Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup
2.3. Assessments
2.4. Vegetation Indices
2.5. Statistical Analysis
3. Results
3.1. Visually Estimated Reduction in Cover Crop Vitality
3.2. Vegetative Indices Calculated from Drone Images
3.3. Relationship between Vegetative Indices and Visually Estimated Plant Vitality
3.4. Relationships among Vegetative Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
VI | Treatment | Mean | Mean Rank | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | 1st_DAT | 7th_DAT | 14th_DAT | 21st_DAT | 1st_DAT | 7th_DAT | 14th_DAT | 21st_DAT | ||||||
NDVI | UC | 0.847 | 0.790 | 0.757 | 0.776 | 0.771 | 18 | a | 24.75 | a | 25 | a | 24.25 | a |
PA | 0.851 | 0.721 | 0.614 | 0.656 | 0.723 | 9.25 | a | 11 | bc | 11.75 | b | 13 | b | |
PA_R | 0.859 | 0.796 | 0.746 | 0.770 | 0.771 | 20 | a | 24 | a | 24 | a | 24.75 | a | |
PA_2T | 0.838 | 0.727 | 0.610 | 0.641 | 0.712 | 8.5 | a | 9.25 | bc | 10 | b | 11.25 | b | |
PYR | 0.833 | 0.758 | 0.649 | 0.676 | 0.714 | 14 | a | 12.5 | bc | 13.75 | b | 12.75 | b | |
PYR+PA_R | 0.848 | 0.760 | 0.649 | 0.679 | 0.729 | 14.5 | a | 14 | b | 14.5 | b | 13 | b | |
GLY | 0.844 | 0.779 | 0.575 | 0.542 | 0.472 | 17.25 | a | 6 | c | 2.5 | c | 2.5 | c | |
VARI | UC | 0.384 | 0.317 | 0.230 | 0.224 | 0.332 | 19 | ab | 25.25 | a | 24.5 | a | 21.25 | ab |
PA | 0.368 | 0.116 | −0.027 | 0.014 | 0.247 | 7.75 | b | 8.5 | cd | 11.75 | b | 16.75 | abc | |
PA_R | 0.436 | 0.304 | 0.172 | 0.191 | 0.326 | 19.75 | a | 23.75 | a | 24.5 | a | 24.25 | a | |
PA_2T | 0.348 | 0.129 | −0.031 | 0.001 | 0.201 | 8.5 | ab | 6.75 | d | 9.75 | b | 12.25 | c | |
PYR | 0.317 | 0.225 | 0.057 | 0.050 | 0.182 | 14 | ab | 17 | b | 14 | b | 10.25 | c | |
PYR+PA_R | 0.428 | 0.198 | 0.031 | 0.052 | 0.230 | 14 | ab | 14 | bc | 14.5 | b | 14.25 | bc | |
GLY | 0.342 | 0.312 | −0.043 | −0.091 | −0.057 | 18.5 | ab | 6.25 | d | 2.5 | c | 2.5 | d | |
EXG | UC | 0.309 | 0.325 | 0.260 | 0.281 | 0.270 | 21 | a | 26.25 | a | 26 | a | 25.75 | a |
PA | 0307 | 0211 | 0.138 | 0.176 | 0220 | 3 | c | 5.25 | d | 8.75 | c | 11.5 | bc | |
PA_R | 0.315 | 0.312 | 0.230 | 0.261 | 0.253 | 19.25 | a | 22.25 | a | 22.75 | a | 23.25 | a | |
PA_2T | 0.308 | 0.241 | 0.135 | 0.177 | 0.216 | 8 | bc | 4.75 | d | 9.25 | c | 8.75 | c | |
PYR | 0.295 | 0.296 | 0.202 | 0.219 | 0.227 | 15.75 | ab | 17 | b | 17 | b | 15 | b | |
PYR+PA_R | 0.323 | 0.277 | 0.174 | 0.208 | 0.227 | 14.25 | ab | 11.75 | c | 14.75 | b | 14.75 | b | |
GLY | 0.307 | 0327 | 0.185 | 0.134 | 0108 | 20.25 | a | 14.25 | bc | 3 | d | 2.5 | d | |
LCI | UC | 0.290 | 0.215 | 0.195 | 0.169 | 0.147 | 14.75 | a | 18.25 | ab | 21 | ab | 22 | a |
PA | 0.292 | 0.217 | 0.192 | 0.164 | 0.123 | 16 | a | 17.75 | ab | 18 | b | 10 | bc | |
PA_R | 0.301 | 0.229 | 0.204 | 0.174 | 0.146 | 19 | a | 22 | a | 24.75 | a | 20.75 | a | |
PA_2T | 0.291 | 0.208 | 0.186 | 0.160 | 0.135 | 12.25 | a | 15.75 | ab | 15.5 | bc | 15.25 | ab | |
PYR | 0.288 | 0.206 | 0.171 | 0.149 | 0.133 | 12.25 | a | 11 | bc | 8.75 | de | 13.25 | ab | |
PYR+PA_R | 0.290 | 0.211 | 0.183 | 0.155 | 0.140 | 12.5 | a | 14.25 | ab | 11 | cd | 17.5 | ab | |
GLY | 0.289 | 0.214 | 0.125 | 0.115 | 0.085 | 14.75 | a | 2.5 | c | 2.5 | e | 2.75 | c |
VI | Treatment | Mean | Mean Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | 1st_DAT | 7th_DAT | 14th_DAT | 1st_DAT | 7th_DAT | 14th_DAT | |||||
NDVI | UC | 0.626 | 0.732 | 0.769 | 0.770 | 21.75 | a | 23.5 | a | 22 | a |
PA | 0.633 | 0.570 | 0.688 | 0.715 | 2.5 | d | 10.25 | c | 12 | b | |
PA_R | 0.660 | 0.701 | 0.763 | 0.764 | 16 | ab | 21 | ab | 19 | ab | |
PA_2T | 0.635 | 0.640 | 0.662 | 0.703 | 7.25 | cd | 7.25 | cd | 10.75 | bc | |
PYR | 0.631 | 0.717 | 0.730 | 0.735 | 18.75 | ab | 17 | b | 15.75 | ab | |
PYR+PA_R | 0.665 | 0.682 | 0.750 | 0.761 | 12.75 | bc | 20 | ab | 19.5 | ab | |
GLY | 0.642 | 0.744 | 0.419 | 0.405 | 22.5 | a | 2.5 | d | 2.5 | c | |
VARI | UC | 0.056 | 0.067 | 0.146 | 0.054 | 23.5 | a | 23.75 | a | 21 | a |
PA | 0.059 | −0.067 | 0.061 | 0.024 | 2.5 | d | 12.75 | bc | 14.75 | ab | |
PA_R | 0.083 | 0.014 | 0.111 | 0.046 | 13.75 | c | 19.75 | a | 18.5 | ab | |
PA_2T | 0.058 | −0.025 | 0.015 | 0.010 | 6.5 | d | 6.5 | cd | 10.5 | bc | |
PYR | 0.050 | 0.037 | 0.101 | 0.025 | 18.5 | b | 18.25 | ab | 15.25 | ab | |
PYR+PA_R | 0.085 | 0.009 | 0.092 | 0.049 | 12.25 | c | 18 | ab | 19 | ab | |
GLY | 0.070 | 0.068 | −0.094 | −0.098 | 24.5 | a | 2.5 | d | 2.5 | c | |
EXG | UC | 0.071 | 0.064 | 0.124 | 0.049 | 21.75 | b | 26.5 | a | 26.5 | a |
PA | 0.072 | 0.026 | 0.094 | 0.041 | 2.5 | f | 10.5 | d | 11 | d | |
PA_R | 0.078 | 0.052 | 0.110 | 0.045 | 14.25 | c | 20.75 | b | 17.25 | c | |
PA_2T | 0.072 | 0.039 | 0.085 | 0.037 | 6.5 | e | 6.5 | e | 7 | d | |
PYR | 0.071 | 0.061 | 0.108 | 0.046 | 19.5 | b | 20.25 | b | 21.5 | b | |
PYR+PA_R | 0.079 | 0.045 | 0.100 | 0.043 | 10.75 | d | 14.5 | c | 15.75 | c | |
GLY | 0.072 | 0.073 | 0.067 | 0.004 | 26.25 | a | 2.5 | f | 2.5 | e | |
LCI | UC | 0.315 | 0.402 | 0.394 | 0.447 | 19.25 | a | 20 | a | 20 | a |
PA | 0.318 | 0.344 | 0.366 | 0.417 | 2.5 | c | 12 | ab | 13 | a | |
PA_R | 0.330 | 0.398 | 0.403 | 0.452 | 17 | ab | 20.25 | a | 18.5 | a | |
PA_2T | 0.320 | 0.371 | 0.360 | 0.413 | 9.5 | bc | 11 | bc | 12 | ab | |
PYR | 0.319 | 0.397 | 0.376 | 0.425 | 18.5 | ab | 15.25 | ab | 15.25 | a | |
PYR+PA_R | 0.332 | 0.393 | 0.397 | 0.450 | 16.5 | ab | 20.5 | a | 20.25 | a | |
GLY | 0.326 | 0.399 | 0.233 | 0.270 | 18.25 | ab | 2.5 | c | 2.5 | b |
References
- Legleiter, T.; Johnson, B.; Jordan, T.; Gibson, K. Successful Cover Crop Termination with Herbicides. Purdue University, Purdue External Bulletin WS-50-W. 2012. Available online: https://www.extension.purdue.edu/extmedia/ws/ws-50-w.pdf (accessed on 7 November 2022).
- Ulcuango, K.; Navas, M.; Centurión, N.; Ibañez, M.Á.; Hontoria, C.; Mariscal-Sancho, I. Interaction of Inherited Microbiota from Cover Crops with Cash Crops. Agronomy 2021, 11, 2199. [Google Scholar] [CrossRef]
- Rosario-Lebron, A.; Leslie, A.W.; Yurchak, V.L.; Chen, G.; Hooks, C.R.R. Can Winter Cover Crop Termination Practices Impact Weed Suppression, Soil Moisture, and Yield in No-till Soybean [Glycine max (L.) Merr.]? Crop Prot. 2019, 116, 132–141. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Balkcom, K.; Schomberg, H.; Lee, R.D. Chapter 5: Cover Crop Management. In Conservation Tillage Systems in the Southeast: Production, Profitability and Stewardship; Bergtold, J., Sailus, M., Eds.; Sustainable Agriculture Research and Education (SARE): Washington, DC, USA, 2020; pp. 56–76. [Google Scholar]
- Pittman, K.B.; Cahoon, C.W.; Bamber, K.W.; Rector, L.S.; Flessner, M.L. Herbicide selection to terminate grass, legume, and brassica cover crop species. Weed Technol. 2020, 34, 48–54. [Google Scholar] [CrossRef]
- Schmitt, M.B.; Berti, M.; Samarappuli, D.; Ransom, J.K. Factors affecting the establishment and growth of cover crops inter sown into maize (Zea mays L.). Agronomy 2021, 11, 712. [Google Scholar] [CrossRef]
- Eash, L.; Berrada, A.F.; Russell, K.; Fonte, S.J. Cover Crop Impacts on Water Dynamics and Yields in Dryland Wheat Systems on the Colorado Plateau. Agronomy 2021, 11, 1102. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Balkcom, K.S. Chapter 9: Planting in Cover Crop Residue. In Conservation Tillage Systems in the Southeast: Production, Profitability and Stewardship; Bergtold, J., Sailus, M., Eds.; Sustainable Agriculture Research and Education (SARE): Washington, DC, USA, 2020; pp. 119–132. [Google Scholar]
- Cornelius, C.D.; Bradley, K.W. Herbicide programs for the termination of various cover crop species. Weed Technol. 2017, 31, 1–9. Available online: https://www.jstor.org/stable/26567280 (accessed on 21 February 2021). [CrossRef]
- Palhano, M.G.; Norsworthy, J.K.; Barber, T. Evaluation of chemical termination options for cover crops. Weed Technol. 2018, 32, 227–235. [Google Scholar] [CrossRef]
- Whalen, D.M.; Bish, M.D.; Young, B.G.; Conley, S.P.; Reynolds, D.B.; Norsworthy, J.K.; Bradley, K.W. Herbicide programs for the termination of grass and broadleaf cover crop species. Weed Technol. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef]
- Paganelli, A.; Gnazzo, V.; Acosta, H.; López, S.L.; Carrasco, A.E. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem. Res. Toxicol. 2010, 23, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Antier, C.; Kudsk, P.; Reboud, X.; Ulber, L.; Baret, P.V.; Messéan, A. Glyphosate use in the European agricultural sector and a framework for its further monitoring. Sustainability 2020, 12, 5682. [Google Scholar] [CrossRef]
- Beckie, H.J.; Flower, K.C.; Ashworth, M.B. Farming without glyphosate? Plants 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar] [CrossRef]
- Krauss, J.; Eigenmann, M.; Keller, M. Pelargonic acid for weed control in onions: Factors affecting selectivity. In Tagungsband: 29; Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und Bekämpfung: Braunschweig, Germany, 2020; pp. 415–419. Available online: https://www.openagrar.de/receive/openagrar_mods_00056760 (accessed on 21 February 2021).
- Savage, S.; Zorner, P. The use of pelargonic acid as a weed management tool. Proc. Calif. Weed Conf. 1996, 48, 46–47. [Google Scholar]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels Bioprod. Biorefin. 2019, 13, 1476–1482. [Google Scholar] [CrossRef]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Hoagland, R.E. Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 1996, 10, 651–674. [Google Scholar] [CrossRef]
- Coleman, R.; Penner, D. Organic Acid Enhancement of Pelargonic Acid. Weed Tech. 2008, 22, 38–41. Available online: http://www.jstor.org/stable/25194989 (accessed on 21 February 2021). [CrossRef]
- Moretti, M.L.; Watkins, S.; Hanson, B. Post Efficacy with Venue (pyraflufen) as a Tankmix Partner in Orchard Crops; University of California Weed Science: Davis, CA, USA, 2014; Available online: https://ucanr.edu/blogs/ucdweedscience/blogfiles/24940.pdf (accessed on 7 November 2022).
- Duddu, H.S.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. High-throughput UAV image-based method is more precise than manual rating of herbicide tolerance. Plant Phenomics 2019, 2019, 6036453. [Google Scholar] [CrossRef] [Green Version]
- Rodene, E.; Xu, G.; Palali Delen, S.; Zhao, X.; Smith, C.; Ge, Y.; Schnable, J.; Yang, J. A UAV-based high-throughput phenotyping approach to assess time-series nitrogen responses and identify trait-associated genetic components in maize. Plant Phenome J. 2022, 5, 20030. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Detection of spatial and temporal variability of wheat cultivars by high-resolution vegetation indices. Agronomy 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Streibig, J.C.; Rasmussen, J.; Andújar, D.; Andreasen, C.; Berge, T.W.; Chachalis, D.; Dittmann, T.; Gerhards, R.; Giselsson, T.M.; Hamouz, P.; et al. Sensor-based assessment of herbicide effects. Weed Res. 2014, 54, 223–233. [Google Scholar] [CrossRef]
- Mink, R.; Linn, A.I.; Santel, H.J.; Gerhards, R. Sensor-based evaluation of maize (Zea mays) and weed response to post-emergence herbicide applications of Isoxaflutole and Cyprosulfamide applied as crop seed treatment or herbicide mixing partner. Pest Manag. Sci. 2020, 76, 1856–1865. [Google Scholar] [CrossRef] [Green Version]
- Meena, S.V.; Dhaka, V.S.; Sinwar, D. Exploring the Role of Vegetation Indices in Plant Diseases Identification. In Proceedings of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 3–6 November 2020; pp. 372–377. [Google Scholar] [CrossRef]
- Guo, Z.C.; Wang, T.; Liu, S.L.; Kang, W.P.; Chen, X.; Feng, K.; Zhang, X.Q.; Zhi, Y. Biomass and vegetation coverage survey in the Mu Us sandy land-based on unmanned aerial vehicle RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102239. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Bartels, J.; Wahmhoff, W.; Heitefuss, R. So kann der Praktiker Schadschwellen feststellen. DLG-Mitteil 1983, 98, 270–274. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Woebbecke, D.; Meyer, G.; VonBargen, K.; Mortensen, D. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 271–281. [Google Scholar] [CrossRef]
- Yang, D. Gobi Vegetation Recognition Based on Low-Altitude Photogrammetry Images of UAV. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 012053. [Google Scholar] [CrossRef]
- Gil, H.A.P.; Pacheco, A.D.J.M. Chapter 1: RGB Spectral Indices for the Analysis of Soil Protection by Vegetation Cover against Erosive Processes. In Soil Erosion-Current Challenges and Future Perspectives in a Changing World; Vieira, A., Rodrigues, S.C., Eds.; IntechOpen: London, UK, 2020; pp. 3–14. [Google Scholar]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sensing 2022, 14, 1140. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 October 2022).
- Shapiro, S.S.; Wilk, M.B.; Chen, H.J. A comparative study of various tests of normality. J. Am. Stat. Associ. 1968, 63, 1343–1372. [Google Scholar] [CrossRef]
- de Mendiburu, F.; Yaseen, M. agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.4.0. 2020. Available online: https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae (accessed on 1 December 2022).
- Webber, C.L.; Taylor, M.J.; Shrefler, J.W. Weed control in yellow squash using sequential postdirected applications of pelargonic acid. HortTechnology 2014, 24, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Fadin, D.A.; Tornisielo, V.L.; Barroso, A.A.M.; Ramos, S.; Dos Reis, F.C.; Monquero, P.A. Absorption and translocation of glyphosate in Spermacoce verticillata and alternative herbicide control. Weed res. 2018, 58, 389–396. [Google Scholar] [CrossRef]
- Satchivi, N.M.; Wax, L.M.; Stoller, E.W.; Briskin, D.P. Absorption and translocation of glyphosate isopropylamine and trimethylsulfonium salts in Abutilon theophrasti and Setaria faberi. Weed Sci. 2000, 48, 675–679. [Google Scholar] [CrossRef]
- Sprankle, P.; Meggitt, W.F.; Penner, D. Absorption, action, and translocation of glyphosate. Weed Sci. 1975, 23, 235–240. [Google Scholar] [CrossRef]
- Murata, S.; Yamashita, A.; Kimura, Y.; Motoba, K.; Mabuchi, T.; Miura, Y. Herbicidal activity and characteristics of pyraflufen-ethyl for controlling broad-leaved weeds in cereals. J. Pesticide Sci. 2002, 27, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.S.; Park, S.H.; Kim, H.J.; Lee, W.D.; Lee, K.D.; Hong, S.Y.; Jung, G.H. Use of unmanned aerial vehicle for multi-temporal monitoring of soybean vegetation fraction. J. Biosyst. Eng. 2016, 41, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Travlos, I.; Tsekoura, A.; Antonopoulos, N.; Kanatas, P.; Gazoulis, I. Novel sensor-based method (quick test) for the in-season rapid evaluation of herbicide efficacy under real field conditions in durum wheat. Weed Sci. 2021, 69, 147–160. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI); NASA Earth Observatory: Washington, DC, USA, 2000. Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php (accessed on 7 November 2022).
- Götze, C.; Jung, A.; Merbach, I.; Wennrich, R.; Gläßer, C. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment. Open Geosci. 2010, 2, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Erunova, M.G.; Pisman, T.I.; Shevyrnogov, A.P. The Technology for Detecting Weeds in Agricultural Crops Based on Vegetation Index VARI (PlanetScope). J. Sib. Fed. Univ. Eng. Technol. 2021, 14, 347–353. [Google Scholar] [CrossRef]
- Sakamoto, T.; Shibayama, M.; Kimura, A.; Takada, E. Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth. ISPRS J. Photogramm. Remote Sens. 2011, 66, 872–882. [Google Scholar] [CrossRef]
- Datt, B.; McVicar, T.R.; Van Niel, T.G.; Jupp, D.L.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy, and regional scales. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4014–4024. [Google Scholar] [CrossRef]
- Zhang, J.; Virk, S.; Porter, W.; Kenworthy, K.; Sullivan, D.; Schwartz, B. Applications of unmanned aerial vehicle-based imagery in turfgrass field trials. Front. Plant Sci. 2019, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [Green Version]
Treatment | Amount Used (L /ha) | Active Ingredient Content (g/L) |
---|---|---|
UC | - | Untreated control |
PA | 16 L/ha | 680 g/L pelargonic acid |
PA_R | 5 L/ha | 680 g/L pelargonic acid |
PA_2T | 8 L/ha 1 | 680 g/L pelargonic acid |
PYR | 0.8 L/ha | 24.2 g/L pyraflufen |
PYR + PA_R | 0.8 L/ha PYR and 5 L/ha PA | 24.2 g/L pyraflufen and 680 g/L pelargonic acid |
GLY | 3 L/ha | 480 /L glyphosate |
Date | 2019 | 2021 |
---|---|---|
Before application | Completely cloudy | Completely cloudy |
1st_DAT | Partly cloudy | Partly cloudy |
7th _DAT | Completely cloudy | Partly cloudy |
14th _DAT | Completely cloudy | Partly cloudy |
21st_DAT | Sunny | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganji, E.; Grenzdörffer, G.; Andert, S. Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery. Agronomy 2023, 13, 354. https://doi.org/10.3390/agronomy13020354
Ganji E, Grenzdörffer G, Andert S. Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery. Agronomy. 2023; 13(2):354. https://doi.org/10.3390/agronomy13020354
Chicago/Turabian StyleGanji, Eliyeh, Görres Grenzdörffer, and Sabine Andert. 2023. "Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery" Agronomy 13, no. 2: 354. https://doi.org/10.3390/agronomy13020354
APA StyleGanji, E., Grenzdörffer, G., & Andert, S. (2023). Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery. Agronomy, 13(2), 354. https://doi.org/10.3390/agronomy13020354