silva Chagas, C.; de Carvalho Junior, W.; Bhering, S.B. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Avdan, U.; Kaplan, G.; Matcı, D.K.; Avdan, Z.Y.; Erdem, F.; Mızık, E.T.; Demirtaş, İ. Soil salinity prediction models constructed by different remote sensors. Phys. Chem. Earth Parts A/B/C 2022, 128, 103230. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance. Remote Sens. Environ. 2015, 169, 335–343. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Shi, T.; Zhao, C.; Liu, Y.; Wang, S.; Zhang, H. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density. ISPRS Int. J. Geo-Inf. 2017, 6, 308. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M. Developing geographic weighted regression (GWR) technique for monitoring soil salinity using sentinel-2 multispectral imagery. Environ. Earth Sci. 2021, 80, 75. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, K.; Qian, H.; Gao, Y.; Fang, Y.; Xiao, S.; Tang, S.; Zhang, Q.; Qu, W.; Ren, W. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Sci. Total Environ. 2022, 837, 155808. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Band, L.; Vertessy, R.; Dutton, B. Derivation of soil properties using a soil land inference model (SoLIM). Soil Sci. Soc. Am. J. 1997, 61, 523–533. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Sci. Soc. Am. J. 2001, 65, 1463–1472. [Google Scholar] [CrossRef]
- Zhu, A.-X. Fuzzy Logic Models. In Environmental Soil-Landscape Modeling. Geographic Information Technologies and Pedometrics; Taylor & Francis: Abingdon, UK, 2005; pp. 215–240. [Google Scholar]
- Zhu, A.X.X.; Qin, C.-Z.Z.; Liang, P.; Du, F. Digital Soil Mapping for Smart Agriculture: The Solim Method and Software Platforms. RUDN J. Agron. Anim. Ind. 2018, 13, 317–335. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, A.-X.; Burt, J.E.; Qi, F.; Simonson, D. A case-based reasoning approach to fuzzy soil mapping. Soil Sci. Soc. Am. J. 2004, 68, 885–894. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J. Spatial discrimination of salt-and sodium-affected soil surfaces. Int. J. Remote Sens. 1997, 18, 2571–2586. [Google Scholar] [CrossRef]
- Wang, L.; Seki, K.; Miyazaki, T.; Ishihama, Y. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ. 2009, 7, 259–270. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Du, H.; Zhang, X. Spatial distribution characteristics of soil salinity and moisture and its influence on agricultural irrigation in the Ili River Valley, China. Sustainability 2019, 11, 7142. [Google Scholar] [CrossRef]
- Abuduwaili, J.; Yang, T.; Abulimiti, M.; DongWei, L.; Long, M. Spatial distribution of soil moisture, salinity and organic matter in Manas River watershed, Xinjiang, China. J. Arid Land 2012, 4, 441–449. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Kulmatov, R.; Khasanov, S.; Odilov, S.; Li, F. Assessment of the space-time dynamics of soil salinity in irrigated areas under climate change: A case study in Sirdarya province, Uzbekistan. Water Air Soil Pollut. 2021, 232, 216. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Turner, M. How is the Third Law of Geography different? Ann. GIS 2022, 28, 57–67. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive soil mapping: A review. Prog. Phys. Geogr. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Wahap, H.; Guan, J.Y.; Lu, L.H.; Zhang, Q.Q. Spatial differentiation and impact factors of Yutian Oasis’s soil surface salt based on GWR model. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2016, 27, 3273–3282. [Google Scholar]
- Li, Z.; Li, Y.; Xing, A.; Zhuo, Z.; Zhang, S.; Zhang, Y.; Huang, Y. Spatial prediction of soil salinity in a semiarid oasis: Environmental sensitive variable selection and model comparison. Chin. Geogr. Sci. 2019, 29, 784–797. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Shao, Y.; Ju, Z. Comparing Machine Learning Algorithms for Soil Salinity Mapping Using Topographic Factors and Sentinel-1/2 Data: A Case Study in the Yellow River Delta of China. Remote Sens. 2023, 15, 2332. [Google Scholar] [CrossRef]
- Shekaari, P.; Yalveh, J. Pattern recognition of soil classes across a semi-arid landscape of western Iran using knowledge-based fuzzy approach. J. Water Soil Conserv. 2017, 23, 269–283. [Google Scholar]
- Kotzé, J.; van Tol, J. Extrapolation of Digital Soil Mapping Approaches for Soil Organic Carbon Stock Predictions in an Afromontane Environment. Land 2023, 12, 520. [Google Scholar] [CrossRef]
- Wahren, F.T.; Julich, S.; Nunes, J.P.; Gonzalez-Pelayo, O.; Hawtree, D.; Feger, K.-H.; Keizer, J.J. Combining digital soil mapping and hydrological modeling in a data scarce watershed in north-central Portugal. Geoderma 2016, 264, 350–362. [Google Scholar] [CrossRef]
- Tavares Wahren, F.; Tarasiuk, M.; Mykhnovych, A.; Kit, M.; Feger, K.-H.; Schwärzel, K. Estimation of spatially distributed soil information: Dealing with data shortages in the Western Bug Basin, Ukraine. Environ. Earth Sci. 2012, 65, 1501–1510. [Google Scholar] [CrossRef]
- Menezes, M.D.; Silva, S.H.G.; Owens, P.R.; Curi, N. Digital soil mapping approach based on fuzzy logic and field expert knowledge. Ciência e Agrotecnologia 2013, 37, 287–298. [Google Scholar] [CrossRef]
Environment Variables | Temporal Resolution | Spatial Resolution | Dataset |
---|---|---|---|
LST | 8 d | 1 km | MOD11A2 |
Soil Moisture | 1 d | 1 km | A 1 km daily soil moisture dataset over China based on situ measurement (2000–2020) |
Slope | 30 m | ASTER-GDEM | |
TWI | 30 m | ||
NDVI | 16 d | 30 m | Landsat 5 TM, Landsat8 OLI |
NIR | 16 d | 30 m | |
Soil texture | 250 m | SoilGrids250m 2.0 | |
Soil Classification | 250 m |
Year | Depth (cm) | Max | Min | Mean | SD | CV | n |
---|---|---|---|---|---|---|---|
2009 | 0–30 | 15.25 | 0.95 | 4.40 | 3.18 | 0.72 | 71 |
30–60 | 12.5 | 1.2 | 4.08 | 2.95 | 0.72 | 71 | |
60–90 | 12.05 | 1.17 | 3.83 | 2.40 | 0.63 | 71 | |
0–90 | 35.3 | 3.37 | 12.31 | 7.43 | 0.60 | 71 | |
2017 | 0–30 | 9.67 | 0.68 | 2.33 | 1.91 | 0.82 | 51 |
30–60 | 19.33 | 0.57 | 4.87 | 4.85 | 0.99 | 51 | |
60–90 | 20.15 | 0.68 | 5.33 | 5.17 | 0.97 | 51 | |
0–90 | 41.38 | 2.47 | 12.44 | 10.54 | 0.85 | 51 |
Year | Depth (cm) | Indicators | SoLIM | OK | IDW | MLR | GWR |
---|---|---|---|---|---|---|---|
2009 | 0–30 | RMSE | 1.95 | 2.74 | 2.34 | 3.16 | 3.04 |
MAE | 1.61 | 2.26 | 1.93 | 2.51 | 2.36 | ||
30–60 | RMSE | 2.05 | 2.56 | 2.35 | 2.78 | 2.74 | |
MAE | 1.62 | 2.04 | 1.84 | 2.22 | 2.08 | ||
60–90 | RMSE | 2.10 | 2.41 | 2.47 | 2.32 | 2.33 | |
MAE | 1.51 | 1.97 | 1.99 | 1.75 | 1.78 | ||
2017 | 0–30 | RMSE | 0.73 | 1.80 | 1.51 | 1.37 | 1.28 |
MAE | 0.55 | 1.01 | 0.98 | 1.12 | 0.91 | ||
30–60 | RMSE | 3.00 | 4.00 | 3.57 | 4.50 | 2.85 | |
MAE | 2.17 | 2.98 | 2.68 | 4.60 | 2.46 | ||
60–90 | RMSE | 4.32 | 5.88 | 6.10 | 4.77 | 5.16 | |
MAE | 3.00 | 4.78 | 4.58 | 3.84 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Wang, X.; Xu, S.; Su, T.; Yang, Q.; Sheng, J. Soil Salinity Mapping of Croplands in Arid Areas Based on the Soil–Land Inference Model. Agronomy 2023, 13, 3074. https://doi.org/10.3390/agronomy13123074
Gao S, Wang X, Xu S, Su T, Yang Q, Sheng J. Soil Salinity Mapping of Croplands in Arid Areas Based on the Soil–Land Inference Model. Agronomy. 2023; 13(12):3074. https://doi.org/10.3390/agronomy13123074
Chicago/Turabian StyleGao, Shenghan, Xinjun Wang, Shixian Xu, Tong Su, Qiulan Yang, and Jiandong Sheng. 2023. "Soil Salinity Mapping of Croplands in Arid Areas Based on the Soil–Land Inference Model" Agronomy 13, no. 12: 3074. https://doi.org/10.3390/agronomy13123074
APA StyleGao, S., Wang, X., Xu, S., Su, T., Yang, Q., & Sheng, J. (2023). Soil Salinity Mapping of Croplands in Arid Areas Based on the Soil–Land Inference Model. Agronomy, 13(12), 3074. https://doi.org/10.3390/agronomy13123074